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Darken's quadratic formalism and the thermodynamics of minerals
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AssrRAcr

If a model for activity-composition relationships applies right across a binary system,
then the Gibbs-Duhem equation provides a straightforward formulation for the activity
coefficient of one endmember, given the formulation for the other endmember. The al-
gebraic convenience of this may blind us to the improbability of devising models that
might apply right across a system, given the obvious complexity of the energetics in even
simple minerals. A model that has more realistic objectives is Darken's quadratic for-
malism. In this model the compositional range is divided into two terminal regions, con-
nected by a transitional central region. In each ofthe terminal regions the solution behaves
as a regular solution between an actual and a fictive endmember. The interaction eneryies
in the two regions are usually very different. Whereas the subregular model involves the
linear dependence of the interaction energy with composition, the quadratic formalism
involves a constant interaction energy in each of the terminal regions, with the interaction
energy changing only within the central region. In contrast to the subregular model, the
quadratic formalism provides consistent descriptions of volume-composition relationships
for binary mineral solid solutions. The inapplicability of the subregular model invalidates
its use in expressing activity-composition relationships. Adoption of the quadratic for-
malism has important implications for geothermometry and geobarometry.

INrnooucrroN

Thermodynamic calculations involving mineral as-
semblages require not only thermodynamic data for end-
members, but also activity-composition (a-x) relations
for minerals. The properties of the endmembers are rel-
atively well known and easily measurable functions of
temperature and pressure. In contrast, a-x relations are
potentially complex, difficult to measure, and still
largely unknown functions of temperature, pressure, and,
particularly, composition. The compositional depen-
dence of a-x relationships is a major problem, because
an unrealistically large number of measurements is re-
quired to characterize this dependence for phases with
several dimensions of compositional variation. This sit-
uation is exacerbated by the difrculty of measurement. A
consequence of this is that the petrologist interested in
performing calculations of equilibrium relationships for
rocks has to interpolate between, or extrapolate from, a
limited number of measurements. This is a difrcult task,
not the least because wrong decisions may invalidate the
obvious choices of endmember data.

Interpolation and extrapolation of limited data require
a functional form, or model, with which to analyze the
data. The model exerts a critical influence on this process.
As the amount of data increases, however, the choice of
model becomes less and less important, particularly for
interpolation, largely because the data become a test of
the model. For example, in processing modern heat-ca-
pacity measurements, where typically a considerable
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quantity ofdata is available, interpolation by equation is
strictly unnecessary; a smoothing spline (de Boor, 1978,
p.240-242) would do as well or better. Certainly an equa-
tion simplifies the we of the data, but for interpolation
it does not matter what form the equation takes, as long
as it fits the data satisfactorily. In fact, a number of equa-
tions may fit a given data set, but each will yield different
extrapolated values. Some of the equations may be ex-
cluded from consideration because the extrapolations are
obviously inappropriate. In the end, the choice ofequa-
tion must be conditioned by scientific judgment based on
a physical model, if only in some limiting case or cases
(for the heat-capacity case, see Holland, 1980).

In processing limited data sets, the problem of func-
tional form is much more acute. It is not unusual to en-
counter the case in which the number of data points and
the number of adjustable parameters in the model are of
the same order. Interpolation and extrapolation are, as a
consequence, very model dependent. Worse, the data do
not provide any test of the model, and this is often a
problem in considering a-x relationships. Confidence in
the veracity of a-x relationships is, of course, a prereq-
uisite for useful geological calculations.

The purpose ofthis paper is to consider the form ofa-
x relationships and, in particular, the way in which non-
ideality is expressed. As a prefacing remark, it is empha-
sized that the thermodynamics of heterogeneous phase
equilibria is envisaged as a phenomenological macro-
scopic description of the phases and systems involved
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(Callen, 1960; Munster, 1970). Although the use of sta-
tistical thermodynamics to formulate the thermody-
namics of actual phases (e.g., as in Guggenheim, 1966)
may deliver some important insights, particularly for very
simple phases, it is open to doubt whether the approach
is valuable for considering more complicated phases, such
as most minerals. More positively, a phenomenological
macroscopic approach seems preferable to a statistical
one because so little is known about the fundamental
behavior of minerals; further, the measurements necessary
to characterize minerals properly are difficult, time-con-
suming, or, in the case of short-range order, often
impossible to perform. In addition, if the object is to
perform calculations on mineral assemblages, it is
advantageous not to have to characterize minerals be-
cause their original internal arrangements will not nor-
mally survive cooling. The emphasis of this paper is on
the relationships among straightforwardly measurable bulk
properties of minerals as functions of composition.

