Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization

WEI HONG^{1,*}, DAVID R. COOKE^{1,2}, LEJUN ZHANG^{1,2}, NATHAN FOX¹, AND JAY THOMPSON¹

¹ARC Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Private Bag 79, Hobart 7001, Australia

²Transforming the Mining Value Chain, an ARC Industrial Transformation Research Hub, University of Tasmania, Private Bag 79, Hobart 7001, Australia

ABSTRACT

Distinctive magmatic-hydrothermal, tourmaline-rich features have developed in the Heemskirk and Pieman Heads granites from western Tasmania, Australia. They are categorized as tourmaline-rich patches, orbicules, cavities, and veins, based on their distinctive morphologies, sizes, mineral assemblages, and contact relationships with host granites. These textural features occur in discrete layers in the roof zone of granitic sills within the Heemskirk and Pieman Heads granites. Tourmaline patches commonly occur below a tourmaline orbicule-rich granitic sill. Tourmaline-filled cavities have typically developed above the tourmaline-quartz orbicules in the upper layer of the white phase of the Heemskirk Granite. Tourmaline-quartz veins penetrate all exposed levels of the granites, locally cutting tourmaline orbicules and cavities.

The tourmalines are mostly schorl (Fe-rich) and foitite, with an average end-member component of schorl₄₅dravite₆tsilaisite₁uvite₀Fe-uvite₃foitite₃₁Mg-foitite₄olenite₁₀. Element substitutions of the tourmalines are controlled by FeMg⁰, YAl^x(R²⁺)^{−1}, and minor YAlO(R²⁺OH)^{−1} (where R²⁺=Fe²⁺ + Mg²⁺ + Mn²⁺) exchange vectors. Several trace elements in tourmaline have consistent chemical evolutions grouped from tourmaline patches, through orbicules and cavities, to veins. There is a progressive decrease of most transition and large ion lithophile elements, and a gradual increase of most high-field strength elements. These compositional variations in the different tourmaline-rich features probably relate to element partitioning occurring in these phases due to volatile exsolution and fluxing of aqueous boron-rich fluids that separated from the granitic melts during the emplacement of S-type magmas into the shallow crust (4 to 5.5 km).

Tourmalines from the Heemskirk Granite are enriched in Fe, Na, Li, Be, Sn, Ta, Nb, Zr, Hf, Th, and rare earth elements relative to the tourmalines from the Pieman Heads Granite, but depleted in Mg, Mn, Sc, V, Co, Ni, Pb, Sr, and most transition elements. These results imply that bulk compositions of the host granites exert a major control on the chemical variations of tourmalines. The trace element compositions of tourmalines from the Sn-mineralized Heemskirk Granite are different from those of the barren Pieman Heads Granite. Trace element ratios (e.g., Zn/Nb, Co/Nb, Sr/Ta, and Co/La) and Sn concentrations in tourmaline can distinguish the productive Heemskirk Granite from the barren Pieman Heads Granite.

KEYWORDS: Tourmaline, orbicules, mineral chemistry, granites, Tasmania

INTRODUCTION

Tourmaline orbicules are distinctive textures that mostly occur in leucocratic granites that have formed across a broad spectrum of time and space. They have been found in the Paleoproterozoic Scruber granite, Western Australia (Shewfelt 2005); the Neoproterozoic Cape Granite Suite, South Africa (Rozendaal and Bruwer 1995); the Carboniferous to Permian Bohemian Massif, Czech Republic (Buriánek and Novák 2007); the Cretaceous Seagull Batholith, Yukon Territory, Canada (Sinclair and Richardson 1992); the late Miocene Capo Bianco aplite, Elba Island, Italy (London and Manning 1995; Drivenes et al. 2015). Tourmaline orbicules have been known by various names, including tourmaline nodules, spots, clots, ovoids, and clusters. They are typically 8–10 cm in diameter, rounded to sub-rounded, and consist of tourmaline, quartz, and minor feldspar, muscovite, and trace amounts of monazite, zircon, apatite, titanite, and other accessory phases.

Although features of tourmaline orbicules are well documented, their origins have been hotly debated. Two contrasting hypotheses have been proposed for their origins: (1) post-magmatic metasomatism by boron-rich hydrothermal fluids from adjacent crystallizing granites (Dick 1980; Le Fort 1991; Rozendaal and Bruwer 1995), or (2) deposition from hydrous boron-rich fluids that unmixed from granitic melts (Sinclair and Richardson 1992; Samson and Sinclair 1992; Jiang et al.