SPECIAL COLLECTION: ADVANCES IN ULTRAHIGH-PRESSURE METAMORPHISM

Tetrahedral boron in natural and synthetic HP/UHP tourmaline: Evidence from Raman spectroscopy, EMPA, and single-crystal XRD

MARTIN KUTZSCHBACH^{1,2,*}, BERND WUNDER¹, DIETER RHEDE¹, MONIKA KOCH-MÜLLER¹, ANDREAS ERTL^{3,4}, GERALD GIESTER⁴, WILHELM HEINRICH¹, AND GERHARD FRANZ²

¹GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany ²Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, 13355 Berlin, Germany ³Mineralogisch-Petrographische Abt., Naturhistorisches Museum, 1010 Vienna, Austria ⁴Department of Mineralogy and Crystallography, University of Vienna, 1090 Vienna, Austria

ABSTRACT

Olenitic tourmaline with high amounts of tetrahedral B (up to 2.53 ^[4]B pfu) has been synthesized in a piston-cylinder press at 4.0 GPa, 700 °C, and a run duration of 9 days. Crystals are large enough (up to $30 \times 150 \mu$ m) to allow for reliable and spatially resolved quantification of B by electron microprobe analysis (EMPA), single-crystal X-ray diffraction, and polarized single-crystal Raman spectroscopy. Tourmalines with radial acicular habit are zoned in ^[4]B-concentration [core: 2.53(25) ^[4]B pfu; rim: 1.43(15) ^[4]B pfu], whereas columnar crystals are chemically homogeneous [1.18(15) ^[4]B pfu]. An amount

of 1.4(1) ^[4]B pfu was found in the columnar tourmaline by single-crystal structure refinement (SREF) (R = 1.94%). The EMPA identify ^[T]Si_{_1}^[V,W]O_{_1}^[T]B₁^[V,W](OH)₁ as the main and ^[X] \square_{-1} ^[T]Si_{_1}^[X]Na₁^[T]B₁ as minor exchange vectors for ^[4]B-incorporation, which is supported by the SREF. Due to the restricted and well-defined variations in chemistry, Raman bands in the OH-stretching region (3000–3800 cm⁻¹) are unambiguously assigned to a specific cation arrangement. We found the sum of the relative integrated intensity (I_{rel}) of two low-frequency bands at 3284–3301 cm⁻¹ (v1) and 3367–3390 cm⁻¹ (v2) to positively correlate with the ^[4]B concentrations: ^[4]B [pfu] = 0.03(1) × [I_{rel} (v1) + I_{rel} (v2)]. Hence, those bands correspond to configurations with mixed Si/B occupancy at the T site. Our semi-quantitative correlation also holds for well-characterized natural ^[4]B-bearing tourmaline from the Koralpe, Austria. This work shows the potential for Raman spectroscopy as a non-destructive method for the chemical classification of (precious) natural tourmaline, and as a tool to rapidly characterize chemical zonation of tourmalines in thin section.

Keywords: Tourmaline, tetrahedral boron, high-pressure synthesis, single-crystal XRD, polarized Raman spectra, Koralpe tourmaline, Invited Centennial article