BlcxcnouNo

The following discussion mainly concerns binary phas-
es. Thus, there will be just one independent bulk-com-
position parameter, x. The solid solution will concern
endmembers I and 2; X, and Xr: | - X, are the mole
fractions of these endmembers.

The simplest, least controversial, thermodynamic de-
scription of a binary phase divides the composition range
into three regions: a Raoult's law region, a Henry's law
region, and an intermediate region (Powell, 1978, p. 46-
50). In the Raoult's law region, the activity a, of end-
member i approaches X,, an'd the activity coefficient "y,
approaches I as X; approaches l. In the Henry's law re-
gion, a, is proportionalto X,, i.e., "y, is independent of -{.
The intermediate region provides a transition between
the two. Raoult's law and Henry's law behavior are each
a consequence of the other from the Gibbs-Duhem equa-
tion,

Xd(ln 1) + Xrd(ln'(r): 0,

or, in the simplest integrated form,

f ln t  t . t r :x,  v

ln  ̂ Yr: -J,n,,.,,_o ' id(ln 
"/,). (1)

Thus, if Raoult's law applies for endmember I for X, >
.{, where Xi is the compositional limit of Raoult's law
behavior, then, for this region,

regions are defined, the focus ofour concern is the inter-
mediate region.

Margules in 1895 suggested that the free energy of mix-
ing could be represented by a power series in Xr;he showed
that, for Raoult's law and Henry's law to apply, the low-
est-order nonzero term in the series is the one quadratic
in Xr. If a quadratic approximation is employed, omitting
higher-order terms in Xr, then

RZ ln 'y' : il?r, (2)

where w is an adjustable parameter dependent on tem-
perature and pressure, but not on composition. If Equa-
tion 2 applies over the whole compositional range, then
by Equation I

: wx1.

Thus the a-x relationships are symmetric. Early workers
showed that this quadratic approximation provides a good
description of several systems of nonelectrolytes. Hilde-
brand showed the wider applicability of the approach. He
coined the name "regular" for solutions following the
quadratic approximation, requiring, in addition, that w
not be a function of temperature. The attraction of mak-
ing w temperature independent is that the entropy of mix-
ing is that of an ideal solution.

As a purely empirical device, there are two major prob-
lems with the regular model of Hildebrand and others:
the requirement that w + J(n and the assumption that
the model should apply for complete binary systems, i.e.,
0 = X < l. The first requirement is unnecessary and not
restrictive. The second is, in fact, much more restrictive
and not generally obeyed, as suggested in a seminal paper
by Darken (1967).In his paper, Darken showed that, for
various binary metallic solutions, there are three com-
positional regions: two terminal regions in which the qua-
dratic approximation applies and a central region, tran-
sitional between the two terminal regions (Fig. l). This is
the basis of his quadratic formalism.

Attempted atomistic rationales of the regular solution
model are inadequate. The naivety of justifying the reg-
ular model with an approach involving summing the
energies of nearest-neighbor pairs is obvious when it is
realized that it is the quasi-chemical model, not the reg-
ular model, that results when the necessary nonrandom
distribution of nearest-neighbor pairs is included (e.g.,
Powell, 1983b, p. 241, 24+249). The quasi-chemical
model itself is flawed in that the handling of the nonran-
dom distribution can only be approximate. Taking the
quasi-chemical model as an approximation, the interest-
ing limit is not that the quasi-chemical model reduces to
the regular model for vanishingly small departures from
ideal mixing, but that the quasi-chemical model reduces
to the quadratic approximation for the terminal regions
(Powell, 1983b, p. 253 and Fig. a). This is an important

Rrtnt,: - I"" f{-rrb ar,
(3)

tnt,: -fi:":" 
20r",, 

- f;:_"'fasn7,1.

The second term on the right is zero because ln 7, does
not vary in the region X{ = X | = I ; the first term is cleady
independent of composition, as required. Given that the
a-x relationships for the Raoult's law and Henry's law
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observation because the quasi-chemical model is least in-
appropriate in the terminal regions. The same observation
applies for generalizations of the quasi-chemical model,
including, less obviously, multisite cases.

