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ISOGYRES IN INTERFERENCE FIGURES

W. Bancr..q.v Klltn, CaliJornia Inst'itute of Technology,
Pasad,ena, CaliJ.*

Aesrnlc:r

The use of skiodromes in interpreting interference figures of cr1'stal plates leads to both

qualitative and quantitative errors, and should be abandoned. The theory of isogyre pat-

terns is correctly developed by considering the effect on isogyre position of "rotation" of

the polarization plane by the optical system. Although the amount of the rotation may be

10'-15', its effect on isogl'rg position is found to be small because the effects of rotation

above and below the crystal plate u-ork in opposite directions. An analysis, based on this

conclusion, of the uniaxial flash figure, acute and obtuse bisectrix figures, and optic normal

figure leads to isogyre equations from which can be calculated the angle of rotation of the

stage ({rom extinction) required to disperse the isogyres from the field. The formulas are

simple and convenient, and are verified experimentally by comparison with values measured

upon oriented thin sections. They provide a means of measuring 2V in Bxo figures and in

Bro figures of large 2V , and in particular a means of distinguishing between Bxa a"nd Bxo

figures. The corresponding formulas given b1' the skiodrome theory and the theory of

Michel-L6vy are not satisfactory. An analysis of the optic axis figure reveals that 45'

isogyre curves derived by Wright upon seemingly unsound assumptions are in fact sur-

prisingly accurate. Repiacements for the skiodromes currently in use are mentionecl.

1. Introd.uction

The theory of interference figures in crystal optics was developed
mainly between about 1900 and 1925. Most of the results and methods of
this early work have fallen into disuse. In explaining the origin and form
of isogyres, recent textbooks (Wahlstrom, 1951; Burri, 1950) make use
exclusively of the skiodrome, a device introduced originally by Becke
(1904). The skiodrome is, however, an incorrect representation of inter-
ference phenomena. It is physically unsatisfactory, and leads to incorrect
predictions as to the positions and shapes of isogyres.

With the hope of correcting this situation, the present paper advances
a coherent theory of the positions of isogyres in interference figures. The
theory is subjected to practical test with the petrographic microscope,
and its predictions are compared directly with the predictions of the skio-
drome theory and other representations of interference phenomena. As a
result of these tests (aside from the reasoning behind the theory) one may
conclude that the theory here developed accounts correctly for the posi-

tions of isogyres, and that the older theories do not. On the basis of the
theory a practical means for distinguishing betweer Brca ar'd Bfio
figures can be established, and a method given for measuring2V in figures
of either kind.

* Division of Geological Sciences, contribution No. 86.5
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2. History of isogyre theory

A survey of the l iterature on the isogyre problem reveals three main
lines of development: (1) a protracted dispute (1904-1923) between
F. Becke and F. E. Wright over the proper method of measuring 2V from
interference figures; (2) introduction of the skiodrome theory by Becke,
and its subsequent interpretation and development by Johannsen, and
othersl (3) formulation and application of approximate isogyre equations
by Michel-L6vy and Wright.

The dispute between Becke and Wright arose from the following ques-
tion. Suppose that at a given point in the interference field of the cono-
scope, the direction of vibration (direction of electric displacement D) of
light reaching the observer's eye is known. What is the direction of D of
the corresponding ray of light while traversing the crystal plate under
observation? Becke and Wright proposed difierent constructions (in
stereographic projection) for the solution of this problem, and in the
years 1904-1925 disputed the correctness of one another's methods
(Becke, 1904; Wright 1907; Becke, 1909; Wright, l9l7; Kaemerer, 1913;
Souza-Brandao, I9I4; Wright, 1923). A review of the course of the dis-
pute can be found in Wright's 1923 paper (pp. 807-809). In this paper
Wright concluded that the correct construction is unknown, and that
there is in general an uncertainty equal roughly to the difference between
the Becke and Wright methods in translating the position of isogyres in
an interference figure into conditions in the crystal plate that produce the
figure. The interpretation of interference figures is, he concluded, in-
herently approximate at best.

This conclusion was probably responsible for the lack of further devel-
opment of the theory of interference figures. Discrediting the older "ex-
act" methods of analyzing interference figures, it was probably respons-
ible for the abandonment of these methods and the reliance instead ex-
clusively on the skiodrome theory, a theory developed along lines quite
different from those of the'"exact" methods, but one which led to con-
venient diagrams and easily visualized conclusions.

The skiodrome actually had been introduced by Becke in 1904.
Whether it was intended as an exact theory or simply a handy tool is
difficult to judge from the original article, but in the hands of others it was
treated as an exact theory and developed in considerable detail to give
isogyre equations for various types of interference figure. A detailed
development of the skiodrome theory can be found in Johannsen's text-
book (1918, pp. 429-440).

Nowadays the skiodrome theory seems to be used mainly as a device for
demonstrating qualitatively to students the origin and general pattern of
isogryes. The exact numerical development of the theory seems largely to
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be disregarded. Neverthless, the emphasis placed on the skiodrome theory
suggests that it should provide a more accurate description of isogyres if
such a description were needed.

An accurate description was, in fact, required by Michel-L6vy in an
early work (1888) in which he proposed a method for determining 2V
from bisectrix figures. For this purpose he developed an equation for the
isogyres in bisectrix figures, by treating the interference phenomena as
though they took place in a plane and applying the planar analog of the
law of Biot and Fresnel. Wright (1905) rederived his formula but pointed
out (1907, p. 3a1) that it did not seem to give trustworthy results and
recommended that it not be used. Nevertheless, he applied the same type
of analysis to the optic axis figure, obtaining an equation for the isogyre
in the 45o position, from which he calculated the isogyre curves that have
been reproduced in almost every optical mineralogy textbook.

Present day teaching and practice in interference figure interpretation
are outgrowths of these three unrelated lines of approach to the isogyre
problem. In this paper I want to show that the skiodrome theory is pat-
ently incorrect and should be discarded. A theory to replace it can be
formulated when it is shown that the dispute between Becke and Wright
failed to recognize the factors that actually determine the position of iso-
gyres. The application of the new theory to bisectrix and flash figures
provides a test of the theory against the predictions of the skiodrome
theory and the theory of 1\,Iichel-L6vy. Finally, the new theory can be
applied to the optic axis figure and the result compared, for the 45o posi-
tion, with the equation and curves given by Wright (1905).

3. The skiod.rome theory

The skiodrome theory consists of two distinct elements: (1) definit ion
and details of construction of the skiodrome corresponding to a given
interference figure; (2) interpretation of the skiodrome in terms of the
positions and shapes of isogyres, and justif ication of this interpretation.

A skiodrome of a given crystal plate is an orthographic projection of
curves of constant wave index of refraction ("isotaques") plotted on the
surface of a sphere, which may be called the "reference sphere" for the
crystal under consideration.* The details of this construction are given in
most textbooks.

Interpretation of the skiodrome is based on an analogywith the phenom-
enon of extinction in orthoscopic light: the isogyres are said to be located

* Evans (1907), who first introduced the theory into the English language, called the
individual projected isotaques "skiodroms." Nowadays the term "skiodrome" is used con-
fusingly both for the individual curves, and for the entire figures which they compose.
I shall use the term only for the entire figure.
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at those points in the interference field where the allowed directions of D
in the crystal coincide with the directions transmitted by the polarizer or
analyzer.If one were to start frorn this assumption, he would need to
determine what direction of D in the crystal plate corresponds to an ob-
served direction of D at a given point in the interference field. This is
exactly the question disputed by Becke and Wright. Becke's and Wright's
methods of determining 2V from the isogyre patterns are based, in fact,
on the above assumption and on the separate constructions which the two
men proposed as the solution of the resulting problem.

The skiodrome theory, however, presents an entirely difierent solution
to the problem, because it asserts in effect that the allowed directions of
D, as seen in the interference field, correspond to the tangents (and nor-
mals?) to the projected equirefringence curves in the skiodrome. This
cohstruction leads to predicted directions of D that differ by as much as
90o from the directions given by the Becke or Wright constructions.

