Trinitite redux: Mineralogy and petrology

G. NELSON EBY1*, NORMAN CHARNLEY2, DUNCAN PIRRIE3, ROBERT HERMES4, JOHN SMOLIGA5 AND GAVYN ROLLINSON6

1Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, Massachusetts 01854, U.S.A.
2Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, U.K.
3Helford Geoscience LLP, Trelowarren Mill Barn, Mawgan, Helston, Cornwall TR12 6AE, U.K.
4Kiowa Lane, Los Alamos, New Mexico, U.S.A.
523 Rocky Mountain Road, Roxbury, Connecticut, U.S.A.
6Camborne School of Mines, University of Exeter, CEMPS, Penryn Campus, Penryn, Cornwall TR10 9FE, U.K.

ABSTRACT

Trinitite is the glass formed during the first atomic bomb test near Socorro, New Mexico, on July 16, 1945. The protolith for the glass is arkosic sand. The majority of the glass is bottle green in color, but a red variety is found in the northern quadrant of the test site. Glass beads and dumbbells, similar in morphology to micro-tektites, are also found at the Trinity site. The original description of this material, which appeared in American Mineralogist in 1948, noted the presence of two glasses with distinctly different indices of refraction (n = 1.46 and 1.51–1.54). Scanning electron microscopy (SEM) and Quantitative Evaluation of Minerals by SCANning electron microscopy (QEMSCAN) analysis is used to investigate the chemical composition and fine-scale structure of the glass. The glass is heterogeneous at the tens of micrometer scale with discrete layers of glass showing flow-like structures. The low index of refraction glass is essentially SiO2 (high-Si glass), but the higher index of refraction glass (low-Si glass) shows a range of chemical compositions. Embedded in the glass are partially melted quartz (α-quartz as determined by X-ray diffraction) and feldspar grains. The red trinitite consists of the same two glass components along with additional Cu-rich, Fe-rich, and Pb-rich silicate glasses. Metallic globules are common in the red trinitite

In terms of viscosity, the high-Si and low-Si glasses differ by several orders of magnitude, and there is minimal mixing between the two glasses. QEMSCAN analysis reveals that there are several chemical subgroups (that can be characterized as simple mixtures of melted mineral components) within the low-Si glasses, and there is limited mixing between these glass subgroups. The red trinitite contains regions of Fe-rich glass, which show sharp contact with surrounding Fe-poor glass. Both the textural and chemical data suggest that these two glasses existed as immiscible liquids. The metallic droplets in the red trinitite, which consist of variable amounts of Cu, Pb, and Fe, show textural evidence of unmixing. These metals are largely derived from anthropogenic sources—Cu wire, Pb bricks, and the steel tower and bomb casing. The combination of mineralogical and chemical data indicate that temperatures on the order of 1600 °C and pressures of at least 8 GPa were reached during the atomic detonation and that there was a reducing environment during cooling, as evidenced by the presence of native metals, metal sulfides, and a low-Fe3+/Fe2+ ratio. Independent estimates of maximum temperature during the detonation are on the order of 8000 K, far higher than suggested by the mineral data. This discrepancy is probably due to the very short duration of the event. In all respects, the trinitite glasses are similar to tektites and fulgurites, and by analogy one conclusion is that temperature estimates based on mineralogical observations for these materials also underestimate the maximum temperatures.

Keywords: Trinitite, fused arkose, glass melting, heterogeneous glasses, liquid immiscibility, melt viscosity, QEMSCAN

INTRODUCTION

The Atomic Age started on July 16, 1945, at 5:29 am Mountain War Time in a remote patch of desert near Socorro, New Mexico. The defining event was the detonation of the first nuclear device, a plutonium fission bomb (the “gadget”). During the nuclear detonation the arkosic sand surrounding the blast site was fused forming a green glassy material now referred to as trinitite. The origin of the name is somewhat obscure. The earliest known use of the term “trinitite” was in a letter dated October 22, 1945, from Louis Hempelmann, who was in charge of the Los Alamos Health Physics group. Before that the material was variously referred to in official correspondence as Trinity dirt, crust and slag, glass, fused glass and TR glass (William Kolb 2013, personal communication). Trinitite was first described in the scientific literature by Ross (1948) in American Mineralogist. In March 1952, the Atomic Energy Commission (AEC) announced it was letting a contract to have the trinitite at Ground Zero (GZ) cleaned up. Much of the remaining trinitite was eventually graded up and buried while the crater was smoothed over with a shallow mix of sand and trinitite shards. The work was completed in July 1953 (Jim Eckles 2013,