In summary, from empirical observations, and from
limits to theoretical models, ln "y, is proportional to (l -
X,)'?in the terminal regions of binary systems. In the sys-
tems considered by Darken, the terminal regions are wide
and the central region very narrow. In consequence, it is
possible that the quadratic formalism is more than just
an empirical device, but may have a physical basis. Cer-
tainly, considering w as an interaction parameter in the
quasi-chemical sense, it is reasonable to suppose that the
energetics in the two terminal regions are different, pos-
sibly markedly so; for example, the sizes and shapes of
sites in a mineral, under the influence of the dominant
ion, may be very different in each of the terminal regions.
The central region then has the simple interpretation of
involving transitional energetic relationships. Darken ob-
served that the central region often includes compositions
that correspond to stable addition compounds. In the Mg-
Bi system portrayed in Figure l, MgrBi, is a stable lower-
temperature addition compound. The same appears to
apply for pyrrhotite, which has a central region that in-
cludes the composition of the important low-temperature
addition compound, 4C pyrrhotite (Powell, 1983a). For
systems that show phase separation, it is reasonable to
expect that the central region at higher temperature in-
cludes the position ofa solvus crest, leading to a natural
way of explaining solvus asymmetry.

Qu,loru,rrc FoRMALTsM

If for the terminal region including X, : l, referred to
as terminal region l, ln "y, is linear in X7, then

RZ ln 7, : wnXZ (4)

with I preceding 2 in the subscript of w to show that the
w refers to terminal region l. Using Equation I to derive
ln "y, involves integration from X, : 0 to the composition
of interest in terminal region l, across all of terminal
region 2, all of the central region, and part of terminal
region l. If Xi is used to denote the low-X, boundary of
terminal region I, then

Fe-S i
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Denoting the first integral by i then

RT ln y: i - wnx\2 * wrrX : I, I wr.rXl (5)

in which 1, is not a function of composition. This equa-
tion says that the activity coefficient for endmember 2
depends on the same parameter, w,r, as does the activity
coefrcient for endmember l, but that there is an addi-
tional constant term, t, involved. Note that 1, : 0 only
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Fig. 1. (a) ln ^y., plotted against (1 - Xr')'for binary Fe-Si
liquid alloys at 1600.C; O) ln r,, plotted against (l - X*)'? for
binary Bi-Mg liquid alloys at 700"C (from Darken, 1967). Note
that in both diagrams there are two terminal regions and a tran-
sitional central region. In contrast to the central region in (a),
the central region in (b) involves an inflection. The composition
at the inflection is close to the composition of the lower-tem-
perature addition compound, MgrBir.

if Equation 4 applies ovdr 0 < X, = |. For the terminal
region including Xr: l, referred to as terminal region 2,

RZln'yt :  I t  + wrt( l  -  Xr)z (6)

and

RT ln 7r: wrr(l * Xr)2. (7)

Note that there is no requirement for )t12 andw^ in Equa-
tions 4-7 to be related to each other, or, indeed, for them
even to be of the same sign. In the terminal regions, the
activity coeftcient relationships are those of regular so-
lutions, except for 1, in Equation 5 and 1, in Equation 6.
No simple activity coefficient equation can be written for
the central region. The only requirement is that the ter-
minal regions are connected.

Combining Equations 4 and 5 for terminal region I
with the endmember Gibbs energies, G, and Gr, and the
entropy of mixing, Shi., gives the Gibbs energy, G. For
terminal region l,

G: XrG, + X2G2 - ?"S-i. r Xrwrr(l - Xr)2

* Xrwrr(l - X)2 + X2I2

: X,G, + X2(Gz + I.) - f,S-* + X,Xrw,r. (8)
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at x : 0 of V! - V, (Turkdogan and Darken, 1968):Similarly, for terminal region 2,

G : Xr(G, + 11) + XrG, - Z,S'* + XrXrwrr. (9)

These equations show that Darken's quadratic formalism
actually corresponds, in each of the terminal regions, to
regular solutions, with each involving a real and a fictive
endmember. In terminal region l, the endmembers are I
and a fictive endmember 2, whose Gibbs energies are G'
and GL: Gz + t, respectively in terminal region 2, the
endmembers are 2 and a fictive endmember l, whose
Gibbs energies are G, and G', : Gt + 1,, respectively.
Thus, Equations 4-7 can be written as, for terminal re-
gion I,

RZln 'Y ' :  wrr ( l  -  X ' )2

RTlnyr: Gi - G' + w'r(l - Xr)',

and for terminal region 2,

RIln 7' : Gi - Gt + w2ll - X)2

RT ln 7, : w,,(l - Xr)2. (10)

Note that there need be no correlation of properties be-
tween the terminal regions. For example, there is no way
of predicting w,rfrom wrr.

