Solid solution along the synthetic LiAlSi$_2$O$_6$-LiFeSi$_2$O$_6$ (spodumene-ferri-spodumene) join: A general picture of solid solutions, bond lengths, lattice strains, steric effects, symmetries, and chemical compositions of Li clinopyroxenes

GIANLUCA IEZZI1,2,*, GEOFFREY D. BROMLEY3, ANDREA CAVALLO2,4, PARTHA P. DAS5,6,7, FOTINI KARAVASSILI2, IRENE MARGIOLAKI5, ANDREW A. STEWART8, MARIO TRIBAUDINO9, and JONATHAN P. WRIGHT10

1Dipartimento di Ingegneria & Geologia, Università G. d’Annunzio, via Dei Vestini 30, I-66100 Chieti, Italy
2INGV-Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy
3School of GeoSciences and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, U.K.
4Laboratorio Tecnologico Multidisciplinare di Grosseto (CERTEMA), (GR), Italy
5Department of Biology, University of Patras, Patras, Greece
6NanoMEGAS SPRL, Brussels, Belgium
7Electron Crystallography Solutions, Madrid, Spain
8Department of Physics and Energy, University of Limerick, Ireland
9Dipartimento di Fisica e Scienze della Terra, Università di Parma, Italy
10ESRF, Grenoble, France

ABSTRACT

Seven clinopyroxene compositions along the join $^{3+}\text{Li}^{4+}\text{AlSi}_2\text{O}_6$ (spodumene) to $^{3+}\text{Li}^{4+}\text{Fe}^{3+}\text{Si}_2\text{O}_6$ (ferri-spodumene) were synthesized at 2 GPa, 800 °C under highly oxidizing conditions (using H_2O_2 fluid) in an end-loaded piston cylinder. In addition, the $\text{LiFe}^{3+}\text{Si}_2\text{O}_6$ composition was also synthesized under the intrinsically reducing conditions in a piston cylinder, to check the effect of f_0_2 on iron speciation. The run products were characterized by field emission scanning electron microscope (FE-SEM), Rietveld refinements on XRPD synchrotron data, and space groups were assigned using SAED-TEM patterns. Run products are composed mainly of lithium clinopyroxene (Li-Cpx), plus minor amounts of hematite (magnetite under reducing condition) and corundum, as independently detected by image analysis (area%) and Rietveld results were used to derive cell parameters, M1-site occupancy (Al vs. Fe$^{3+}$), atomic positions, and average bond lengths of all these Li-Cpx indexed in the C2/c space groups according to SAED-TEM.

Li-Cpx with Al and Fe$^{3+}$ amounts close to 50:50 are actually slightly richer in Al apfu than nominal; the LiFe$^{3+}\text{Si}_2\text{O}_6$ grown under very oxidized and reducing conditions have very similar cell parameters, indicating that f_0_2 is unable to induce a significant incorporation of Fe$^{2+}$ in these Li-Cpx. The replacement of Al with Fe$^{3+}$ induces a linear (%) increase of the cell edges following $b > a > c$, whereas b is roughly constant and the cell volume increases linearly. Furthermore, the substitution of Al with Fe$^{3+}$ only weakly affects the T-O average length (<1%), whereas M2-O and M1-O bonds increase linearly of 2.3 and 5.0%, respectively.

These new experimental data have been compared with other available on Li-, Na-, and Ca-Cpx, i.e., $^{3+}\text{Li}^{4+}\text{Na}_2\text{Si}_2\text{O}_6$, $^{3+}\text{Li}^{4+}\text{Ca}_2\text{Si}_2\text{O}_6$, $^{3+}\text{Li}^{4+}\text{Fe}_2\text{Si}_2\text{O}_6$, to model lattice strain, bond lengths, steric effects, and phase transitions behaviors. The replacement of Al with progressively larger cations in LiM$^{4+}\text{Si}_2\text{O}_6$ Cpx (M$^{4+}$: Ni, Cr, Ga, V, Fe$^{3+}$, Ti, Sc, and In) results in a linear increase following $b > a > c$, whereas b is roughly constant except for Ti-end-member and P2$_1$/c compositions. Lattice strains induced by X, T, and P for Li-Cpx in the C2/c stability field show that when the M1 site is progressively filled with a large cation, e_3 axis ($e_3 > e_2 > e_1$) increases along b, whereas e_4 and e_2 are nearly parallel to a and at about 30° from c. Conversely, T will provoke a similar enlargement of e_4 and e_3 along b and a edges, respectively, whereas e_2 is again oriented at about 30° from c; the increasing of P will instead shorten all strain tensor components (e_2, e_4, and e_3) with a similar percentage amount; notably, high-P is the only stress that induces a strain component to be almost parallel to c edge. Moreover, finite lattice strains and orientation in C2/c LiMe$^{3+}\text{Si}_2\text{O}_6$ Li-Cpx induced by Me$^{3+}$: Al-Fe$^{3+}$, Fe$^{3+}$-Sc, Sc-In are slightly different, with e_3 invariably lying along b; conversely, Li-Na cation substitution is completely different with the highest and lowest deformations on the ac plane and e_2 along b; e_3 vector is negative and oriented at about 30° from T-chains. The ideal replacement of Al with larger cations up to In in Li-Cpx induces the M1-O, M2-O, and T-O average bond lengths to increase by 10.6, 4.3, and <0.5%. Steric effects in Li$^{4+}\text{Me}^{3+}\text{Si}_2\text{O}_6$ and Na$^{4+}\text{Me}^{3+}\text{Si}_2\text{O}_6$ Cpx are significant and very similar, whereas several other Me$^{3+}$ and Me$^{2+}$ substitutions in Cpx at both the M1 and M2 site, keeping fixed the other site, display less or even the absence of steric effects. Our new data also better elucidate relationships between Li-Cpx composition, symmetry at room and non-ambient conditions and T_s The aggregate cation radii at the M1 site does not exclusively control the stability of C2/c and P2$_1$/c polymorphs; instead valence electrons can profoundly favor the stabilization of a polymorph.

* E-mail: gianluca.iecezzi@unich.it
Finally, Li can be easily and accurately detected (0.1/0.2 apfu) in natural clinopyroxenes by cell parameters, especially using the β angle.

Keywords: Lithium, clinopyroxenes, solid solutions, bond lengths, lattice strains, steric effects