X-ray powder diffraction and ^{23}Na, ^{27}Al, and ^{29}Si MAS-NMR investigation of nepheline-kalsilite crystalline solutions

Guy L. Hovis, Dane R. Spearing, Jonathan F. Stebbins, Jacques Roux, April Clare

For deposit: Table 2

American Mineralogist, 77, 1-2, 19-29.
TABLE 2

X-RAY POWDER DIFFRACTION DATA
FOR NEPHELINE 8908

<table>
<thead>
<tr>
<th>$2\theta (°)^*$</th>
<th>d(Å)</th>
<th>hkl</th>
<th>I**</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.05</td>
<td>4.425</td>
<td>200</td>
<td>7</td>
</tr>
<tr>
<td>20.26</td>
<td>4.379</td>
<td>111</td>
<td>2</td>
</tr>
<tr>
<td>20.89</td>
<td>4.249</td>
<td>002</td>
<td>28</td>
</tr>
<tr>
<td>22.65</td>
<td>3.922</td>
<td>201</td>
<td>69</td>
</tr>
<tr>
<td>23.18</td>
<td>3.833</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>26.65</td>
<td>3.342</td>
<td>210</td>
<td>41</td>
</tr>
<tr>
<td>28.71</td>
<td>3.107</td>
<td>211</td>
<td>15</td>
</tr>
<tr>
<td>29.13</td>
<td>3.063</td>
<td>202</td>
<td>100</td>
</tr>
<tr>
<td>30.30</td>
<td>2.947</td>
<td>300</td>
<td>31</td>
</tr>
<tr>
<td>34.11</td>
<td>2.626</td>
<td>212</td>
<td>12</td>
</tr>
<tr>
<td>35.12</td>
<td>2.553</td>
<td>220</td>
<td>26</td>
</tr>
<tr>
<td>36.62</td>
<td>2.452</td>
<td>310/221</td>
<td>9</td>
</tr>
<tr>
<td>37.11</td>
<td>2.421</td>
<td>302</td>
<td>3</td>
</tr>
<tr>
<td>37.69</td>
<td>2.385</td>
<td>203</td>
<td>20</td>
</tr>
<tr>
<td>38.17</td>
<td>2.356</td>
<td>311</td>
<td>21</td>
</tr>
<tr>
<td>40.79</td>
<td>2.210</td>
<td>400</td>
<td>8</td>
</tr>
<tr>
<td>41.23</td>
<td>2.188</td>
<td>222</td>
<td>2</td>
</tr>
<tr>
<td>41.80</td>
<td>2.159</td>
<td>213</td>
<td>6</td>
</tr>
<tr>
<td>42.20</td>
<td>2.140</td>
<td>401</td>
<td>2</td>
</tr>
<tr>
<td>42.53</td>
<td>2.124</td>
<td>004/312</td>
<td>14</td>
</tr>
<tr>
<td>44.62</td>
<td>2.029</td>
<td>320</td>
<td>3</td>
</tr>
<tr>
<td>45.97</td>
<td>1.973</td>
<td>321</td>
<td>6</td>
</tr>
<tr>
<td>46.23</td>
<td>1.962</td>
<td>114/402</td>
<td>4</td>
</tr>
<tr>
<td>47.10</td>
<td>1.928</td>
<td>410</td>
<td>3</td>
</tr>
<tr>
<td>49.77</td>
<td>1.830</td>
<td>322</td>
<td>4</td>
</tr>
<tr>
<td>52.48</td>
<td>1.742</td>
<td>403</td>
<td>2</td>
</tr>
<tr>
<td>52.86</td>
<td>1.731</td>
<td>501</td>
<td>3</td>
</tr>
<tr>
<td>54.89</td>
<td>1.671</td>
<td>105/420/331</td>
<td>2</td>
</tr>
<tr>
<td>55.70</td>
<td>1.649</td>
<td>323</td>
<td>4</td>
</tr>
<tr>
<td>57.78</td>
<td>1.594</td>
<td>413</td>
<td>6</td>
</tr>
<tr>
<td>58.09</td>
<td>1.587</td>
<td>205/510</td>
<td>9</td>
</tr>
<tr>
<td>63.75</td>
<td>1.459</td>
<td>333</td>
<td>6</td>
</tr>
<tr>
<td>63.99</td>
<td>1.454</td>
<td>430/601</td>
<td>2</td>
</tr>
<tr>
<td>65.93</td>
<td>1.416</td>
<td>006/225/520</td>
<td>11</td>
</tr>
<tr>
<td>66.94</td>
<td>1.397</td>
<td>106/315/521</td>
<td>4</td>
</tr>
</tbody>
</table>

* Assumes Cu K$_{a_1}$ radiation.

** I is relative intensity.