High-temperature crystal chemistry of hydrous Mg- and Fe-cordierites

MICHAEL F. HOCHELLA, JR.1

department of Geological Sciences
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Gordon E. Brown, Jr.

department of Geology
Stanford University
Stanford, California 94305

Fred K. Ross and G. V. Gibbs

Departments of Chemistry and Geological Sciences
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

Structural refinements have been completed for a Mg-rich cordierite using data recorded at 24\textdegree, 375\textdegree, 775\textdegree and 24\textdegree C (after heating to 775\textdegree) and for an Fe-rich cordierite at 24\textdegree and 375\textdegree C. The mean T-O bond lengths in both cordierites remain unchanged but the mean octahedral bonds (M-O) lengthen upon heating. The unusually low thermal expansion of the Mg-cordierite is the result of its relatively "rigid" tetrahedral framework and the anisotropic expansion of octahedra isolated from each other. This anisotropic expansion leads to a slight rotation of the six-membered rings, a concomitant collapse of the structure parallel to \textit{c}, and an expansion parallel to \(a\) and \(b\). In the Fe-cordierite, the octahedron is more flattened, resulting in \(c\) being smaller and \(a\) and \(b\) being larger than the cell dimensions of the Mg-cordierite. Upon heating Fe-cordierite, there is no evidence for a rotation of the rings, and \(a\), \(b\), and \(c\) increase as the M-O bonds expand.

X-ray \(\Delta\rho\) maps calculated for the Mg-cordierite showed approximate positions and relative amounts of channel constituents. The peak ascribed to the alkali and other atoms that centers the six-membered rings becomes elongated parallel to \(c\) upon heating through 775\textdegree C. However, the peak ascribed to the oxygen associated with H\textsubscript{2}O in the 24\textdegree and 375\textdegree C maps is absent in the 775\textdegree C maps. It reappears in maps computed from the 24\textdegree (after heating) data. In both cordierites, small amounts of hematite were produced during heating (prematurely halting data collection on the Fe-cordierite), and apparently formed by combination of octahedral and channel iron with oxygen from the channel water molecules.

A re-examination of the water orientation in the channels of the Mg-cordierite using neutron and X-ray \(\Delta\rho\) maps does not clearly show either type I (H-O-H in the (100) plane with the H-H vector parallel to \textit{c}) or type II (H-O-H in the (100) plane with the H-H vector parallel to \textit{b}) water, as previously suggested by spectroscopic studies. Instead, our \(\Delta\rho\) maps indicate that the water molecule lies in a plane tilted \(\sim 29\textdegree\) from (100) and that the H-H vector is tilted \(\sim 19\textdegree\) from \(c\).

Introduction

Cordierite, \((\text{Mg,Fe})_2\text{Al}_4\text{Si}_3\text{O}_{18} \cdot n\text{H}_2\text{O}\), has attracted the interest of mineralogists and ceramists because of its widespread formation in moderate- to high-grade metamorphic rocks, its occurrence in a variety of structural states involving different degrees of Al/Si ordering, and its unusually low thermal expansion. Ceramists have found a number of applications for Mg-cordierite as a thermal shock resistant material.