Detection of liquid H$_2$O in vapor bubbles in reheated melt inclusions: Implications for magmatic fluid composition and volatile budgets of magmas

ROSARIO ESPOSITO1,2,*, HECTOR M. LAMADRID3, DANIELE REDI4, MATTHEW STEELE-MACINNIS5, ROBERT J. BODNAR3, CRAIG E. MANNING1, BENEDETTO DE VIVO2, CLAUDIA CANNATELLI6,6, AND ANNAMARIA LIMA2

1Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, California 90095-1567, U.S.A.
2DISTAR, Università Federico II, Via Mezzocannone 8, Napoli, 80134, Italy
3Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, Virginia 24061, U.S.A.
4BiGea, Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Via di Porta San Donato 1, 40126, Bologna, Italy
5Department of Geosciences, University of Arizona, Tucson, Arizona 85721, U.S.A.
6Department of Geology and Andean Geothermal Center of Excellence (CEGA), Universidad de Chile, Santiago 8370450, Chile

Abstract

Fluids exsolved from mafic melts are thought to be dominantly CO$_2$-H$_2$O \pm S fluids. Curiously, although CO$_2$ vapor occurs in bubbles of mafic melt inclusions (MI) at room temperature (T), the expected accompanying vapor and liquid H$_2$O have not been found. We reheated olivine-hosted MI from Mt. Somma-Vesuvius, Italy, and quenched the MI to a bubble-bearing glassy state. Using Raman spectroscopy, we show that the volatiles exsolved after quenching include liquid H$_2$O at room T and vapor H$_2$O at 150 °C. We hypothesize that H$_2$O initially present in the MI bubbles was lost to adjacent glass during local, sub-micrometer-scale devitrification prior to sample collection. During MI heating experiments, the H$_2$O is redissolved into the vapor in the bubble, where it remains after quenching, at least on the relatively short time scales of our observations. These results indicate that (1) a significant amount of H$_2$O may be stored in the vapor bubble of bubble-bearing MI and (2) the composition of magmatic fluids directly exsolving from mafic melts at Mt. Somma-Vesuvius may contain up to 29 wt% H$_2$O.

Keywords: Raman spectroscopy, Mt. Somma-Vesuvius, volatile solubility, mafic melt, sulfur budget, melt inclusion, fluid inclusion, heating experiments

Introduction

Melt inclusions (MI) are aliquots of melt trapped in phenocrysts during crystallization of magmas. MI analyses potentially allow characterization of the volatile contents of pre-eruptive silicate melts. Typically, concentrations of volatiles such as H$_2$O, CO$_2$, and S are measured in the glass phase in quenched MI and compared to experimentally determined solubility models to deduce the composition of a coexisting vapor phase (Métrich and Wallace 2008 and references therein). However, recent studies have emphasized that, after entrapment, most of the CO$_2$ may be transferred from the melt or glass to a coexisting vapor bubble within the MI (e.g., Esposito et al. 2011), as a result of processes such as post-entrapment crystallization (Steele-MacInnis et al. 2011) or differential thermal contraction (Moore et al. 2015 and references therein). In fact, bubbles in MI may contain more CO$_2$ (by mass) than the coexisting glass phase (Anderson and Brown 1993; Esposito et al. 2011; Hartley et al. 2014; Moore et al. 2015; Wallace et al. 2015). Thus, it is necessary to understand the partitioning of volatiles between melt (or glass) and bubbles during MI cooling as part of the characterization of pre-eruptive volatile systematics (e.g., Kamenetsky et al. 2002; Lowenstern 1995).

H$_2$O may be abundant in mafic melts and should also be partitioned into any MI bubbles that form. However, reports of condensed, liquid H$_2$O are chiefly in MI hosted by quartz in felsic plutonic systems (e.g., Frezzotti 2001; Harris et al. 2003; Zajacz et al. 2008). Several studies have commented on the non-detection of H$_2$O in bubbles within felsic and mafic melt inclusions in volcanic rocks. For instance, Lowenstern et al. (1991) reported CO$_2$ vapor in the bubbles of reheated MI hosted in quartz from Pantelleria (Italy), and stated that H$_2$O was likely present in the bubble, but “the lack of a liquid phase in the bubble and negligible H$_2$O vapor peaks in the IR spectra indicated that it was subordinate to CO$_2$.” Yang and Scott (1996) and Kamenetsky et al. (2002, 2001) also found that the main volatile component of MI bubbles was CO$_2$, and echoed Lowenstern et al. (1991) in stating that although H$_2$O was likely present, it was not detected. It is important to note that Kamenetsky et al. (2002) detected H$_2$O as a component of gyspum, nahcolite, and silicate crystals found at bubble-glass interfaces. Moore et al. (2015) suggested that the “missing” H$_2$O could reflect nuances of spectroscopic detection of H$_2$O, particularly given that H$_2$O-CO$_2$ fluids would likely separate into an H$_2$O-rich liquid and CO$_2$-rich vapor at ambient conditions. Anderson (1991) suggested that H$_2$O could be present in devitrified glass surrounding bubbles.

Based on the various results and interpretations described above, H$_2$O is expected to be a major component of magmatic...