Vránaite, ideally Al₁₆B₄Si₄O₃₈, a new mineral related to boralsilite, Al₁₆B₆Si₂O₃₇, from the Manjaka pegmatite, Sahatany Valley, Madagascar

JAN CEMPÍREK¹, EDWARD S. GREW^{2,*}, ANTHONY R. KAMPF³, CHI MA⁴, MILAN NOVÁK¹, PETR GADAS¹, RADEK ŠKODA¹, MICHAELA VAŠINOVÁ-GALIOVÁ⁵, FEDERICO PEZZOTTA⁶, LEE A. GROAT⁷, AND SERGEY V. KRIVOVICHEV⁸

¹Department of Geological Sciences, Masaryk University, Brno, 611 37, Czech Republic

²School of Earth and Climate Sciences, University of Maine, 5790 Bryand Center, Orono, Maine 04469 U.S.A.

³Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 U.S.A.

⁴Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

⁵Department of Chemistry, Masaryk University, Brno, 611 37, Czech Republic

⁶Mineralogy Department, Museo di Storia Naturale, Corso Venezia 55, Milan, I-20121, Italy

⁷Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ⁸Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia

ABSTRACT

The system B₂O₃-Al₂O₃-SiO₂ (BAS) includes two ternary phases occurring naturally, boromullite, Al₉BSi₂O₁₉, and boralsilite, Al₁₆B₆Si₂O₃₇, as well as synthetic compounds structurally related to mullite. The new mineral vránaite, a third naturally occurring anhydrous ternary BAS phase, is found with albite and K-feldspar as a breakdown product of spodumene in the elbaite-subtype Manjaka granitic pegmatite, Sahatany Valley, Madagascar. Boralsilite also occurs in this association, although separately from vránaite; both minerals form rare aggregates of subparallel prisms up to 100 µm long. Optically, vránaite is biaxial (-), $n_a = 1.607(1)$, $n_b = 1.634(1)$, $n_y = 1.637(1)$ (white light), $2V_x(\text{calc}) = 36.4^\circ, X \approx \mathbf{c}; Y \approx \mathbf{a}; Z = \mathbf{b}$. An averaged analysis by EMP and LA-ICP-MS (Li, Be) gives (wt%) SiO₂ 20.24, B₂O₃ 11.73, Al₂O₃ 64.77, BeO 1.03, MnO 0.01, FeO 0.13, Li₂O 1.40, Sum 99.31, Raman spectroscopy in the $3000-4000 \text{ cm}^{-1}$ region rules out the presence of significant OH or H₂O. Vránaite is monoclinic, space group I2/m, $a = 10.3832(12), b = 5.6682(7), c = 10.8228(12) \text{ Å}, \beta = 90.106(11)^\circ; V = 636.97(13) \text{ Å}^3, Z = 1$. In the structure $[R_1]$ = 0.0416 for 550 $F_0 > 4\sigma F_0$], chains of AlO₆ octahedra run parallel to [010] and are cross-linked by Si₂O₇ disilicate groups, BO₃ triangles, and clusters of AlO₄ and two AlO₅ polyhedra. Two Al positions with fivefold coordination, Al4 and Al5, are too close to one another to be occupied simultaneously; their refined site-occupancy factors are 54% and 20% occupancy, respectively. Al5 is fivefold-coordinated Al when the Al9 site and both O9 sites are occupied, a situation giving a reasonable structure model as it explains why occupancies of the Al5 and O9 sites are almost equal. Bond valence calculations for the Al4 site suggest Li is likely to be sited here, whereas Be is most probably at the Al5 site. One of the nine O sites is only 20% occupied; this O9 site completes the coordination of the Al5 site and is located at the fourth corner of what could be a partially occupied BO_4 tetrahedron, in which case the B site is shifted out of the plane of the BO₃ triangle. However, this shift remains an inference as we have no evidence for a split position of the B atom. If all sites were filled (Al4 and Al5 to 50%), the formula becomes $Al_{16}B_4Si_4O_{38}$, close to Li₁₀₈Be_{0.47}Fe_{0.02}Al₁₄₆₅B_{3.89}Si_{3.88}O₃₆₆₂ calculated from the analyses assuming cations sum to 24. The compatibility index based on the Gladstone-Dale relationship is 0.001 ("superior"). Assemblages with vránaite and boralsilite are inferred to represent initial reaction products of a residual liquid rich in Li, Be, Na, K, and B during a pressure and chemical quench, but at low H₂O activities due to early melt contamination by carbonate in the host rocks. The two BAS phases are interpreted to have crystallized metastably in lieu of dumortierite in accordance with Ostwald Step Rule, possibly first as "boron mullite," then as monoclinic phases. The presence of such metastable phases is suggestive that pegmatites crystallize, at least partially, by disequilibrium processes, with significant undercooling, and at high viscosities, which limit diffusion rates.

Keywords: Vránaite, boralsilite, Madagascar, pegmatite, new mineral, structural complexity, Ostwald step rule, borosilicate minerals