It is difficult to see why Becke, who proposed the skiodrome approach
to the isogyre problem, should have thereby chosen a method which gives
predictions so greatly difierent from his own "exact" solution of the D-
direction construction. The only justification for the skiodrome method,
as far as I can see, is that the interference phenomena do take place in
effect on the focal sphere of the hemispherical objective lens, and this
focal sphere, when observed from the distance of the ocular, is for prac-
tical purposes projected onto a plane perpendicular to the microscope
axis-a fact that is responsible for the validity of Mallard's law. The fact
that the focal sphere is observed in orthographic projection does not
necessarily mean that the directions of D on the focal sphere are ortho-
graphically projected when viewed from the ocular, and I shall in fact
show that this is definitely not the case.

Consider the allowed directions Dr and D2 corresponding to a given
wave normal direction n in a crystal, shown in stereographic projection
in Fig. 1. The pole of the projection is the microscope axis. When the
waves 1 and 2, having wave normal n in the crystal, have been refracted
by the objective lens so as to travel up the microscope tube their direc-
tions of D are now D1' and D2l, if determined from the Becke construc-
tion, or D1" and D2" , iI determined from the Wright construction. In the
Becke construction, the directions are rotated about the horizontal axis
N until they are horizontal, 1/ being the intersection of plane DrDr (which
is normal to n) with the horizontal plane. (By "horizontal" is meant
"parallel to the microscope stage.") Thus D1l and D2' lie on the small
circles, drawn about N as center, that pass through Dr and Dz. fn the
Wright construction, the "vibration planes" D1n and D2n are inter-
sected with the horizontal plane to find the final directions of D. Thus
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Dl' and. Dz" lie at the ends of the great circles passing respectively

through Dr and n and through D2 and n.
The skiodrome construction gives final directions Dvt't and Dzl/'' These

are derived by orthographic projection of the vectors Dr and Dz' Since

azimuthal directions are the same in orthographic or stereographic pro-

jection of a sphere, Dl" aind. Dz"'evidently l ie at the ends of radii from

the pole of the projection, passing respectively through Dr ard Dz.

The geometry of small circles and great circles in stereographic projec-

tion requires that Dl and Dt" always lie on the same side oI D1"', except

Frc. 1. Stereographic projection to illustrate the Becke, Wright, and Skiodrome con-

structions for fincling the D vector in the interference field from the D vector in the crystal.

n is a wave normal in the crystal, and Dr, D:, the associated directions allowed for D.

o is the microscope axis.

in the case that Dr l ies at C or.\r, in which event the three points D1',

D1", and D1"' coincide. This fact can be justif ied in detail but is obvious

witlrout detailed proof. Hence the skiodrome point D1"' a\ways ltes out'

sid,e the range of directions between Dr' and D1", and a similar statement

applies to D2"'. The one certain conclusion from the Becke-Wright con-

troversy is, however, that a correct construction would place the final

direction of D between D1'and D1", and between D2' and Dz". Thus the

skiodrome construction cannot possibly give the correct D directions ex-

cept for points on the reference sphere where D is either horizontal, or l ies

in a vertical plane containing n. For all other points the skiodrome con-

struction is wrong.
This objection is fundamental, but another objection can be raised in-

dependently. For all except the centered uniaxial optic axis skiodrome,
and at all points on the skiodromes except the center and in some cases
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points on the edge, the orthographically projected equirefringence curves
are not orthogonal, so that the allowed D directions given by the skio-
drome are not perpendicular when they reach the interference field of the
microscope. The skiodrome theory takes account of this circumstance in a
clever but puzzling way. It asserts that there are, in fact, always two iso-
gyres, one in which the projected meridianal equirefringence curves are
parallel to the directions of D transmitted either by the polarizer or the
analyzer (which we will henceforth regard as NS and EW respectively),
called the meridianal isogyre, and one in which the projected equatorial
curves are parallel to NS or EW, called the equatorial isogyre. The two
isogyres are superposed to form the isogyre actually observed, and since a
doubling, even faintly, of the isogyre is never observed, the theory sup-
poses that the two isogyres are broad and overlap to such an extent that
the actual isogyre appears simply as a "broad brush" where the two
separate significantly, an interpretation that correlates qualitatively
with the observed features of isogyres.

Even if a qualitative explanation were adequate for all purposes, the
skiodrome theory would have to be discarded, because its predictions are
qualitatively wrong for at least one type of figure, the biaxial optic normal
figure. The skiodrome for this case predicts that the meridianal and equa-
torial isogyres should lie in adjacent quadrants of the interference field.
As the crystal plate is rotated away from the extinction position, in which
the isogyres form a centered cross, the cross should break up into four
hyperbolic isogyres which move out into the four quadrants of the field.
The meridianal isogyres move into the quadrants into which the acute
bisectrix also moves, and the equatorial isogyres move into the other two
quadrants. The equatorial isogyres disappbar from the field more rapidly
than the meridianal isogyres. For 2V:90o the stage must sti l l  be rotated
about 4" before the isogyres (which in this case move out equally fast in
all four quadrants) reach the edge of the field.

One need only examine an appropriate thin section, however, to see
that the optic normal cross breaks up into only two isogyres, and these
move into the quadrants into which the acute bisectrix moves. As 2V
approaches 90", the figure becomes less and less distinct, and the isogyres
leave more and more rapidly, until for 2V:90o the dark field simply
vanishes as the stage is rotated from the extinction position, without
breaking up clearly into hyperbolic curves at all.

If the skiodrome theory fails qualitatively, its quantitative applica-
tions can hardly be of much value. One example had already been given-
the angle of rotation of the crystal plate required to bring the optic nor-
mal isogyres for 2V:90o to the edge of the interference field. For a cono-
scope of numerical aperture 0.85 the calculated angle is about 4", which is
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actually close to the observed angle for the isogyres in a uniaxial flash

figure. Thus, if the skiodrome theory were correct, optic normal figures

for which 2V:90" would resemble uniaxial f lash figures quite closely,

except that there would be four isogyres instead of two.
In most cases it is difficult to propose a quantitative test of the skio-

drome theory, because the theory provides no method by which the two

types of isogyre should be combined to get the actual isogyre' Such a

method cannot be found, because the theory has no physical meaning

which would enable one to calculate the amount of light transmitted by

the analyzer for a given point in the interference field with a given con-
figuration of projected equirefringence curves. In short, a theory that
defies the laws of optics is difficult to interpret quantitatively.

Nevertheless, there is one interference figure that provides a quantita-

tive test of the skiodrome theory, the uniaxial flash figure. The skiodrome
for this case shows that there will be no equatorial isogyres, but instead a

uniform change in illumination of the field as the crystal plate is rotated'

Thus the isogyres in the uniaxial flash figure must be solely the meridianal

ones of the skiodrome theory, for which a definite position can be cal-

culated. The calculation (section 6) shows that the predicted isogyres
leave the field exactly half as rapidly as actually observed. This is a deci-

sive test and shows definitely that the skiodrome theory is wrong, even
when applied only to the inner portion of the interference field.

4. The efect of "rot.ation," and lhe "isotropic cross"

Because the effects that produce the "isotropic cross" are important
in determining the location of isogyres, it is necessary to discuss them.

Whenever a light wave passes through a refracting surface, a certain
fraction of the energy is transmitted and a certain fraction reflected. If the
light wave is plane polarized with D in the plane of incidence, a greater
fraction of the incident energy is transmitted than if the wave is polarized
with D perpendicular to the plane of incidence (i.e., D parallel to the re-
fracting surface).

A plane polarized light wave with D intermediate in orientation be-
tween the incident plane and its normal will therefore suffer a greater
diminution of the component perpendicular to the incident plane than
of the component parallel to the incident plane, in passing through the re-
fracting surface. This relative decrease in the perpendicular component
of the D vector is responsible for a "rotation" of the vector away from
the orientation that would be calculated by Becke's method.

The amount of this rotation can be calculated from the electromagnetic
theory. A different derivation was given by Wright (1923, pp. 796-797),
but his method lacks a physical basis. Nloreover, there are misstatements
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and misprints in the derivation and his final result is wrongl it is valid for
a wave travell ing in the direction opposite to the one assumed in the deri-
vation.

