Tetrahedral plot diagram: A geometrical solution for quaternary systems

TOSHIAKI SHIMURA1,∗ AND ANTHONY I.S. KEMP2

1Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan
2Centre for Exploration Targeting, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia

ABSTRACT

The transformation from a tetrahedral four-component system to an XYZ-orthogonal coordinate axis system has been solved using the geometry of the tetrahedron. If a four component mixing ratio is described as \(t, l, r, \) and \(f \) (here, \(t + l + r + f = 1 \)), the transforming equations can be written as

\[
x = \frac{(r + 1 - l)}{2} \\
y = \frac{\sqrt{3}}{2} \cdot t + \frac{\sqrt{3}}{6} \cdot f \\
z = \frac{\sqrt{6}}{3} \cdot f
\]

A tetrahedral plot diagram can be easily constructed using the algorithms described in this paper. We present an implementation of these algorithms in a custom-designed Microsoft Excel spreadsheet, including adjustable viewing angles for the tetrahedral plot. This will be of general utility for petrological or mineralogical studies of quaternary systems.

Keywords: Tetrahedral diagram, triangular diagram, quaternary systems, phase diagram, three-dimension, trilinear coordinates, tetrahedron

INTRODUCTION

Tetrahedral diagrams are commonly used in petrology and mineralogy, for example, the Di-Fo-Ne-Qz diagram for basaltic rocks (Yoder and Tilley 1962), the An-Ab-Or-Qz diagram for granitic rocks (Winkler 1979), and four-component metamorphic phase diagrams (e.g., Thompson 1957; Spear 1993). The algorithm of transformation from a tetrahedral four-component system to an XYZ-orthogonal coordinate system has been addressed by several studies (e.g., Korzhinskii 1959; Mertie 1964; Arem 1971; Spear 1980; Armiénti 1986; Maaløe and Abbott 2005; Armiénti and Longo 2011). These authors solved the transformation by vector and/or linear algebra using computer programs. Computer applications for tetrahedral plots have also been presented by many authors (e.g., Spear et al. 1982; Armiénti 1986; Torres-Roldan et al. 2000; Ho et al. 2006; Armiénti and Longo 2011). Such applications are run on programing language platforms such as FORTRAN, BASIC, and JAVA.

This paper describes a different solution of the transformation from a tetrahedral to an orthogonal coordinate system. It has been solved using the geometry of a tetrahedron, and by combining three simple equations. By this method, a tetrahedral diagram can be easily constructed without using a programing language; it can be drawn and manipulated within a spreadsheet application (e.g., Microsoft Excel).

COORDINATE TRANSFORMATION

Ternary system to orthogonal coordinate system

Although the main theme of this paper concerns tetrahedral diagrams, it is first necessary to explain a triangular diagram. The three components named here are Top (T), Left (L), and Right (R), respectively. The point of interest is referred to as \(P \) (Fig. 1), where the mixing ratios corresponding to \(P \) are expressed as \(t, l, r, \) and \(f \) (here, \(t + l + r + f = 1 \)). The side length of the equilateral triangle is set to 1. The apex L conform to the origin of the X-Y orthogonal coordinate system. In this case, the coordinates \((x, y)\) of vertices T, L, and R are \((0.5, \sqrt{3}/2), (0, 0), \) and \((0, 1)\), respectively.

Since the \(x \)-coordinate of \(P \) is a center between L’ and R’ in Figure 1, then,

\[
x = \frac{(r + 1 - l)}{2}. \quad (1a)
\]

The \(y \)-coordinate of \(P \) can be calculated by the height ratio of the equilateral triangle, namely;

\[
y = \frac{\sqrt{3}}{2} \cdot t. \quad (1b)
\]

The triangular diagram can be constructed using a frame line \((0.5, \sqrt{3}/2)+(0, 0)+(0, 1)\) and plot data \((x, y)\). According to Equations 1a and 1b, if the \(t + l + r = 1 \) condition is met, a negative component is also allowable. For example \((t, l, r) = (-0.1, 0.5, 0.6)\) is also true.

∗ E-mail: smr@yamaguchi-u.ac.jp