In one particular case the fictive endmembers corre-
spond to something that can be observed. If there is a
phase change, say from structure c for high X,, to struc-
ture B for low X,, then the above equations apply, with
G, : G,., Gi : G,r, G, : Grp, and Gi : Gr., and the
central region corresponds to the transformation a : 0.
Otherwise the fictive endmembers will not be observable.
For example G! is the Gibbs energy of pure 2, in which
the energetics are the same as those applying in terminal
region 1. There is a close parallel here with the fictive
endmembers used in considering aqueous solutions (e.9.,
Powell, 1978, p. 94).

It is more clearly illustrative to consider enthalpy or
volume rather than Gibbs energy. The following is for-
mulated for volume, but the relationships apply equally
to enthalpy, by replacing each V (or v) by 11 (or i). Given
volume measurements for a solid solution, a method,
preferably a graphical one, is required for evaluating the
quadratic formalism and for obtaining the unknowns,
which are the mixing property vn or v2t (instead of w',
or w2t) and the volumes of the fictive endmembers, Z{
and V'r. Following the approach of Turkdogan and Dark-
en (1968), we start by writing Z-i*, using x for X' (to
emphasize that there is one independent variable in a
binary system), for terminal region I

y^i*: (l - x)(Vi - Yr) + v,.x(l - x) (l la)

and for terminal region 2

V^*: x(V't - Vr) + vtr\l - x). ( l  1b)

For terminal region l, dividing Equation I la by (l -

x) gives a function linear in x, with slope v,, and intercept

Similarly, for terminal region 2,

vnix' : V| - V, t v"(l - x). (12b)
x

Equation l2 is useful for processing volume and enthalpy
data. The linearity required by Equation 12 allows the
delineation of terminal regions.

An important V-x relationship for the subregular mod-
el is

Vn].x- . :  - :  v ,x  + vr , ( l  -  x) :  vr ,  *  x(vr ,  -  vr r ) .  (13)
x(l - x)

This function is linear in composition. In contrast, for
terminal region I in the quadratic formalism,

V ^ h l -

' (t - '): ;(V' ' 
- V') * v"'

and for terminal regson 2,

V ^ n l -

" ( l - d : I - x ( v i - v ' ) + v " ;

(r2a)

(1aa)

(l4b)

these functions define two curved segments whose cur-
vatures depend on (V\ - Vr) and (Vi - V').Whereas the
subregular model implies that the interaction parameter
is linearly dependent on composition over the entire range
0 = x < l, the quadratic formalism implies that the
interaction parameter is constant in each of the terminal
regions and changes only in the central region. Absence
ofthe linear relationship for 0 < -lc = 1 in Equation 13
precludes the general applicability of the subregular mod-
el to volume-composition relationships.

The analysis of most ion-exchange experimental data
involves considering the exchange equilibrium between a
fluid (0 and a binary mineral solid solution (m). For end-
members I and2, the equilibrium relationship is

which is equivalent to

Rrh(?ri)_ + c:-""("t),(rt)- (,5)

in which C is a constant at a particular pressure and tem-
perature if the activity coefficient terms for the fluid are
approximately constant in the range of experimental con-
ditions.

From the quadratic formalism (Eq. l0), for terminal
region l,

o: AGo* ̂' '"(r4),(#). + Rrh(t),("")-,
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-(G, - G'r) + w,r(l - 2x), (l6a)

and for terminal region 2,
/^. \

Rrlnlr l  :  (c,  -  G',)  -  w,,( l  -  2x).  ( l6b)
\tzl

If the right side of Equation 15 is plotted against com-
position, x, then the data should plot as two linear seg-
ments, corresponding to the terminal regions, with a tran-
sitional central region. In contrast, for the subregular
model, RT ln(yr/1) is quadratic in x for 0 < x < l.