Suppose that the D vector amplitude of the incident plane polarized
wave, moving in a medium of index n;,ha"s components D1 I in the incident
plane and component D;r perpendicular thereto. The incident wave nor-
rr'al n,; makes an angle d; with the normal to the refacting surface. D; is of
course perpendicular to n; The refracted wave, in medium of index zr,
then has components

nl,l : il 2nt cos 0,

l/ ^' - 
",'"t"" u, I !1ro" so

D , - : d  2 n t ; 2 s ' ! ; -
' 

fn,' - n] sinz ot I h cos o;

The derivation of these resuits can be found in works on electromasnet-
ic theory. From these equations, and with the help of Snell 's law,

nt sin 0t : nt sin 0t

the value of the ratio DrL/Dlt is found (after some manipulation) to be
simply

D, D;
D ; :  D ^ c o s  

( o ;  -  9 r ) '  ( 1 )

The decrease in the ratio D-/D'is thus independent of the sign oI 0t-0t.
The situation is depicted in stereographic projection in Fig. 2. In terms
of the angles ui &rtd v6, (1) can be wrrtten

tan ut : cos (0; - 01) tan v;, (2)

a formula first obtained by Fresnel.
It can be shown that (2) Ieads to the conclusion that D; and D, lie on a

great circle through nr, as shown in Fig. 2. This conclusion is the basis
for Wright's construction, mentioned previously.

Note that if i t were.true that vt:ui, then Dr and Dl would l ie on a
small circle centered at ir/, the normal to the incident plane. This is
Becke's construction. Actually vtlv;t so that the D vector is "rotated"
toward the incident plane by the amount 6:v.i-vt.

In an interference figure, the only l ight that reaches the observer's eye
is l ight that has travelled almost straight up the microscope axis from
each point on the interference sphere (focal sphere of the objective lens).
Thus, the only l ight that is seen from a given point P on the interference
sphere is I ight that has been refracted through the optical system in a
plane of incidence always containing the microscope axis and P.

At the corresponding point P in the interference figure (Fig.3), the
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Frc. 2 (left). stereographic projection to illustrate the (,rotation,' 
of the D vector caused

by refraction of plane polarized light. n; is the incident rvave normal, u,hich is refracted to
nt  D;andDtatethecorrespondingdirect ionsof  D.Theor ientat ionof  therefract inssur-
face is  not  p lot ted.

Frc. 3 (right). Pattern of D-vectors in the interference fielcl of the conoscope. .fhe 
pat-

tern, shor'vn in the NE quadrant, can be extendecl symmetrically to the rest of the lielcl, as
suggested.

light would have D-direction PD" if z1 were equal to vi at every refraction
in the lens system. But in fact the component of pD"perpendicular Lo Op
is reduced relative to the component paraller to op, so that the actual
direction of D at P is rotated toward op (prolonged), to some orientation
such as PD. The resulting directions of D in the interference field form the
pattern shown in the NE quadrant of Fig. 3, in which it is assumed that
the polarizer is set to transmit D accurately NS. Such a pattern was de-
scribed by Wright (1923).

The pattern shown in Fig. 3 is responsible for the isotropic cross, and
can be verified by rotating the polarizer (or analyzer) of the microscope.
The cross breaks up into two hyperboric curves. rf the D direction rrans-
mitted by the polaizer, which wil l be called the polarization direction, is
rotated into the Nw-sE quadrants of the field, the hyperbolae move inro
the NE and SW quadrants, and vice versa. By rotating the polarizer,
the amount of "rotarion" d at any point in the field can be measured. T'he
maximum value for the lens system alone (without any plate inserted be-
tween the condenser and objective) is about 6" ot 7o for most microscoDe
Iens combinations of half-aperture close to 60. (in air).
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adjusted improperly. The first cross, described above, is observed when

the cone of l ight coming directly from the l ight source, converged by the

condensing system, fi l ls the field of the conoscope, so that the image of

the iight source, seen in the interference field, fills the entire field. If the

microscope tube is then raised, the image of the l ight source shrinks

rapidly. Superposed upon the image of the upper face of the condenser,

which does not shrink so rapidly, can be seen a second "cross." It can

better be observed by substituting a small bright l ight source for the usual

diffuse one-for example, by removing the blue diffusing plate used in

most lamps. A gypsum plate shows that path differences are associated

with this cross (in some microscopes) . If the cross were interpreted as

uniaxial, its sign would be f , as noted by Johannsen. when the polarizer

is rotated, the cross of the second kind behaves very differently from the

cross of the first kind, as shown in Fig. 4 (row II) .

Upon raising the microscope tube further, so that the image of the con-

denser face shrinks down into the center of the field, a third kind of cross

can be observed in the remainder of the field. It can also be seen simply by

swinging the movable substage condenser out of the optical train. It has

no ,,uniaxial" character. Upon rotating the polarizer the cross breaks up

into a pair of hyperbolae that move slowly out into the same quadrants as

the direction of polarization does, as shown in Fig. 4, row III '

The crosses of the second and third kinds are produced by l ight that has

been twice or more ref,ected at lens surfaces in the optical train. If a beam

polarized with D nearly perpendicular to the plane of incidence, because

lhe perpendicular component is preferentially reflected. That portion of

the twice reflected l ight that has been reflected at the polarizing angle

will have D exactly perpendicular to the incident plane. The twice (or

more) reflected light from the condenser forms the cross of the second

kind, and light similariy reflected in the objective forms the cross of the

third kind.
A plot of the expected direction of D after one reflection is shown in



ISOGY RES I N I NTERT,'EREN CE II IGURES 1039

mN
\ \ ( . ?":'lY-'%

Frc. 4. The three types of "isotropic crosst'seen in the conoscope field. Column A shorvs
the centered cross seen when the polarizer is set NS and the analyzer EW. When the
polarizer is turned to the position DD, the cross breaks up into the form shown in column
B. The circular object within the field in rows II and III is the image oi the upper face of
the substage condenser.

that the twice refiected l ight from the objective which appears at a given
point. in the interference field can have been reflected at an angle of inci-
dence at most equal to the angle, in glass, corresponding to the distance
of the given point from the center of the field. At the edge of the field this
angle is about 30o, much less than the polarizing angle (56o lor n:1.50),
so that a distribution of vectors roughly similar to that shown inside the
solid circle in Fig. 5 may be expected for the cross of the third kind. This
conclusion is in agreement with the behavior of the cross upon rotation of
the polarizer. Thus, if the analyzer transmits in the direction AA in Fig.
5, a dark curve would be expected to follow the heavy dotted l ine shown.
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Frc. 5. Direction of D after one reflection of plane polarized light. The directions are
shown as short arrows stereographically projected into the plane of the drav'ing from their
actual position in space. The incident light is polarized in such a way that before reflection
all the arrows would have been NS Radial distance is angle of incidence plotted stereo-
graphically. The diagram is qualitative only. The solid inner circle corresponds to the
polarizing angle.

The cross of the second kind behaves in a way appropriate to the outer
portion of Fig. .5. I do not know the exact reason for this, but it appears
that the l ight must have been reflected several t imes.*

A more exact analysis of the crosses of the second and third kinds would
be interesting, but it is unnecessary for a discussion of interference figures,
which are observed in the strong direct beam of l ight from the l ight
source, to which the discussion Ieading to Fig. 3 applies. It is reasonable
to assume that the weak light responsible for the crosses of the second
and third kinds, which are always superposed on the interference field of
the direct l ight, rvil l  have a negligible efiect on the appearance of the inter-
ference figure. This is evident in observing the behavior of the isotropic
cross of the first kind, which blots out the other two crosses.

5. Location oJ the isogyres

The isogyres are regions in the interference figure where the l ight inten-

a The path clifferences exhibitecl by the cross of the second kind are doubtless due to
strain birefringence caused by internal stresses in the lenses of the substage condenser.
In all internally stressed lenses that f have examined, the birefringence has radiall)'slow
character, as observed in the cross of the second kind All Leitz microscopes that I have
examined show the presence oI these internal stresses. The new Zeiss research and student
models, holr'ever, have stress-free substage condensers. and the cross of the second kind
in these microscopes shows no path difierences.
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Frc. 6. Diagrams to illustrate the factors that determine isogyre position.
6o, orthographic projection ; 6b, stereographic projection.

sity transmitted by the analyzer is locally a minimum. we therefore
ask, for a given point P in the interference field (Fig. 6o), what orientation
of the allowed directions of D for the corresponding wave normal in the
crystal wil l minimize the l ight intensity from p transmitted by the
analyzer? The allowed directions are shown as a small cross in the srereo-
graphic projection of Fig. 60. Note that a stereographic projection of the
cross is equivalent to rotating the cross from the reference sphere into the
horizontal plane by Becke's construction, that is, about a horizontal axis
perpendicular to OP at P.

