Equation of state of the high-pressure Fe₃O₄ phase and a new structural transition at 70 GPa

ANGELE RICOLLEAU^{1,2,*} AND YINGWEI FEI²

¹Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, 13288 Marseille, France ²Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, D.C. 20015, U.S.A.

ABSTRACT

We have investigated the high-pressure behavior of Fe₃O₄ by in situ X-ray diffraction measurements from 11 to 103 GPa. Up to 70 GPa, the previous observed high-pressure Fe₃O₄ phase (h-Fe₃O₄) is stable, with a CaTi₂O₄-type structure. The compression curve shows an abnormal volume contraction at about 50 GPa, likely associated with the magnetic moment collapse observed at that pressure. Fitting the compression data up to 45 GPa to the Birch-Murnaghan equation of state yields a bulk modulus, K_{T0} = 172 GPa, and V_0 = 277 Å³, with fixed K' = 4. At a pressure between 64 and 73 GPa, a new structural transition was observed in Fe₃O₄, which can be attributed to a martensitic transformation as described by Yamanaka et al. (2008) for post-spinel structural transition. The diffraction data can be best fitted with a *Pnma* space group. No breakdown of Fe₃O₄ was observed up to at least 103 GPa. The new high-pressure polymorph is about 6% denser than the h-Fe₃O₄ phase at 75 GPa.

Keywords: h-Fe₃O₄, magnetite, high pressure, phase transition, post-spinel, XRD data