American Mineralogist, Volume 102, pages 1501-1515, 2017

Revisiting the nontronite Mössbauer spectra

FABIEN BARON^{1,*}, SABINE PETIT¹, MARTIN PENTRÁK², ALAIN DECARREAU¹, AND JOSEPH W. STUCKI²

¹Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285 Université de Poitiers, France ²Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, U.S.A.

ABSTRACT

The distribution of ferric iron (Fe³⁺) between the octahedral and tetrahedral sheets of smectites is still an active problem due to the difficulty of identifying and quantifying the tetrahedral ferric iron $(^{(4)}Fe^{3+})$. Mössbauer spectroscopy has often been used to address this problem, with the spectra being fitted by a sum of doublets, but the empirical attribution of each doublet has failed to yield a uniform interpretation of the spectra of natural reference Fe³⁺-rich smectites, especially with regard to ^[4]Fe³⁺, because little consensus exists as to the ^[4]Fe³⁺ content of natural samples. In an effort to resolve this problem, the current study was undertaken using a series of synthetic nontronites $[Si_{4-x}]^{(4)}Fe_x^{(4)}$ $^{[6]}$ Fe₂³⁺O₁₀(OH)₂Na_x with x ranging from 0.51 to 1.3. Mössbauer spectra were obtained at 298, 77, and 4 K. Statistically acceptable deconvolutions of the Mössbauer spectra at 298 and 77 K were used to develop a model of the distribution of tetrahedral substitutions, taking into account: (1) the [4]Fe³⁺ content; (2) the three possible tetrahedral cationic environments around [6]Fe³⁺, i.e., [4Si]-(3^[6]Fe³⁺), $[3Si \ ^{[4]}Fe^{3+}]-(3^{[6]}Fe^{3+})$, and $[2Si \ ^{[4]}Fe^{3+}]-(3^{[6]}Fe^{3+})$; and (3) the local environment around a $^{[4]}Fe^{3+}$, i.e., [3Si]-(2^[6]Fe³⁺) respecting Lowenstein's Rule. This approach allowed the range of Mössbauer parameters for ^[6]Fe³⁺ and ^[4]Fe³⁺ to be determined and then applied to spectra of natural Fe³⁺-rich smectites. Results revealed the necessity of taking into account the distribution of tetrahedral cations ($^{[4]}R^{3+}$) around ^[6]Fe³⁺ cations to deconvolute the Mössbauer spectra, and also highlighted the influence of sample crystallinity on Mössbauer parameters.

Keywords: Clay minerals, iron, Mössbauer spectroscopy, nontronite, smectites, tetrahedral iron