Figures 7 a and 76 are magnifications of a small region about n and p in
Fig. 6D and 6o. The vector D of the plane polarized l ight wave that enters
the base of the crystal plate is resolved into two components Dr and, Dz.
The birefringence is assumed small enough that Dr and D2 can be con_
sidered to lie in the same plane, so that D1 and, Dz are perpendicular. The
dashed axes l ie NS and EW. rf there were no "rotation" of the D vector
in passing from the polarizer to the crystal plate via the condensing sys-
tem, D would l ie along NS. rnstead, it has been rotated an amount D1 to-
ward on. f defines the orientation of the allowed directions of D. At the
top of the crystal plate the resolved waves 1 and 2 can be written

Dt' : D cos (6 -1- 5,;r-r"r

Dz' : D sin (g 1 6t)e-i6-t,t

1041

(3)

where a phase shift iD between the two waves is produced in traversing
the crystal plate.

Next the effect of rotation in the remainder of the optical system must
be accounted for. we suppose that { is small enough that the rotations
of the plane polarized waves D1, and. D2,are the same as for waves with
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Frc. 7. Enlargements of portions of Fig. 6. 7a represents the region around n in Fig. 6b.

7b shows the D vectors in the light that reaches the analyzer from the point P in Fig. 6o.

{:0. The condition for this is €((*, which we will verify a posleriori' to

be satisfied, because when ry'-{$o , t-lo at most' It will develop later that

the amount of rotation for D1 varies as sin 2f, and is therefore equal for

0 and,r/2-ry', so that Dl a"nd Dz' ate rotated by equal amounts 02, both

toward the incident plane On, as shown in Fig. 7b. It can be shown l.hat

if d: is small the two waves are attenuated by nearly the same factor C

orving to the energy carried away by the reflected l ight, so that we can

write for the amplitudes D1" and Dz" of the waves that arrive at the

analyzerl'

Dt" : C*tDt', Dz" : CxzDr' (4)

where C is a constant factor independent of f, 11 and 12 are functions of

ry' and D2 and can be shown to be

x r : 1 -  | z t a n t  + " ' ,  x z : l -  6 z c o t / * . ' '

to the first order in Dr. Note that 11: xzf'ot t!:vf L The first order terms

htan{t and E2 cot i} remain small for any value of ry' '  because of (10), below.

The amplitude of the wave transmitted by the analyzer (set EW) is

Dt: - Dr" sin ({ - dt + D2" cos (t + at' (5)

The intensity 1of the l ight seen at P is obtained by combining (3)' (4)'

and  (5 ) :

t 
: P:l: rr2 sin2 (€ * d,) cos, (€ * d2) f rr2 cos2 (g + at sin, (€ - d:)

CzI" Czl Dl2

- 2nxzsin (€ + 6t cos (€ * 6r) sin (€ - 62) cos (€* dg) cos o (6)

t1e c

bC
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where 1o is the intensity of l ight entering the crystal plate at the bot-
tom.

In keeping with the assumption that f, Dr and D2 are small angles (all
less than about 5o in the field of the conoscope), (6) may be expanded to
lowest order in powers of these quantit ies to obtain

I-Cry" :2t ,  + 6r ,  + azz l2 t ( i l  -  6 ,  -  2W + a,ar f  { (6,  -  6) j  costD.  (7)

To find the condition that P l ie on an isogyre, we minimize (7) with
respect to {: 

[2{ + (6r - 6,)](1 - cos o) : 0. (8)

O applies, of course, to a given wavelength of l ight. Cos iI, is equal to 1
only for certain select wavelengths, so that the term 1-cos (D does not
in general vanish for white l ight (for monochromatic l ight it locates the
dark fringes). 'Ihus 

the isogyre passes through points in the interference
field where

6 : +(6, _ 6t. (e)

This shows that the effects of rotation in the condenser and objective
tend to cancel in determining the position of the isogyre. The protago-
nists in the Becke-Wright controversy had assumed in effect that {:d2,
evidently a serious error if 6r and d2 are of roughly the same size. The
"correct" construction envisaged by Wright (1923) would have required
{ to be about 6o (about one half d71, in Table 1), whereas, as we shall see
below, { is almost certainly less than 1o in practice.

Note that the condition (9) for location of the isogyre is based on two
important assumptions: (1) the birefringence of the crystal plate is small;
(2) the variation of C with position in the interference field is not large
enough to be significant.

To assess the size of {, consider first the application of (2) to the rota-
tion produced in the microscope. If the angles of rotation are small,
v=r!, so that we may write for the rotation d produced in one reflection

tan (r! - d) : cos L0 tan {t

which when expanded for D small gives

L0
6 :  s i n 2 / s i n 2 - .

Taslr 1

(10)

I I IT I Average

6 l  rp
6 r
6p

1 1 . 4 '
6 . 1
5 . 3

t 2  . 5 '
/ . . ' )

1 1  1 0
a 1

4 . 0

r l  . 7 "
6 . 9
4 . 8
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For the complete rotat ion in the microscope

d1 +62 : sin2,t, lr1r,' f1

" 2

where A0; is the change of direction of the ray at the i ' th refracting sur-

face.
The applicabil ity of (10) can be tested in the following way. A clean

glass slide of known index of refraction is placed on the stage, and the

angle of rotation for light in the interference field is measured by rotat-

ing the polarizer. In view of (10) , the maximum rotation, D max, occurs

at {/:45o. D max. is easily measured, because it requires setting the

polarizer so that the center of the dark hyperbolic shadow in Fig. 4 (IB)

is just tangent to the edge of the interference field. Call the rotation

measured in this way D;1r. The glass slide is then removed and the rota-

tion Dr due to the lens system alone is measured' The difference DTao-61

is the rotation produced by the plate. Since there are two refractions of

amount A0 in passing through the plate, and since the rotation is meas-

ured at  { :45" ,  (10)  Predicts
AO

64o -  6t  :  6p:  2 s in2 --

wnere

Lo : I o; - 0,1 :0- - sin-rl l 
d' '  '  (13)

0- is the half-aperture (in air) of the conos.opi una is a constant for a

given objective lensl n is the index of the glass plate.

The results of three series of measurements are shown in Table 1' The

objective used is a"Leitz achromatic, No. 7 (N.A.0.85)' The glass plate

has n:1.516, measured by the immersion method. Each measured 6

value given in the table is the average of four or five individual measure-

ments. The scatter of the results indicates the inaccuracy of such meas-

urements. The inaccuracy arises from the diffuseness of the hyperbolic

shadow. There seems also to be a personal bias in judging when the cen-

ter of the shadow is set at the edge of the field, and this bias varies un-
predictably from one series of measurements to another. Nevertheless'
there is a general consistency in the results, and the average, Dp:4.8",

agrees exactly with the value calculated from (12) and (13) with the

assumption 0.,:57.6", which is the value derived from isogyre measure-

ments (section 7), for the particular objective used. The exact agree-

ment is, of course, fortuitous, but verif ies the correctness of (12).

Wright (1923, p.802) gave a more elaborate series of measurements of

the same kind, although he did not explain exactly what he measured,

and he described the results rather vaguely as "positions of extinction of

(  1 1 )

(r2)
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difierent points in the interference field." He did not compare his results

with the predictions of a theory of the effect. The position *:45",
0^:57 .6" at which I have measured Dl corresponds to small circle co-

ordinates 1v":36.6o, E:36.6", as used by Wright; interpolating in his

table (1923, p.802) , I f ind that he measured Dr:6.8o, which is remark-

ably close to the average in Tabie i.
To estimate { note that the effects of rotation due to equal refraction

angles Ad.; above and below the crystal plate under examination cancel,

so that rotation produced by refraction at the surfaces of the crystal
piate does not affect {, nor does the rotation produced by the glass slide

and cover glass, if the two have the same index z. \ ' Ioreover, since the

front surface of the front objective lens element is plane, as is also the

upper surface of the upper lens of the condenser, the effects of rotation

at these two surfaces also cancel if the two lenses have the same index.

