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Zircon dissolution and growth during metamorphism
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Abstract: Kohn et al. 2015 (this volume) present 
models of zircon dissolution and growth in hydrous 
MORB and metapelite bulk compositions under 
metamorphic conditions. They evaluate the pro-
pensity metamorphic minerals in equilibrium with 
zircon, to assess what minerals (besides zircon) 
affect whole rock Zr mass balance. Results indicate 
that mineral reactions over a range of metamorphic 
grades could play an important role in the disso-
lution and growth of metamorphic zircon, with Zr 
preferentially incorporated into melt, rutile, garnet, 
and hornblende with increasing temperatures and 
decreasing pressures. Keywords: Zircon, dissolu-
tion, growth, metamorphism, geochronology
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the timing of UHP metamorphism. In contrast, zircons separated 
from the quartzo-feldspathic gneiss that encapsulates the coesite 
eclogite yielded U-Pb depth profiles that indicate intragrain 
geochemical heterogeneities (variations in Hf, Ti, and Y) suggest-
ing chemical disequilibrium over the interval of zircon growth 
at 3.66 ± 0.13 Ma (2s), significantly post-dating the timing of 
UHP metamorphism (Zirakparvar et al. 2014). 

U-Pb LA-ICPMS and chemical abrasion (CA)-TIMS zircon 
geochronology (DesOrmeau et al. 2014; Gordon et al. 2012) 
indicates that zircon crystallization at the Papua New Guinea 
UHP locality occurred from 9.1 to 3.7 Ma. As the Kohn et al. 
(2015) models predict, zircon growth occurred over a range of 
P-T conditions. Currently, the best estimate for the timing of 
UHP metamorphism is 7–8 Ma based on concordant ages for 
zircon (U-Pb), garnet (Lu-Hf), and phengite (40Ar/39Ar) from 
coesite eclogite as discussed above. Zircon in the felsic gneiss 
that hosts the coesite eclogite, crystallized ~4 million years later 
(Zirakparvar et al. 2014), at relatively low P as predicted by Kohn 
et al.’s (2015) models. 

Another implication of Kohn et al.’s (2015) models is that 
zircon dissolution during prograde metamorphism rarely, if ever, 
approaches 100%, and subsequent zircon growth (rims) will 
likely occur on these relict cores. In the Alps, >25% of zircon 
grown during the Variscan orogeny was dissolved during Alpine 
metamorphism (Malusà et al. 2013). In this case dissolution 
most likely occurred during prograde Alpine metamorphism, 
with U-rich and strongly metamict zircon grains preferentially 
dissolved. Because considerable amounts of Zr become avail-
able during metamorphism, zircon can and often does recrys-
tallize extensively on the retrograde path, dependent upon the 
bulk composition, and P-T-t path. Under some circumstances a 
reassessment of the interpretation of zircon U-Pb ages may be 
warranted in light of these models. 

To summarize, from a theoretical framework, Kohn et al. 
(2015) further paves the way to understanding zircon dissolution 
and growth during metamorphism. Under most metamorphic 
conditions, zircon growth occurs well below the closure tem-
perature for Pb loss (Cherniak and Watson 2001). U-Pb ages 
of metamorphic zircons can potentially reveal timescales of 
zircon growth, subduction and exhumation rates, and the P-T 
evolution of UHP rocks (McClelland and Lapen 2013; Rubatto 
and Hermann 2007) provided that methods capable of detailing 
spatial, temporal, and geochemical variations within metamor-
phic zones are employed (e.g., SIMS depth profiling) (Breeding 
et al. 2004; Trail et al. 2007; Zirakparvar et al. 2014). Analytical 
methods exist to document temperatures of crystallization (Ferry 
and Watson 2007), isotopic and geochemical heterogeneities 
within single zircon crystals, with results that can be related to 
transport through the rock cycle. Understanding the timescales 
and rates of zircon growth during metamorphism will be realized 
when geochronologists interpret zircon U-Pb data with respect 
to zircon dissolution and growth, as illustrated by Kohn et al.’s 
(2015) models. Only then can U-Pb zircon geochronology be 
used in general to constrain geodynamic models, and in particular 
to assess mechanisms of UHP exhumation.
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