Vor,upm-coMposrrroN RELATroNsHrps

Volume-composition (V-x) data are particularly useful
in evaluating mixing models because these data are usu-
ally much more precise than, for example, calorimetri-
cally determined enthalpy-composition data. Conclu-
sions based on volume-composition data are important
because the pressure dependence of ln a is related to par-
tial molar volume, for example, in the quadratic formal-
ism (Eq. l0) for terminal region 1, the derivative is d(RZ
ln ar)/0P : XZy,z.The formulation for activity-compo-
sition relationships when differentiated with respect to
pressure must be reducible to a form consistent with vol-
ume-composition relationships. Thus, if a particular for-
mulation of volume-composition relationships is found
to be inappropriate, then this formulation cannot be used
for activity-composition relationships. For example, even
if activity-composition data for a system are consistent
with the subregular model, this formulation is inappro-
priate if the volume-composition data for the system pre-
cludes the applicability of the subregular model, provided
that the volume data are more precise than the activity
data. Alternatively, if the quadratic formalism is well-
supported by volume-composition data, any formulation
reducible to the quadratic formalism will be appropriate
for considering activity-composition data. Note that the
subregular model is not reducible to the quadratic for-
malism.

Newton and Wood (1978) have observed systematic
compositional dependences of molar volumes in several
binary silicate mineral solid solutions, and they have ac-
counted for these in a novel but entirely reasonable way.
They noted that, in many minerals in binary systems that
involve a large difference between the molar volumes of
the endmembers, there are narrow regions of anoma-
lously small volumes of mixing near the endmember with
the smaller molar volume, giving way to wide regions of
large excess volumes toward the endmember with the
larger molar volume. Referring to this as equivalent site
(ES) substitution, they ascribed this behavior to the con-
sequences of different-sized ions mixing on the same site,

Fig. 2. Volume-composition relationships for microcline-low
albite using data from Kroll et al. (1986). Z refers to unit-cell
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and the dashed lines in (b) and (c) are calculated from the solid
lines in (b) and (c). The solid lines in (b) and (c) were produced

by eye, with IZr" : 663.8, Vk - V": 5, vxx : 0 and K" -

V'^: -4.6, VK:722.6, u*" : 34 in units of Angstrdms.

C .
a

XK



POWELL: DARKEN'S QUADRATIC FORMALISM AND THERMODYNAMICS OF MINERALS

4

= 0
-o

> - 4
x '

> - o

-t2

ferent-sized ions for different-sized sites, for example, in
nepheline.

Volume-composition relationships are portrayed in
various ways for microcline-low albite (using data of Kroll
et al., 1986) (Fig. 2) and for forsterite-fayalite (using data
of Louisnathan and Smith, 1968) (Fig. 3). Both solid so-
lutions show typical ES behavior. Figures 2aand 3a should
be viewed in relation to Equations 13 and 14. Both dia-
grams show that it is not possible to put a straight line
through all the data as required for the subregular model,
as is pointed out by Kroll et al. (1986) for their data. In
fact, this is true for all systems showing ES behavior; the
subregular model cannot describe such strongly asym-
metric behavior. In strong contrast, the data are easily
described using the quadratic formalism. Figures 2L2c
and 3L3c should be viewed in relation to Equation 12;
in both, the data show two terminal regions, and, by im-
plication, a narrow central region. The volume-compo-
sition relationships described in this way are shown in
Figures 2d and 3d. In general, for systems showing ES
behavior, there is a very wide terminal region that in-
cludes the endmember with the larger molar volume and
that shows ideal or small positive or negative deviations
from ideality or, in the case of systems showing immis-
cibility, larger positive deviations from ideality. The ter-
minal region including the endmember with the smaller
molar volume is narrow and is diftcult to characterize
because it usually contains few measurements. An inter-
pretation consistent with the data and also with Newton
and Wood's qualitative explanation of this behavior in-
volves strong negative deviation from ideality in this ter-
minal region. "Ideal" is used here in relation to mixing
between real and fictive endmembers; in other words, in
relation to the sign of v, in Equation ll. Although not
grving a unique interpretation, the simplest consistent way
in which to apply the quadratic formalism to volume-
composition data is to have a very nalTow central region
between the terminal regions, as in Figures 3d and 4d.

Whereas it is usually true that the subregular model is
inappropriate for minerals that show ES behavior, the
situation is less clear for minerals showing NS behavior.
Broadly sigmoidal and other volume-composition rela-
tionships can often be described in terms of the subregu-
lar model within the uncertainty on the data. Diagrams
like Figure 2a for such systems do not demonstrate the
inapplicability of the subregular model, although they are
not a convincing demonstration of it. The quadratic for-
malism may be a superior representation for such phases
as well.