If this index is about 1.5, the contribution of these surfaces to Dz is close

to dr. If there is a difference between D1 and 62, its maximum value is evi-

dently

I  ar  -  ar i  (  3r  *  6:  -  6p:  6r  -  6pry2" .

Hence { is certainly no larger than about 1", and very l ikely it is smaller,

because it seems obvious that all of the remaining rotation is not pro-

duced solely in the objective or solely in the condenser. In section 8

it wil l be shown that { can be measured by means of interference figures,

and the conclusion that f is Iess than 1o verified experimentally'
In the theory that follows (except in section 8) I shall assume that

{:0. When a given lens combination produces a significant value of f,
the resulting effect on the position of the isogyres can be obtained by an

obvious extension of the theory developed. For any point in the inter-

ference field

I  
6, )  :  

1  
s in 2,1\_ i=;n ' { -  * ' f '  . i " '  ld_f  (14)t : 7 t 6 ' -  z  l  =  2  ; - 7 , r -  2 \

To the first approximation we can write

L0; :  4  s  (15)

where 0 is the inclination in the crystal plate of the wave normal cor-

responding to a point P in the interference field with coordinates (d, ry').

Kris a constant for the I 'th refracting surface. There are tol refracting

surfaces in the condenser and nz in the objective. To the same approxi-

mation to which (15) is valid, sin2A0t/2:(A0t/2)2 so that (12) becomes

E: f,sinzv il- + K,, +"f', Ktf.
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The distribution of { values in the interference field is therefore, to the
lirst approximation in 0,

t@,V) :  E^s inz1 ' ' ! -  (16)
a _ "

f- is the maximum value of {, the quantity estimated above.
Based on the assumption that { is 0, the isogyre theory I shall apply

is contained in the following principle. At each point P in the interference
field, imagine a cross to be drawn in the orientation given by a stereo-
graphic projection of the allowed directions of D drawn as a small cross
on the reference sphere at the point corresponding to P. An isogyre
passes through those points at which the crosses are aligned parallel to
the NS and EW crosshairs of the mrcroscope.

Note that Becke's construction would have given the same method of
finding the position of the isogyres, if he had applied it in this way, in-
stead of relying on the skiodrome theory. However, the assumption
behind Becke's construction would not lead to the correct method. It is a
case where an incorrect assumption and an incorrect construction iead
to the correct conclusion.

6. Llni.a*,ial f,ash f.gures

ft is worthwhile to make a detailed application of the principle stated
in the last section to the uniaxial flash figure, because for this figure the
predictions of the theory can be compared precisely with the predictions
of the skiodrome theory.

In applying the principle, it is easier and more direct to work with the
reference sphere than to carry out the stereographic projection spe-
cif ically. Fig. 8o is an orthographic view of the reference sphere, showing
a point P defined by coordinates @ and p:sin d, where g is the inclina-
tion in the crystal plate of the wave normal n corresponding to P. PD1
and PDz are drawn parallel to the arms of the stereographically projected
Dt, D, cross corresponding to P. Fig. 86 is a stereographic projection of
the same sphere. For a uniaxial crystal with optic axis emerging at A,
the allowed directions oI D at n are parallel and perpendicular, at n, to
the great circle,4n. In stereographic projection the angle 7, on the
sphere, between On (prolonged) and nA is preserved, because the
stereographic projection is angle-true and the great circle On projects
as a l ine with the same azimuth 6. Thus in Fig. 8a the angle 7 between
PDy and OP (prolonged) can readily be calculated from spherical tri-
angle OnA in Fig. 86:

( ;  - ' )  - '
/ n  \

c o s d c o s ( ; - d l :  - s i n ( o  -  t ) . (  1 7 )
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o 1r/?,

Frc. 8. Diagrams for analysis of the uniaxial flash figure. 8o represents the interference

field (orthographic projection), and 8b is a stereographic projection of the interference

hemisphere.

Now a given isogyre is traced out by all points P having a given inclina-

tion p of the stereographically projected &x€S D1, Dz to the axes fi i , yt:

6-p :+ - ,  (18 )

Combining (17) and (18) we have for the equations of the isogyres

tan (d - p) : cos g tan d (19)

where pr is constant for a given isogyre.
(19) is written in coordinates (9, @) measured with respect to axes

r', y' f ixed in the crystal plate. If, as in most microscopes' the plate is

rotated and the nicois remain fixed, it is more appropriate to describe the

isogyres in terms of coordinates (0, t!) defined by the NS and EW cross

hairs, which, for an isogyre passing through P, must be the r, y axes of

Fig. 8a, so that

v : a - p

and the isogyre equatron rs

tan  ( l  +  u )  :  Y+  t t t l
cos d

p is the angle through which the crystal has been rotated from extinction.

To transla te (21) into an equation describing the isogyre seen in the

flash figure, it is necessary to introduce a relation between 0 and radial

distance p'from the center of the figure' If }{aliard's law is valid, p'is

(20)
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P

g"'-\Y-
o

Frc' 9 (left). Form of the isogyre (heavy curve) in the uniaxial flash figure. The diagram
is an orthographic projection oI the entire interference hemisphere, of which only the inner
part is visible in the conoscope. ;r is exaggerated in the drawing.

Ftc. 10 (right). Diagram for calculating the position of meridianal isogyres from the skio-
drome theory for the uniaxial flash figure. The meridianaI skiodrome passing through p is
shown.

proportional to sin d and hence to p in Fig. 8o, the proportionality con-
stant depending, of course, on the microscope objective and the index of
refraction of the crystal plate. r shall write the isogyre equations in terms
of 0 or p, realizing that these can always be converted to radial distance
p' in the interference figure when needed.

The main features of an isogyre defined by equation (2I) are plotted
approximately in Fig. 9, which is an orthographic projection similar to
Fig. 8a. The isogyre has a roughly hyperbolic shape. It passes through
the optic axis at x': l and through the cross hair axis y at the edge of the
sphere. The curve is mirror symmetric about the l ine {t:tp,:r/4- pt/2.
rts closest approach to the center is along this l ine, and the derivative
dp/dr! vanishes at the point of closest approach. d.p/d{t is zero where the
curve meets the edge of the sphere, but this affects only a small portion
of the curve, as shown in Fig. 9. These features can be verif ied from equa-
t i o n  (  2 1  ) .

consider the shape of the isogyre near the center of the field for small
angles of rotation p. (21) can then be expanded:

(tan {' + p sec2 ,1,)(7 - ip2) : tan,/'

or

o2 srn 2'P : 4r. (22)

(22) is the equation of a rectangular hyperbola, as can be verified by sub-
stituting

X ,
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n : p srrrp,

y : p cos{/.

As a quantitative test of eqn. (2I),I shall use the angle pr, required to

bring the isogyre out to the edge of the interference field, defined by some

angle 0, and corresponding distance p,. The isogyre actually disappears

from the field along the l ine Q:t/a-p'/z, but since pro is about 5o in

practice this differs l itt le from *:o/+.The distance po of the isogyre

along,lt:rf4 is obtained by substituting this value in (21). After some

simple reduction it is found to be given exactly by

2 sin2p, : =Y=". (23)
r  -  t q o '

Note that (22) agrees with (23) in the limiting case in which po and pn

are small. The difference between 0, calcuiated from (23) and do' meas-

ured along r! ':r/4-p/2 can be shown from (21) to be 0.05o, which is

imperceptible. The change in p required to move the isogyre from the

position where it touches the edge of the field along /: r/1to the posi-

tion where it touches along tl ' :r/4-p/2 is 0'014".

