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aBstRaCt

Earth’s atmosphere contains 27–30% of the planet’s nitrogen and 
recent estimates are that about one-half that amount (11–16%) is lo-
cated in the continental and oceanic crust combined. The percentage 
of N in the mantle is more difficult to estimate, but it is thought to be 
near 60%, at very low concentrations. Knowledge of the behavior of 
N in various fluid-melt-rock settings is key to understanding pathways 
for its transfer among the major solid Earth reservoirs. 

Nitrogen initially bound into various organic materials is trans-
ferred into silicate minerals during burial and metamorphism, often 

as NH4
+ substituting for K+ in layer silicates (clays and micas) and feldspars. Low-grade metamorphic 

rocks appear to retain much of this initial organic N signature, in both concentrations and isotopic 
compositions, thus in some cases providing a relatively un- or little-modified record of ancient bio-
geochemical cycling. Devolatilization can release significant fractions of the N initially fixed in crustal 
rocks through organic diagenesis, during progressive metamorphism at temperatures of ~350–550 °C 
(depending on pressure). Loss of fractionated N during devolatilization can impart an appreciable 
isotopic signature on the residual rocks, producing shifts in d15N values mostly in the range of +2 to 
+5‰. These rocks then retain large fractions of the remaining N largely as NH4

+, despite further heating
and ultimately partial melting, with little additional change in d15N. This retention leads to the storage 
of relatively large amounts of N, largely as NH4

+, in the continental crust. Nitrogen can serve as a tracer 
of the mobility of organic-sedimentary components into and within the upper mantle.

This contribution focuses on our growing, but still fragmentary, knowledge of the N pathways into 
shallow to deep continental crustal settings and the upper mantle. We discuss the factors controlling 
the return of deeply subducted N to shallower reservoirs, including the atmosphere, via metamorphic 
devolatilization and arc magmatism. We discuss observations from natural rock suites providing tests 
of calculated mineral-fluid fractionation factors for N. Building on our discussion of N behavior in 
continental crust, we present new measurements on the N concentrations and isotopic compositions of 
microporous beryl and cordierite from medium- and high-grade metamorphic rocks and pegmatites, 
both phases containing molecular N2, and NH4

+-bearing micas coexisting with them. We suggest some 
avenues of investigation that could be particularly fruitful toward obtaining a better understanding of 
the key N reservoirs and the more important pathways for N cycling in the solid Earth.

Keywords: Nitrogen cycling, nitrogen isotopes, ammonium, microporous silicate, isotope frac-
tionation, layer silicates, cordierite, Review article, Invited Centennial article

intRoduCtion

It is often thought that Earth nitrogen (N) resides entirely in the 
atmosphere and the biosphere, which together account for 27–30% 
of the total N budget. Many are surprised to learn that ~60% of the 
N resides in the mantle and that another 11–16% is stored in the 
continental and oceanic crust combined (see Table 1). In fact, the 
surface reservoirs of N receiving the most attention (i.e., ocean, soils, 
biosphere) contain far <1% of Earth’s N by mass (Table 1; also see 
Bebout et al. 2013b). Despite its relatively inert and volatile behavior, 
N can occur in certain minerals in the crust and mantle, particularly 

when structurally bound as NH4
+ (Bebout et al. 2013a; Busigny and 

Bebout 2013). Ammonium-bound N in micas and feldspars (Eugster 
and Munoz 1966; Honma and Itihara 1981; Bos et al. 1988; Hall 
et al. 1996; Hall 1999) is an efficient carrier of initially organic N 
from surface reservoirs into the deep Earth at subduction zones 
and during formation of the continental crust. In the upper mantle, 
small amounts of N could be stored as NH4

+ in silicate phases such 
as amphibole, phlogopite, clinopyroxene, and olivine (Yokochi et 
al. 2009; Watenphul et al. 2010) or as other species in diamond and 
various nitrides (e.g., TiN; Cartigny 2005; Dobrzhinetskaya et al. 
2009; see the discussion by Busigny and Bebout 2013). Johnson and 
Goldblatt (2015) discuss the possibility that, in the deeper mantle, 
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Nitrogen partitioning behavior between coexisting 
cordierite and biotite

Biotite in pegmatites has N concentrations of 70 to 134 ppm 
higher than those of the coexisting cordierites, but to varying 
degrees (see Fig. 9). In two of the three experiments, the d15N 
values (+1.8 to +11‰) of the biotites are lower than the values 
for cordierite from the same rock sample (Fig. 9). In the third 
case, the d15N values for the coexisting minerals are similar. 
For two granulite facies rocks, biotite has N concentrations of 
65 and 116 ppm and they are lower than those of the coexist-
ing cordierites with concentrations of 162 and 232 ppm N, 
respectively. For three rock samples whose origins are uncertain 
(“uncategorized”), cordierites have N concentrations and d15N 
values higher than those of coexisting biotite. Thus, the partition-
ing and isotopic fractionation results for N in coexisting biotite 
and cordierite do not show any consistent behavior and, thus, 
factors other than temperature must be considered.

