American Mineralogist, Volume 101, pages 1483–1488, 2016

High-pressure behavior of the polymorphs of FeOOH

MARY M. REAGAN^{1,*}, ARIANNA E. GLEASON², LUKE DAEMEN³, YUMING XIAO⁴, AND WENDY L. MAO^{1,5}

¹Department of Geological Sciences, Stanford University, Stanford, California 94305, U.S.A.
²Shock and Detonation Physics, LANL, Los Alamos, New Mexico 87545, U.S.A.
³Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.
⁴Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, U.S.A.
⁵Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, U.S.A.

ABSTRACT

The high-pressure structural and electronic behavior of α -, β -, and γ -FeOOH were studied in situ using a combination of synchrotron X-ray diffraction (XRD) and X-ray emission spectroscopy (XES). We monitored α -FeOOH by XES as a function of pressure up to 85 GPa and observed an electronic spin transition that began at approximately 50 GPa, which is consistent with previous results. In the γ -FeOOH sample, we see the initiation of a spin transition at 35 GPa that remains incomplete up to 65 GPa. β -FeOOH does not show any indication of a spin transition up to 65 GPa. Analysis of the high-pressure XRD data shows that neither β -FeOOH nor γ -FeOOH transform to new crystal structures, and both amorphize above 20 GPa. Comparing our EOS results for the β and γ phases with recently published data on the α and ϵ phases, we found that β -FeOOH exhibits distinct behavior from the other three polymorphs, as it is significantly less compressible and does not undergo a spin transition. A systematic examination of these iron hydroxide polymorphs as a function of pressure can provide insight into the relationship between electronic spin transitions and structural transitions in these OH- and Fe³⁺-bearing phases that may have implications on our understanding of the water content and oxidation state of the mantle.

Keywords: Spin transitions, high-pressure studies, XES, FeOOH, XRD data