For comparison with (2I), (22), and (23), the corresponding results

for the meridianai isogyre given by the skiodrome theory wii l now be

derived. The orthographically projected sphere is taken to have radius

1, as before. The meridianal skiodroms are ell ipses' as shown in Fig' 10'

a is a parameter defining the particular ell ipse that passes through P'

We have
r '2

v t 2  J - : - :  1
d -

d!' r '  o
Ian Pp : - td'*, : 

,, 
o' : a2 Lan 6

Now put

Then

* , : p s i n d
y ,  :  pCose,

o2 cos2 d
p 2 s i n 2 6 + _  - - t a n 4 : 1

tan P

or
p2 sin 26

t a n P : 2 t 1 - o t c * 6 r '

To write the result in cross hair coordinates, substi tute (20) to get

P' sin 2('tt t P)
1 4 n , ,  :

2\ l  -  p2 s in2 14 -1-  u2
(24)
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(2a) is the skiodrome equivalent ol (21). Near the center of the field,
where p is small, and pr must be small for the isogyre to be visible, (24)
reduces to

2p : p2 sin 2r1,, (25)

a rectangular hyperbola that is to be compared with (22).'rhe meridianal
isogyre reaches a given point in the interference fierd only after a rotation
p twice as great as the isogyre described by (22). Thus even at the cen-
ter of the field the predictions of the two theories differ by a factor of 2.

For {t:n14-pr (24) reduces to

2 ran p,' : :r, ; (26)
L - 

iqo'

(26) is also very nearly true for {:o/4, so that it is the skiodrome equiv-
a len  t  o f  I  23  t .

A test between the two theories can best be made on the basis of (23)
and (26). Note that (24) predicts a slightly larger value of po than does
(26)' so that it accentuates the difierence between the values of p, given
by  (2 .1 r  and  (26 ; .

The results of a series of measurements of p" for flash figures in oriented
mineral sections is given in Table 2. Each value reported is the mean
of about 30 measurements for a given point in a given thin section. The
"limit of error" values do not represent estimated standard errors of the

Tl'nl-r..2. Suulranv on Fr,esn Ftcunr Mr,lsunourNrs
CoNoscopr or Har,n Aponrunn 0^P55"

/r, values

Quartz

Ber14

Apatite
Tourmaline

1  . 5 6

1 6 4
| . 6 4

4 . 4 + 0 . 6 , 5 . 0 + 0 . 6 , 4 . 8 + 0 . 6  ( a v . )  4 . 7

3 . 7  +  0 . 3 ,  4 . 6  X O . 6 ,  4 . O  +  O . 7 , 3 .  8  + 0 . 3 ,  5 .  7  + 0 . 8 ,  4 . 9  +  O  7 ,
4 . 6 + 0 . 6 , 5 . 2 + 1 . 2  ( a v . )  4 . 6

4 . 3 + 0 . 4 ,  3 . 5 + 0 . 4 , 4 . 4 + 1 . 1 , 4  3 + 0 . 8  ( a v . )  4 . 1
1 . 5 + 1 . 7 , 4 . 4 + 2 . 1 , 3 . 5 + 7 . 7 , 4 . 5 + 2 . 1  ( a v . )  4 . 2

mean, but rather the maximum scatter of pr, values obtained in each set
of about 30 measurements. The means scatter more than one would have
estimated from the scatter of the individual measurements, probably
because of subjective effects of the kind mentioned in section S,-and also
because of an effect discussed in section 8.

The measurements are made in the following way. Only nearly cen_
tered figures are measured. The azimuthal setting of the stage required
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to place the isogyre at the edge of the 1ield in each quadrant of the field
is then measured five or six t imes, for rotation from a given extinction
position. Finally several measurements are made of the azimuthal setting
that produces the centered cross. The /-r, vaiues are obtained afterwards,
by difference. This procedure tends to eliminate advanced bias as to
how the values should turn out. The final po value, obtained by averag-
ing the values from each equadrant, tends to eliminate the efiects of
slight misorientation of the section.

In making the measurements, the object is to set the center of the
isogyre at the edge of the held. This is made diff icult and somewhat un-
certain by the fact that when set properly, only one edge of the isogyre
can be seen. It is necessary to swing the stage back and forth through
the correct position in order to make sure where the center of the iso-
gyre is. The flash figure isogyre is rather diffuse, so that the settings can-
not be made very accurately. It might be preferabie to make the set-
tings for a p, value within the field of the conoscope, as could be done
with an ocular provided with a circular reference hair. Such an ocular
was not available, but in addition I considered it desirable to make the
measurements at the largest possible value of p,, for which the po values
predicted by (23) and (26) differ most.

Before beginning the measurements, I estimated from standard Bra
slides that the conoscope used (see section 5) has a half-aperture in air,
which I wil l call d-, of about 55o. For a mineral with index rz:1.56, the
interference sphere can therefore be seen out to d,:31.9o, and ior n:1.64,
0o:30.0o. Equations (23) and (26) then predict the /.r, values shown in
Table 3.

Tlsrn 3. Colrp-LnrsoN ol Ce.lcur,Arpo aNn Oesrnveo ir6
Varups non Fl.Lsn FrcunBs. A-,:55'

1051

p" (2s) p. (26) lobs (av./

1 5 6
1  . 6 1

1 . 6 '
4 t "

6 ' , 4 . 7 "
l o  ,  4 . 2 "

1 '
1 '

4
4

o

8

The observed values are the averages from Table 2 for each of the four

rninerals. It is clear that (23) accounts for the observed values and (26)

,does not. To obtain agreement between (26) and the observed values it

would be necessary to assume 0^:37'8", whereas the isogyres in 4'5o

position in a centered Bra figure of muscovite' with E:39o, are well

within the field of the conoscope.
The measurements oI Bxa and Bxo figures, given in the next section'

suggest that the correct value of 0^ for the conoscope used is about
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57.6", slightly larger than the value used in Table 3. The numerical aper-
ture 0.85 of the objective, stated by the manufacturer, corresponds to
0^:58.2". This value gives calculated ,pro values somewhat larger than
those l is ted in  Table 3 ( " .g. ,  p"(23) :5.1o for  n:1.55) .  Students who
have made flash figure measurements for me generally f ind somewhat
higher /.robs values also, for lenses of the same rated N.A. as the one I used.

At f irst I was cautious not to rely on the accuracy of the conoscopic
angles and numerical apertures stated by lens manufacturers, but the
close agreement between ,pro values actually measured and p.o values cal-
culated from the theory by assuming the correctness of the rated numer-
ical apertures shows that this caution is unnecessary. Several examples
of the agreement wil l be seen in sections 7 and 8. For any lens for which
the numerical aperture in air,

N.A. : n,,i, sin 0o, ? sln 0"' : p,',

is accurately known, isogyre calculations can be readily made by taking

where n is the index of refraction of the crystal plate.

7. Acute and Obtwse Bisectri.x Figures

The analysis ol Bxo and Bro figures can be carried out by the methods
used in the last section, with the help of Fig. 11. Angles (xb a2 arrd y cat'l
be introduced as shown. and the inclination u calculated from the law of
Biot and Fresnel. I shall not write down the details of the derivation,
but simply state the result, converted to cross-hair coordinates 0 andt!,
as defined by (20):

cot2, !s in2( ,1,  - f  p)  cos 0ts in '?( ,y '+p)(2 -  s in 'z0) :  l+s in20cot2V.  (27)

The result is cumbersome, but can be simplif ied in tlvo ways. If we sup-
pose that 0 is small enough that to a sufficiently good approximation

c o s 0 : l - i p ,

then one can show, after some calculation, that (27) reduces to the simple
form

D r 2  0 2

, -  , - s i n 2 p :  .  , - ; s i n 2 , l ' ,
t - i q r '  L - i P '

where

and, as before,

n

(28)

pr : sin I/

P : s i n d .
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Ftc. 11. Diagrams for analysis of centered Bxa and Brro figures. In 1lb the optic axes
project to the ooints A and A'. 11a represents the interference field (orthographic projec-
tion), and 11b is a stereographic projection of the interference hemisphere.

(28) describes a curve that approaches the shape of a rectangular
hyperbola for small p. Its closest approach to the center is along the
line r!:o/4.

A second simplif ication is to evaluate (27) Ior 9:"/a. It then reduces
exactly to

rJ ' ]  , r in  z*" :  =!1-- '  es)
1 - i r r '  1 - i p o 2

Note that (28) yields (29) when *:r/4, and that (29) reduces to (23)
when pt:1 (uniaxial f lash figure) . Since the exact shape of the isogyre,
as given by (27), is not important in practice, I rvil l  make use only of
(29) in applications of the theory.

