Thermo-elastic behavior of grossular garnet at high pressures and temperatures

SULA MILANI^{1,*}, ROSS J. ANGEL¹, LORENZO SCANDOLO², MATTIA L. MAZZUCCHELLI², TIZIANA BOFFA BALLARAN³, STEPHAN KLEMME⁴, MARIA C. DOMENEGHETTI², RONALD MILETICH⁵, KATHARINA S. SCHEIDL⁵, MARIANA DERZSI^{1,6}, KAMIL TOKÁR⁷, MAURO PRENCIPE⁸, MATTEO ALVARO², AND FABRIZIO NESTOLA¹

¹Department of Geosciences, University of Padova, Via Gradenigo, 6, I-35131 Padova, Italy
²Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata, 1, I-27100 Pavia, Italy
³Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
⁴Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
⁵Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
⁶Centre for New Technologies, University of Warsaw, Żwirki i Wigury 93, 02089 Warsaw, Poland
⁷Institute of Physics, CCMS, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
⁸Department of Earth Sciences, Via Valperga Caluso 35, I-10125 Turin, Italy

ABSTRACT

The thermo-elastic behavior of synthetic single crystals of grossular garnet (Ca₃Al₂Si₃O₁₂) has been studied in situ as a function of pressure and temperature separately. The same data collection protocol has been adopted to collect both the pressure-volume (P-V) and temperature-volume (T-V) data sets to make the measurements consistent with one another. The consistency between the two data sets allows simultaneous fitting to a single pressure-volume-temperature Equation of State (EoS), which was performed with a new fitting utility implemented in the latest version of the program EoSFit7c. The new utility performs fully weighted simultaneous fits of the P-V-T and P-K-T data using a thermal pressure EoS combined with any P-V EoS. Simultaneous refinement of our P-V-T data combined with that of K^T as a function of T allowed us to produce a single P-V-T- K^T equation of state with the following coefficients:

 $V_0 = 1664.46(5)$ Å³, $K_{T0} = 166.57(17)$ GPa and $K' = 4.96(7) \alpha_{(300 \text{ K, 1bar})} = 2.09(2) \times 10^{-5} \text{ K}^{-1}$

with a refined Einstein temperature (θ_E) of 512 K for a Holland-Powell-type thermal pressure model and a Tait third-order EoS. Additionally, thermodynamic properties of grossular have been calculated for the first time from crystal Helmholtz and Gibbs energies, including the contribution from phonons, using density functional theory within the framework of the quasi-harmonic approximation.

Keywords: Grossular, high-pressure, high-temperature, diffraction, bulk modulus, P-V-T-K fit, EosFit