Volume-composition data for several binary mineral
systems are shown in Figure 4. In Figure 4a, the position
of the central region coincides with the position of a dis-
placive transformation in this system (Ikoll et al., 1986).
The examples presented here support the use ofthe qua-
dratic formalism for volume-composition data and,
moreover, suggest that the subregular model is inappro-
priate. This is important because lf the V-x relationships
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Fig. 3. Volume-composition relationships for forsterite-fa-
yalire using data from Louisnathan and Smith (1968). See the
caption for Fig. 2 for details. The parameters used to generate
the lines are Vr.: 308.7, lvMe - V.": 0.6, v..* : -2, and
V'r. - Vr": 88, V*": 290.1, rrru." : - 100.

as, for example, in Fe-Ca and Mg-Ca garnet solid solu-
tions. In other minerals, a broadly sigmoidal volume-
composition dependence, referred to as nonequivalent site
(NS) substitution, is ascribed to the competition of dif-



POWELL: DARKEN'S QUADRATIC FORMALISM AND THERMODYNAMICS OF MINERALS

a

t700

r650

t600

r550

t500

b

t680

t640

r600

t560

04 06
xMg

Fig. 4. Volume-composition relationships for (a) sanidine-
high albite using data from Kroll et al. (1986); (b) pyrope-gros-
sular using data from Newton et al. (1978); (c) almandine-gros-
sular using data from Cressey et al. (1978); (d) clinoenstatite-
diopside using data from Turnock et al. (1973) and Newton et
al. (1979); and (e) enstatite-orthoferrosilite using data from Mat-
sui et al. (1968). See the caption for Fig. 2 for details.

are not subregular, then it is not possible to express activ-
ity coefficients with subregular equations.

ENrrrll,pv AND AcrrvlTy-coMposrrroN
RELATIONSHIPS

Available enthalpy of solution-composition (H-x) data
for mineral solid solutions are neither abundant nor pre-
cise enough to provide much evidence for or against the
quadratic formalism or the subregular model. If enthalpy
of solution measurements are obtained at intervals of 0.2
in x, then the sort of strongly asymmetric behavior found
in ES minerals may not be observed. However, a recent
study on grossular-almandine, where effort was concen-
trated on almandine-rich compositions, has delineated
the expected asymmetric behavior (Fig. 5a, using data of
Geiger et a1., 1985). Although there are few data for the
pyrope-grossular system (Fig. 5b, using data of Newton
et al., I 978), the form ofa description using the quadratic
formalism is well defined. In both pyrope-grossular and
almandine-grossular, the wide terminal regions that in-
clude grossular may involve small or zero interaction en-
thalpies.

Enthalpies of solution for the albite-anorthite system
have been measured by Newton et al. (1980) and Car-
penter et al. (1985); their results, which are plotted in
Figure 6 are broadly consistent. Newton et al. used the
subregular model to fit their data, but an equally satis-
fying description ofthe data is provided by the quadratic
formalism (Fig. 6). Carpenter et al. provided a convincing
structural interpretation ofthe data, involving the lower
X." plagioclases having the Ci structure, and the higher
X"" plagioclases having the 11 structure. The quadratic
formalism is still an appropriate description of data even
if there is a phase transformation in the system, whereas

o? oo ,* ou 08

o .4  06  08  t 0
xMg
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b o o x M g

Fig. 5. Enthalpy of solution-composition relationships for (a)
almandine-grossular using data from Geiger et al. (l 985) and (b)
pyrope-grossularusing data from Newton et al. (1978). Units are
kilocalories per mole. Error bars are 2o.

the subregular model is not. The only requirement for the
application of the quadratic formalism in this case is that
the central region must be of zero width, involving a dis-
continuity corresponding to the enthalpy change of the
transformation. With reference to Figure 6 and to Figure
3 of Carpenter et al. (1985), the CI = 1 1 transformation
occurs at 0.72 < X- = 0.28. The greater the X- of the
transformation beyond the intersection of the lines on
Figure 6, the greater is the enthalpy change ofthe trans-
formation. With the uncertainties on the data, the size of
this change is effectively unconstrained.