The relationship between (28) and (29) makes possible a fairly simple
evaluation of the deviation of (27) trom (28) . The two curves evidently
intersect at p: po, *:o/a. The slope d0/&! at this point is found to be

d0 2 cos 2po

-.air r'r"-z^ +t;in1
The slope is greatest for the uniaxial flash figure (for which it is 0.036),
and decreases steadily as / decreases and trro increases, becoming zero lor

Fo:45o (V:0, ) .This  conclus ion seems to v io late what  is  observed in
practice, that for figures with po about 15o or greater, the slope d0/&lt oI
the isogyre at {:r/4 appears to become noticeable. However, I think
the apparent slope is exaggerated by the rapid fanning out of the iso-

d,t/
- *po' - r/l - po').
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gyre near the optic axes, which are near the edge of the field in such fig-
ures.

Because of the importance of p'/ l- ip' in (28) and (29), the function
is plotted againt d in Fig. 12. In Fig. 13 are shown curves giving po as a
function of 7. from (29). for various values of the mean index z of the

F rc. 12. The functions /(p) : p' / 1 - L p' and f (p) : 2 / l - 2p2 piotted against d'

crystal plate. The conoscope half aperture 0^ is assumed to be 57.6o in

the calculation of these curves. Each curve corresponds to a given value
ol 0o, as shown in Table 4, so that the curves can be adapted to cono-
scopes of different aperture by using the relation (Snell's Law)

n sin 0" : sin 0-. (30)

Equation (29) and the curves of Fig. 13 provide a means of measuring

Ta.erE 4. P.q.n,lntprRns loR THE Cunvns rN Frc. 13

Curve

0 o  3 3 . 1 '
po2fl '+po2 '351
N  I . J J

3 1 . 9 '
.326

1 . 6 0

30.8 '
.302

I  .65

29 ,8 "
.281

7 . 7 0

28 .8 '
.261

r .  / o
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Frc. 13' comparison of theoretical curves of /rs as a function of I/ with measurecl p
values from oriented thin sections. conoscope is assumed to have half aperture 0,,:s7.6
(N.A. 0.845) for the theoretical curves, which are calculated for crystal plate indices of re-
fraction varying from 1.55 to 1.70 in intervals of 0.05. The curve for n:1.6s is clrawn with
a heavy line, and is to be compared with dashecl curye (1), given by the theory of Michel_
Livy for the same index and aperture, and with curves (2) and (3), from the skiodrome
theorv. The plotted points are identifiecl by number in Table .5, a4d by index in the key
on the figure.

v in Bxa and Bxo figures, and in particular a means of distinguishing
between Bxa and Bro figures. The method was first proposed by Michel_
L6vy (1888) but his theoretical treatment of the method was not satis-
factory. Curve 1 (dashed) in Fig. 13 shows the angles p, given by his
theory f io t  n:1.65.0^:57.6 ' .  The curve is  ca lculated f rom the isogyre
equation

P2 sin 2rl' : pt2 sin 2p

by  pu t t i ng  9 : r / 4 ,  p :  po t  t t :  Fo .

\\
\i

i;e----_-_
l- is l=r$

(31 )
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A derivation of (31) can be found in Wright's paper (1905, p. 288) or rn

Johannsen's text  (1918,  p.  4a1) .
Curves 2 and 3 are derived from the isogyres of the skiodrome theory.

The calculation of skiodrome isogyre shapes is cumbersome, but simpli-

f ies for {:"/4 to the relationships

(32a)

(32b)

(32o) gives curve 2, which corresponds to the meridianal isogyre for

V>45o,  whi le  (32b)  g ives curve 3 (F iS '  13) .

To test the various theories, I have measured angles p.olot a number of

Bro figures, and Bra figures of large 2trl, obtained from oriented thin

sections. The points are plotted in Fig. 13. The measurements were made

in the way described in section 6 for uniaxial flash figures. Values of /

are averages of data given by winchell (1951) and Tr<iger (1956) .I have

avoided minerals for which a wide range of tr/ is reported. Note that the

points in Fig. 13 are identified by index tt, and by a reference number,

which refers to the summary in Table 5. Rough "i imit of erfor" brackets

have been added to those points in Fig. 13 for which the uncertainty in

measured po values or in 7 values quoted in the literature is important.

The measurements confirm the applicability of (29). Best overall agree-

ment with the calculated curves is obtained by taking 0^:57.6". Points

14-17 were omitted in the comparison.
The averages of the pr, values given by curves 2 and 3 in Fig' 13, for

given values of tr/, reproduce rather closeiy the po values calculated from
,2q). 

In this sense the skiodrome theory is "on the average" correct,

which can be understood from the way the Di, D2 cross behaves when

orthographically projected. Nevertheless, the skiodrome theory itself

has no means of predicting what sort of averaging of the p, values should

give the correct result, and the use of (32) and (33), with averaging, is'

of course, more cumbersome than direct application of (29)'

In Fig. !4 are given curves of po against I/ calculated from (29) for

values of a ranging from 1.45 (curve 1) to 1.80 (curve 8). The curves 1 to

8 are for an objective of N.A. 0.85, and the curves a to h iot N'A' 0'65'

these being the numerical apertures of standard objectives used in cono-

scopic work. The Iarger aperture is clearly advantageous. For example'

the reliabil i ty with which a figure can be distinguished as Bx.a or Bro

increases with the (magnitude of) the slope of the p, vs' tr/ curve at

V :45 " .
It is advisable before using the curves of Fig. 14 to check the N.A. of

the objective used. This can conveniently be done, and the applicability
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TABT,E 5. MBesunon Dere Prorrro rN Frc. 13. Lrun or Ennon rs (Roucur,v)Esrrueron
SraNneno Drvrerrox op Mn.qr. Ooyrcrrvr or N.A. 0.85 (Leitz No. 7)

Point
Ref . Mineral
No.

Sec. p6 (measured) y ( l i t .)

I Topaz
2 Kyanite
3 Andalusite
4 Staurolite
5 Andalusite
6 Andalusite
7 (I,'-) Topaz
8 Sillimanite
9 Barite

10 Quartz
11 Beryl
12 Apatite
13 Tourmaline
14 Barite
15 Topaz
16 Augite
17 Topaz
18 Tremolite

19 Augite

B:ca
Bro
Btca
B:ca
Bro
Bw
Bro
B*o
Bro

flash
flash
flash
flash
o .n ,
o.n.
o n .
o  n .
Bra

(poorly centered)
Bxo

I O.t

1 . 7 2
r . 6 4
l .  / J

1 . 6 4
1 . 6 4
1 . 6 3
t  - o /

1 . 6 4
1 5 5
1 . 5 6
r . 6 4
1 . 6 4
1 . 6 4
1 . 6 3
1 . 7 0
1 . 6 3
1 . 6 1

1 . 6 9

3 3 . 2 +  1 . 3
14.3 + 1 .4
1 6 . 4  +  0 .  1
12 .3+O.9
1 1 . 8 + 0 . 1
1 1 . 9 + 0 . 3
7  4 + O . 4
5 . 9  + 0 . 5
5 . 4  +  0 . . 5
4 . 7  + O . 2
4 . 6 + 0 . 2
4 . 1 + 0 . 2
4 . 2 + 0 . 2
4 . 3 + 0 . 4
3  . 2 + 0 . 2
3  4 +  1 . 3
| . 7  + 0 . 7

16 .4+  |  . 0

8 . 2 + 0 . 7

30 -33
+ t .  t

4r.5-42.5
42 -45
4 r .5 -42 .5
4 r .5 -42 .5
30 *33
12 .5 -15
18.7
0
0
0
0

18.7
30 -33
2 9 . 5
30 -33
42? -44

29.5

of the theory also tested, by measuring pc, for Br.a and Bro figures of
andalusite (V:42" and 48o), plotting the measured points on Fig. 14,
and checking that they fall at places appropriate to n:I.64. If the ob-
jective has numerical aperture (p-) other than 0.85 or 0.65, the curves of
Fig. 14 can be adapted to it by assigning new values oI nby the relation
(30). The po values for the curves of Fig. 14 are given in Table 6. If p-
for an objective is unknown, it can be determined by reversing the above
procedure, or also, of course, by using a stage apertometer.