The wide range of measured N concentrations and d15N 
values in cordierite could be attributed to differences in the 
temperature of crystallization, compositional heterogeneity in the 
protoliths (see the compilation of data for sediments in Kerrich 
et al. 2006), and differing magnitudes of positive isotopic shifts 

in d15N resulting from lower-grade devolatilization (see Bebout 
and Fogel 1992; Jia 2006; Palya et al. 2011). Three additional 
effects that could explain the range of d15N values are: (1) the 
presence of some NH4

+ in cordierite, which could result in de-
creased or no fractionation of N with NH4

+ in coexisting biotite; 
(2) chemical disequilibrium between biotite and cordierite that 
could affect the N concentrations and isotopic compositions; or 
(3) post-crystallization or retrograde modification of the d15N 
values due to differential diffusive loss (i.e., preferential loss 
of 14N). Possibility 3 must be addressed in future studies of mi-
croporous silicates and fluid-rock processes (see discussion of 
diffusive loss for H2O and CO2 in cordierite by Vry et al. 1990). 
Regarding the first effect, we consider the presence of significant 
amounts of NH4

+ in cordierite as unlikely for crystal chemical 
reasons (the concentration of K, with very few exceptions, in 
cordierite is very low).

Nitrogen partitioning behavior between cordierite and its 
rock matrix for a medium-grade schist

Nitrogen concentrations and d15N values were measured 
for a gem-quality cordierite and its muscovite-rich matrix for 
one medium-grade metasedimentary schist from Connecticut, 

Table 2.  Isotopic data for beryl and cordierite (and coexisting micas)
 Beryl Beryl Muscovite Muscovite  Beryl Beryl
Sample δ15Nair N (ppm) δ15Nair N (ppm) Δ15Nmica-beryl δ15CVPDB C (ppm)
80192 7.9 17 9.4 80 1.5  31
23215 5.9 11 8.1 273 2.2 –8.47 48
40597 4.0 25 8.3 305 4.3
1 3.8 18 6.7 41 2.9 28 –
80145 5.1 39 8.7 632 3.6

 Cordierite Cordierite Biotite Biotite  Cordierite Cordierite
Sample δ15Nair N (ppm) δ15Nair N (ppm) Δ15Nmica-crd δ15CVPDB C (ppm)

Pegmatite/partial melts
88593 12.0 5 8.6 134 –3.4  80
80537 10.5 6 11.0 103 0.5  31
G-155a 5.1 17    –10.5 16
C006 9.0 29    –6.9 936
TUB-1 4.3 33    –13.6 195
26230 7.5 38 1.8 70 –5.7
C004 11.4 60    –8.8 600
84264 7.4 67    –14.0 327

Mid-grade metamorphics
Wards 16.9 8    –6.5 345
25 Geco Mine 10.4 19
WYO-2 5.1 30    –10.8 590
118171 6.5 95    –8.4 694

Granulite facies
X-1 4.7 41    –4.0 277
42/IA 0.9 55    –12.0 543
CL-177-1 30.0 71    –36.4 1200
TA-5 7.0 101    –13.0 221
129875 10.4 104
I3 4.8 162 7.8 116 3.0
26539 9.9 232 0.5 65 –9.4 –9.4 1099
VS-1 5.9 273    –6.7 1039
7114 2.9 634    –22.3 991
S. India 1 3.1 923    –16.3 408
89 V 3.6 1342
NE86A-24b 8.6 4525    –16.5 445

Uncategorized
CTSiM 9.0 27    –6.7 976
10398 5.5 56 5.2 48 –0.3
43090 8.3 89 2.7 86 –5.5 –8.3 820
33294 7.5 154 4.4 25 –3.1 –9.3 614
H06 2.0 446
106886 3.9 1457    –6.1 623
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U.S.A. (Fig. 8b). Here, quite interestingly, cordierite showed 
no measurable N within the experimental detection limits, 
whereas the muscovite-rich matrix contained 350 ppm N. Es-
sentially all N in the schist resides as NH4

+ in the micaceous 
matrix. This result is consistent with the observation that N 
concentrations in cordierite are highest at the highest metamor-
phic grades where muscovite is not present. The interpretation 
is that N residing in the muscovite, after its breakdown with 
increasing temperature, is taken up in K-feldspar and cordierite 
(see Palya et al. 2011).