Ion-exchange experimental results have been published
for a number of systems, including the plagioclase system
(Orville, 1972; Blencoe et al., 1982) and the alkali feld-
spar system (Orville, 1963; Iiyama, 1974), both at high
temperature. The plagioclase results are plotted, accord-
ing to Equation 15, in Figure 7. In view ofEquation 16,
such a plot will consist of two linear segments, corre-
sponding to the terminal regions, with a connecting cen-
tral region. Blencoe et al. fitted these data using the sub-
regular model; as already discussed, this is inappropriate
because a phase transformation is involved in this sys-
tem. The alkali feldspar results at 700'C are plotted in

o 02 ooraooa o8 l.o

Fig. 6. High-temperature albite-anorthite enthalpy of solu-
tion-composition relationships using data from Newton et al.
(1980) (open symbols) and Carpenter et d. (1985) (filled sym-
bols). Units are kilocalories per mole. Error bars are 2o, with a
superimposed minimum of o : 0.15. See text for discussion.

Figure 8. Thompson and Waldbaum (1968) and Thomp-
son and Hovis (1979) ignored the lowest and highest X"
measurements, then fitted the remainder with the sub-
regular model. An alternative description involving the
quadratic formalism is shown on Figure 8. The position
of the central region in Figures 8 and 4a is the same
within experimental error and corresponds to the com-
position at which the displacive transformation occurs in
this system. Use of the subregular model to smooth alkali
feldspar solvus data (e.g., Parsons, 1978) could be posi-
tively misleading, particularly if used to predict the com-
position, and even the temperature, of the consolute point.

CoprpuurroNAr. ASPEcrs

Volume-composition and enthalpy-composition data
can be easily processed to give the quadratic formalism
parameters. The recommended approach is (l) to use dia-
grams based on Equation 12 (e.g., Figs. 2b, 2c, 3b, 3c) to
determine the position of the central region and to divide
the data up into two subsets, corresponding to the ter-
minal regions, and (2) to fit these subsets for terminal
region I

V: XtV, + X2Vi * X,Xrv,r,

and for terminal region 2,

V: XtVl + X2V2 I X,Xrvr,. ( 17 )

using least squares or a variant (e.g., robust regression,
Powell, 1985), with Zas dependent variable, Xr, Xr, and
X rX, as independent variables, Vr, V'r, and vr2 as param-
eters for terminal region l, and Vi, V, and v2r as param-
eters for terminal region 2. It is preferable to use Equation
17 rather than Equation 12 in the regression because the
calculation of V^* involves V, arrd Vr; these values are
usually known only as well as the other measured vol-
umes.
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Fig. 7. Ion-exchange experimental dala at2 kbar and 700'C
for high-temperature albite-anorthite solid solutions using the
data of Orville (1972) (filled symbols) and Blencoe et al. (1982)
(open symbols). See text for discussion.

As an example, the microcline-low albite data of Kroll
et al. (1986) were processed in this way, choosing the
composition Xx: 0.17 5 to divide the data into two sub-
sets (Fig. 2). For the terminal region at high X" using
robust regression (Powell, 1985),

V": 722.35 + 0.38 (2o)

I /N" :659.21  +  0 .50

vou" : 34.0 + 2. I

with the correlation coefficient matrix

and for the terminal region at low X*,

v k : 7 1 8 . 9  +  2 4 . 6

2" . :  663.80  +  0 .10

v ^ " * : 1 0 . 0 + 2 8 . 4

with a correlation coefficient matrix

f r.ooo -0.076 - o.eee3l
| 1.000 0.044 |
L r.000 I

As expected, most of the parameters for the smaller ter-
minal region are poorly defined. However, they combine
to give small uncertainties on calculated volumes where
the equation is ofinterest.

DrscussroN

The quadratic formalism provides a better description
of volume-, enthalpy-, and activity-composition relation-
ships than currently adopted models, in particular, the
subregular model. The quadratic formalism is a very flex-
ible model. It is, for example, able to describe the con-
siderable asymmetry of some volume-composition rela-
tionships. This flexibility is due in part to the relatively
large number of parameters needed to characterize the
terminal regions. For a binary system there are four pa-
rameters: the properties of two fictive endmembers and
two interaction parameters. The way in which these pa-

XK

Fig. 8. Ion-exchange experimental datz at 2 kbar and 700"C
for sanidine-high albite solid solutions using the data ofOrville
(1963) (open symbols)and Iiyama (1974) (closed symbols). Units
are kilojoules. See text for discussion.

rameters interact controls the position of the central re-
gion, which, in turn, controls the degree and form of
asymmetry of properties.

