CHEMISTRY AND MINERALOGY OF EARTH'S MANTLE

Recoil-free fractions of iron in aluminous bridgmanite from temperature-dependent Mössbauer spectra[†]

JIACHAO LIU^{1,*}, BJORN MYSEN², YINGWEI FEI² AND JIE LI¹

¹Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A. ²Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.

ABSTRACT

Aluminous bridgmanite (Al-Bm) is the dominant phase in the Earth's lower mantle. In this study, the Mössbauer spectra of an Al-Bm sample $Mg_{0.868}Fe_{0.087}Si_{0.944}Al_{0.101}O_{2.994}$ were recorded from 65 to 300 K at 1 bar. The temperature dependence of the center shift was fitted by the Debye model and yielded the Debye temperatures of 305 ± 3 K for Fe^{2+} and 361 ± 22 K for Fe^{3+} . These values are lower than those of Al-free bridgmanite by 17 and 24%, respectively, indicating that the presence of Fe and Al increases the average Fe-O bond length and weakens the bond strength. At 300 K, the calculated recoil-free fractions of Fe^{2+} (0.637 \pm 0.006) and Fe^{3+} (0.72 \pm 0.02) are similar and therefore the molar fractions of Fe^{2+} and Fe^{3+} are nearly the same as the area fractions of the corresponding Mössbauer doublets. At 900 K, the calculated recoil-free fractions of Fe^{3+} is only 41% for a measured spectral area fraction of 50%, and that the area fractions of iron sites may change with temperature without any changes in the valence state or spin state of iron. We infer that Fe^{3+} accounts for $46 \pm 2\%$ of the iron in the Al-Bm and it enters the A site along with Al^{3+} in the B site through the coupled-substitution mechanism. An Fe^{2+} component with large quadrupole splitting (~4.0 mm/s) was observed at cryogenic conditions and interpreted as a high-spin distorted iron site.

Keywords: Mössbauer spectroscopy, aluminous bridgmanite, ferric iron, recoil-free fraction, Debye temperature, crystallographic site, lower mantle