Nitrogen partitioning behavior between coexisting beryl 
and muscovite

Figure 10 shows the N concentrations and d15N values for 
five beryl-muscovite pairs taken from four pegmatites and one 
metasedimentary schist (see the data in Table 2). These results 
show that muscovite always contains far greater amounts of N 
than coexisting beryl. A mean D15Nmusc-beryl (d15Nmusc – d15Nberyl) 
value of +2.9 (1s = 1.1‰) was obtained for these pairs. The 
direction and magnitude of this isotopic fractionation are similar 
to those measured for bioite-fluid inclusion pairs in a vein in 
metasedimentary rocks from Bastogne, Belgium (see discussion 
above) and predicted by the fractionation factors calculated using 
spectroscopic data (see Fig. 2a). Apparently, based on the limited 

data, the partitioning behavior of N and its isotopes between beryl 
and muscovite, compared to the case for cordierite-biotite pairs, 
is more systematic (Fig. 9). This could, in part, reflect (1) the 
presence of N2 as the single N species in the beryl (i.e., not also 
NH4

+) or (2) the more rapid cooling of pegmatites compared to 
most granulites. Rapid cooling would allow greater retention of 
N2 incorporated during peak crystallization conditions and thus 
better preservation of the peak-temperature partitioning behavior.

Carbon concentrations and δ13C values of cordierite and beryl
Figure 11a shows a plot of N and C concentrations for various 

cordierites and a single beryl sample (see also Table 2). The two 
elements show a rough positive correlation. Figure 11b shows 
a plot of C concentrations and d13CVPDB values. The various 
samples have roughly similar d13C values with a mean = –9.8‰ 
(1s = 3.5‰), with the exception of two cordierites outliers 
from granulites having d13C values of –36.4 and –22.3‰. For 
the range of rocks types studied here, pegmatite cordierites tend 
to have lower C concentrations. Cordierites from granulites and 

fiGuRe 10. Nitrogen isotopic compositions and concentrations of 
coexisting beryl and muscovite from pegmatites and metamorphic schist 
(Table 2 and Appendix A1; Lazzeri 2012). The inset photograph of beryl 
in muscovite is used courtesy of Rob Lavinsky, www.iRocks.com (for 
photo and specimen; horizontal dimension ~8 cm). (Color online.)

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 fiGuRe 11. C and N concentrations and d13C values for the cordierites 

and beryl analyzed in this study. (a) N vs. C concentrations. Cordierites 
from the granulite facies tend to show the highest N concentrations and 
those from pegmatites the lowest, as is also the case for beryl. (b) Carbon 
concentration vs. d13C showing the relatively narrow range of isotopic 
compositions and the wide range in C concentrations.
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medium-grade metapelites (and the uncategorized cordierites) 
have, in general, similar concentrations of C, but the most C-
rich samples (i.e., 990 to 1200 ppm C) come from granulites 
(there is considerable overlap among the data for medium grade, 
granulite, and uncategorized cordierites). These observations for 
C concentrations and d13C values are consistent with those made 
by Vry et al. (1990) in their isotopic investigation of cordierite. 
Beryl, unlike cordierite, contains very little C, with only one 
sample containing amounts sufficient for an analysis of d13C.

How important are microporous silicates and tourmaline 
for storage of nitrogen in continental crust?

Cordierite can be a volumetrically significant rock-forming 
mineral in metapelitic rocks. It is stable over a wide range of 
temperatures and at low to moderate pressures corresponding 
to upper to middle levels of the continental crust (e.g., Schreyer 
1965; Kalt et al. 1998; White et al. 2003; Palya et al. 2011). 
Tourmaline, which may also contain appreciable amounts of 
N (e.g., Wunder et al. 2015), occurs in metapelitic rocks over a 
broader range of P and T, even in UHP rocks that experienced 
pressures of up to ~3.0 GPa (Bebout and Nakamura 2003; see 
the summary by Marschall et al. 2009; van Hinsberg et al. 2011). 
However, its modal abundance is limited in both metamorphic 
and igneous rocks, therefore it is unlikely to play a role as a major 
sink in the crust and for the deep-Earth N cycle. Tourmaline and 
beryl in larger amounts can occur in pegmatites (London and 
Evensen 2002), but pegmatites are unlikely to act as significant 
N reservoirs due to their relative scarcity. Summarizing, cordi-
erite could be a notable sink for N in shallow- to mid-levels of 
the continental crust.

