Carlsonite, \((\text{NH}_4)_3\text{Fe}^{3+}\text{SO}_4\cdot7\text{H}_2\text{O}\), and huizingite-(Al), \((\text{NH}_4)_4\text{Al}_3\text{SO}_4\cdot6\text{H}_2\text{O}\), two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio

ANTHONY R. KAMPF\(^1\),* R. PETER RICHARDS\(^2\), BARBARA P. NASH\(^3\), JAMES B. MUROWCHICK\(^4\), and JOHN F. RAKOVAN\(^5\)

\(^1\)Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

\(^2\)Geology Department, Oberlin College, Oberlin, Ohio 44074, U.S.A.

\(^3\)Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

\(^4\)Department of Geosciences, University of Missouri-Kansas City, 420 Flarsheim Hall, 5110 Rockhill Road, Kansas City, Missouri 64110, U.S.A.

\(^5\)Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, U.S.A.

ABSTRACT

The new minerals carlsonite (IMA2014-067), \((\text{NH}_4)_4\text{Fe}^{3+}\text{SO}_4\cdot7\text{H}_2\text{O}\), and huizingite-(Al) (IMA2015-014), \((\text{NH}_4)_4\text{Al}_3\text{SO}_4\cdot6\text{H}_2\text{O}\) formed from a natural fire in an oil-bearing shale near Milan, Ohio. Carlsonite crystals are yellow to orange-brown thick tablets, flattened on \{001\}, or stout prisms, elongated on [100], up to about 0.25 mm in maximum dimension. The mineral has a tan streak, vitreous luster, Mohs hardness of 2, brittle tenacity, irregular fracture, perfect {001} cleavage, calculated density of 2.167 g/cm\(^3\), and is easily soluble in H\(_2\)O. Carlsonite is optically biaxial (+), \(\alpha = 1.576(1), \beta = 1.585(1), \gamma = 1.563(1)\), and is easily soluble in H\(_2\)O. Huizingite-(Al) is optically biaxial (+) with \(\alpha = 1.543(1), \beta = 1.545(1), \) and \(\gamma = 1.563(1)\) (589.6 nm light). Raman and infrared spectroscopy was conducted on both minerals. Electron microprobe analyses provided the empirical formulas \([\text{NH}_4]_4\text{Fe}^{3+}\text{SO}_4\cdot7\text{H}_2\text{O}\) and \([\text{NH}_4]_4\text{Al}_3\text{SO}_4\cdot6\text{H}_2\text{O}\) for carlsonite and huizingite-(Al), respectively.

INTRODUCTION

This paper reports the descriptions of the first two terrestrial (non-meteoritic) minerals to have been first discovered in the state of Ohio. These minerals, carlsonite and huizingite-(Al), formed as the result of a non-anthropogenic fire in an oil-bearing shale along the Huron River.

Carlsonite is named for Ernest H. Carlson (1933–2010). Carlson (Ph.D., McGill University 1966) was professor of mineralogy at Kent State University in Kent, Ohio, from 1966 until his retirement in 2009. He was a Fellow of both the Society...