It might be argued that with a four-parameter Margules
expansion, with terms up to quintic in r there would be
no difficulty in describing, for example, the volume-com-
position relationships involved in ES behavior. However,
the linearity of ln 7, in the terminal regions in Figure 1
cannot be described by a Margules expansion. The prob-
lem with the data for minerals, even the volume data, is
that it is not really sufficiently precise to allow diferen-
tiation between models. If there are substantial terminal
regions with quadratic formalism properties, then a Mar-
gules expansion approach cannot be used. Regardless of
this, it is overly optimistic to assume that a particular
equation, for example, for activity-composition relation-
ships, will apply throughout a system for phases as com-
plex as minerals. It is this that makes the quadratic for-
malism attractive. The quadratic formalism is /fte simplest
model if a formulation is not to apply over 0 < x = l.

The main implication for geothermometry and geo-
barometry is that a diferent geothermometric and/or
geobarometric equation is required for each combination
of terminal regions for the phases involved in the reac-
tion. The Fe-Mg exchange equilibrium between olivine
and garnet was studied experimentally by O'Neill and
Wood (1979). In olivine, two terminal regions must be
considered, for X', > 0.85 and for XM, < 0.85 (Fig. 3).
Treating the garnets as essentially ternary phases in the
Ca-Mg-Fe system, Figures 4b and 4c show that there is
a wide terminal region involving Ca-rich garnets, with
Xc, > 0.2. Owing to the absence of data on almandine-
pyrope garnets, it is not known ifES behavior occurs in
this binary system. If not, low-Ca garnets might be treat-
ed in terms of one terminal region, with the almandine-
pyrope binary system considered to be a regular solution.
Then, for the olivine-garnet equilibrium, four geother-
mometer equations are required: for olivine (X*, >
0.85) + garnet (Xc. < 0.2); for olivine (X', < 0.85) +
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garnet (Xc" < 0.2); for olivine (Xr, > 0.85) + garnet (Xo >
0.2); and for olivine (X-" < 0.85) + garnet (X* > 0.2).
The experimental calibration of O'Neill and Wood fo-
cused on bulk compositions that crystallized olivine (X., <
0.85) and garnet (X6" < 0.2), so just one ofthe four equa-
tions can be properly calibrated. In fact, the study did
include some experiments that crystallized olivines with
Xru > 0.85 and garnets with Xc" > 0.2, and the inclusion
of these in the data processing performed by O'Neill and
Wood may have degraded the analysis. Certainly it is
possible that there is a change ofslope in the trend ofthe
data at Xgi"r"" : 0.85 in their Figures l-5 and also at
Xg"' - 0.2 in their Figure 6. These changes of slope are
anticipated if the quadratic formalism is used.

For any reaction involving more than one endmember
from any mineral, for example, for exchange equilibria,
the AGo for the reaction will always involve at least one
fictive endmember. Thus for the olivine-garnet equilib-
rium discussed above, for olivines with XMe > 0.85, the
geothermometric equation will involve thermodynamic
data for real forsterite but fictive fayalite, whereas for
olivines with X*, < 0.85, it will involve real fayalite but
fictive forsterite. The more phases in a reaction that show
nonideal behavior, the more complex is the situation, and
the more care is required. For example, for garnet-ortho-
pyroxene-plagioclase-quartz geobarometry, with two gar-
net endmembers involved in the reaction, it will not be
sufficient to just use data from an internally consistent
data set (e.g., Powell and Holland, 1985; Holland and
Powell, 1985) to calculate AGo. Some of the consistency
problems experienced by Perkins and Chipera (1985) may
be removed by using the quadratic formalism; certainly
the analysis of the thermodynamics of garnet solid solu-
tions by Ganguly and Saxena (1984) and Wood and Hol-
loway (1984) will need substantial re-evaluation.

Adoption of the quadratic formalism has an important
bearing on future experimental work. Experiments will
be needed to calibrate all the terminal regions ofinterest
because it is not possible to extrapolate from one terminal
region to another. Similarly, application of a geother-
mometric and/or a geobarometric equation for an inap-
propriate combination of terminal regions should be rec-
ognized as being dangerous, and if central regions are
involved, a calculation should be bracketed by applica-
tion ofthe equations for adjacent terminal regions.
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