ConCLusions and outLooK

Fluxes of N among the oceanic and continental crust, mantle, 
oceans, and atmosphere largely determine the abundance and the 
isotopic composition of N in all of these reservoirs. Models of 
modern and ancient volatile cycling on Earth are highly depen-
dent on understanding the nature of these fluxes (Javoy 1997; 
Tolstikihn and Marty 1998; Zhang and Zindler 1993). Biological 
processes play a key role in affecting the concentrations and 
behavior of N in the solid Earth. Nitrogen in the oceans and 
atmosphere can be incorporated (via biological processes) into 
mineral phases, some of which are carried into the deep Earth 
(via burial and subduction). Nitrogen can thus be an effective 
tracer in the study of the transfer of sedimentary and organic 
components into and within the crust and upper mantle. In this 
article, we present some important observations regarding this 
hydrosphere-crust-upper mantle transfer, based on the studies to 
date, and we suggest several areas needing attention.

• NH4
+ can replace K+ via a solid solution mechanism in some 

K-bearing rock-forming silicate minerals, especially layer 
silicates (clays and micas) and feldspar. This substitution is 
so prevalent that an estimate of N subduction-input fluxes 
can be based on knowledge of the rates of K subduction 
(see Busigny et al. 2003, 2011; Busigny and Bebout 2013). 
Recent research suggests that cordierite and tourmaline can 
also serve as reservoirs for N, with concentrations roughly 
similar to those of coexisting micas. Cordierite could be a 

significant phase for the storage of molecular N2 in shallow-
to mid-levels of the continental crust.

• Low-temperature devolatilization of organic matter, and 
the concomitant crystallization of clay minerals such as 
illite, permit the retention of this initially organic N as 
NH4

+, apparently with little isotopic fractionation. Although 
whole-rock C/N ratios of very low-grade metamorphosed 
sediments can retain biogeochemical information, kerogen 
itself (the reduced C reservoir) contains very little N. Most 
of the initially organic N is transferred into and housed in 
clays and low-grade metamorphic micas (and in some cases, 
authigenic feldspars; Svensen et al. 2008).

• Considerable loss of N from minerals to fluids can occur at 
low to medium metamorphic grades, depending upon the 
prograde P-T path the rocks experience (see Bebout and 
Fogel 1992; Busigny et al. 2013; Li and Keppler 2014). 
In many cases, the isotopic shifts associated with this loss 
point to a N2-NH4

+ exchange mechanism. Li et al. (2009) 
proposed, however, the possibility of kinetically controlled 
NH3-NH4

+ exchange. In relatively “cool” subduction zone 
settings, sedimentary rocks can retain a large fraction of 
their original N contents to great depths, perhaps even the 
depths beneath volcanic fronts (see Busigny et al. 2003; 
Bebout et al. 2013a). Experimental phase equilibrium 
studies document the stability of mica (e.g., phengite), the 
key N mineral reservoir, to great depths in most subduction 
zones (Schmidt and Poli 2014).

• Further investigation of the concentrations, isotope com-
positions, and fluxes of N into and within the continental 
crust is badly needed (see the discussion by Johnson and 
Goldblatt 2015). The estimated average concentration of 
56 ppm for this reservoir is based on a very small number 
of analyses (see Wedepohl 1995; Bach et al. 1999; Palya 
et al. 2011; Rudnick and Gao 2014). It goes without say-
ing that further work on the concentrations and isotopic 
compositions of N in the mantle is needed, as the mantle 
could contain ~60% of the Earth’s N (Table 1; see the 
discussions by Cartigny and Marty 2013; cf. Johnson and 
Goldblatt 2015).

• The rates and mechanisms by which N diffuses in key miner-
als such as the micas, alkali feldspars, clinopyroxenes, and 
microporous silicates are poorly understood (see Watson and 
Cherniak 2014). Closure temperatures for the retention of N 
in these phases are not known, complicating the assessment 
of N isotope behavior at high geologic temperatures.

• All research done thus far on N in silicate systems has been 
on either whole-rock samples or mineral separates. It will be 
important to develop microanalytical methods for analyzing 
N concentrations and d15N at scales allowing consideration 
of intramineral heterogeneity (see the first analyses on 
cordierite using the ion microprobe by Hervig et al. 2014).

• Finally, we stress the need for experimental calibration of 
N isotope fractionation in silicate fluid-mineral systems. 
This is required to understand and resolve the differences 
among the various calculated fractionation factors.
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