8. The efecl oJ non-zero t

Although { (section 5) is small, so that the isogyre equations for
{:0 give a good representation of observed interference figures, an
actual non-zero value of { has a small but definite efiect on the p, values
measured. It can be seen from Fig. 11, or from diagrams of the kind
shown [n Fig. 19, that if p, is measured by rotating the crystal plate
from the extinction position where the optic plane is NS, then a positive
value of {, as defined in eqn. (9) and Fig.7a, tends to reduce the meas-
ured po value from the value predicted for 6:0. Call the po value meas-
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ured in this way pv, and call the value measured about the extinction
position with the optic plane EW prr. If { is positive, then pv is less

than trr,, the value expected for {:0, but pa is greater than po. A detailed

analysis of this situation would be required if { were large. Instead, since

Frc 14. Theoretical curves of p0 against tr/ for conoscopes of N'A' 0.85 (numbered

curves) and N.A.0.65 (lettered curves). The curves are calculated for crystals o{ mean

index of refraction ranging from 1.45 to 1.80 at intervals of 0.05, as indicated'

i  is small, then if /.1, regarded as a function oI t! for constant 0:0" in

eqn. (27), varies much less rapidly than ry' itseif, as is true iot the Bra

and Bro figures considered above, we may write (to first order in t-)

/t5

V

CUfi^r'E NA N
r  o85 t . t s
2  |  l s
3  n  1 5 5
4  r  1 6 0
5  I  t 6 3
6  i l  t 7 0
7  r  t 7 5
8  l  t a o
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Tesr,B 6. Dlra ron Cunves or Frcunr 14

1059

Po2

Curve
r-rPo'

0 . 8 5 I  . 4 . )

1  . 5 0
1 . 5 5
1 .60
1  . 6 5
1 . 7 0
1 75
1  . 8 0

1 4 5
1  . 5 0
r . .).1
1 6 0
1  . 6 5
1 . 7 0
| - /.')
1 .80

35 .9 '
34. .5
3 3  . 3
3 2 . 1
3 1  0
3 0 . 0
2 9 . 1
28.2

2 6 . 6
2 5 . 7
2 4 . 8
2 4 . 0
2 3 . 2
2 2 . 5
21.8
2 t . 2

0 .  586
.566
.548
. .).t r
. 5 1 5
.500
.486
.472

.448

.433

.419
406

.394

.382

. 3 7 1

.361

0  . 4 1 5
.382
.3s4
.328
.306
.285
. 2 6 7
.251

.223

.207

.193

. 1 8 0

. 1 6 8

. 1 5 8

. 1 4 8

. 1 3 9

0 .65

1
2
3
4
5
t )

7
8

a

b
c

d

e

J
s
h

P v : l r o - E n t

p i l : p " + E -
(s3a)

where { -  is  the value of  {  a t  9:o/4,  d:d,  (eqn.  (16)) .
Thus for a given figure p, and t- can be determined by measuring gy

l.LH i

p " : i f u v l p a )

E^:  i (pn -  pa)
(33r)
(33c)

To test the above conclusions, I have made a careful series of measure-
ments on three figures: andalusite Bra, andalusite Br.o, and qlrartz
flash, for which the data are given in Table 7. The figures were measured
with a Zeiss model GFL668-666 petrographic microscope, using objective

"Pol 50/0.85" of N.A. 0.85. The scatter in {- values calculated from
(33c) is probably mainly random, though E* may be affected by the
slides themselves, if sl ide and cover glass have different indices. Evi-
dently t- is about-0.7" for the lens combination used. The measured

,pro values, obtained from (336), agree excellently with the values calcu-
lated from the theory (eqn. (29)) by assuming p-:0.85 and assuming
V:42" for andalusite. I consider the data of Table 7 to be the most de-
finit ive test of the theory, because the measurements reported in Tables
2 and 5 were made before I was aware of the proper way to take a non-
zero ( into account, and they were made with an inferior microscope.
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Te.er,r 7. INrnnrnnrNco Frcunn MnesunBunxrs wrrrr Zr,rss Monrr GFL668-666,
Onyecrrvn "Pol 50/0 85," or N.A. 0.85

Extinc-
tion

setting

Optic
plane

set

Isogyre
1n

quadrant

1
2
3

Andalusite Bxa Andalusite Bxo Quartz Flash

pv tJv

t o . J 5 . 6

1
2
3
4

1 5 . 7
1 8  . 0
t . ) .  /

1 8 . 5
I O  J

1 5  . 9
1 6 . 3

12.7
1 1 . 0
12.7
1 A  J

I J . J

1 4 . 0
1 4 . 0
1 0 . 8

6 . 7
5 . 0
6 . 8

1 5 . 2
1 4 3
1 6 . 0
1 6 . r

15 .7
t 6 . 9
l . ) .  /

13.4

9 . 8
I I . J

1 1 . 9
t t 6

t 2 . l
l t .6
10.2
1 0 .  5

1 1 . 1

J I

5 . 7
5 . 4
6 . 3

5 . 8

3 . 8
4 . 9
4 . 8
4 . 4

4 . 9
A A

J . /

+ -  l

Average pv and pH 4 . 4

8," from (33c)
ps from (33b)
pg fuom (29)

- 0 . 6

1 6 . 0
1 6 . l

- 0 . 9
12.0
12  -0

-0 .7
J . I

. ) . r

The important conclusion to be drawn is that in measuring Bra and
Bra figures, the efiect of a small non-zero { is eliminated by averaging

LLv arld pH.

9. Optic l{ormal F'igures

Equations of the optic normal isogyres can be obtained with the help
of Fig. 15. The rather unwieldy result is

2coI 2,tt cos 0sin 2(,1, - p) - (2 - sin2 0) cos2(,! - &) + sin2 dcos 2V :0 (34)

(34) simplif ies lor {:vf 4 1o

2 sin 2ps : ;,--, cos ZV
| - iPo'

or
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2 ^ P o z

;--urrsin2Px: f- W' 
(35)

Note that when pr:0 (uniaxial f lash figure) , (35) reduces to (32).

In Fig. 13 (35) is plotted as a continuation of the pr, vs. tr/ curves, with a
new origin f or the I/ coordinate. The angle p,,o lor a "neutral" figure with
2V:90" is 0, meaning that the cross does not break up into hyperbolae
as the crystal is rotated from extinction.

1061

Cb

Frc. 15. Diagrams for analysis of optic normal figures. 15a represents the interference
field (orthographic projection). and 15b is a stereographic projection of the interference
hemisohere.

Xllost of the measured pr, values for optic normal figures lie above the
curves of Fig. 13. The figures are difficult to measure with any accuracy
because the isogyres are so diffuse, and it therefore seems that a detailed
comparison with the other theories is not of much value over this range.
Nlichel-L6vy's equation cannot logically be extended to optic normal
figures. I have bothered to analyze the skiodrome theory only for V:45",
where it predicts two points at an equal distance above and below the
p,:0 axis, corresponding to the continuation of curves 2 and 3 of Fig.
13. The predicted value of po is given exactly by

--!!!-: --!" -- (36)
| - tan2 po 4(l - ip"')

Since po is small, the value given by (36) is just half the value predicted

by the skiodrome theory for uniaxiai f lash figures, eqn. (26). It is plotted
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as a point in Fig. 13, and curve 2 is connected across schematically from
V:0  to  V :45 " .

10. Oplic Aris Figttres

As a last application of the theory, it is interesting to compare its pre-
dictions with those of Wright (1905, 1907) for optic axis figures. In the
1905 paper Wright gave a series of curves showing the appearance of the

Frc. 16. Orthographic projection of the interference hemisphere for the optic axis
figure. The optic aris is at.4, and the heavy line shows the position of the isogyre in the
45' setting. The second optic axis is shown schematically at A', as envisaged in Wright's
derivation of the isogyre equation.

optic axis isogyres in the 45o position. The curves were computed from
the equation

r y l i a ( y - f ) : O  ( 3 7 )

where *, I are coordinates (in the interference field) of points on the
isogyre and 11 is the r-coordinate of the second optic axis, which may or
may not be in the interference field, as shown in Fig. 16 (note that
h: ! ) . (37)  is  der ived by apply ing a p lanar  analog of  the law of  Biot
and Fresnel to the plane of Fig. 16, and is thus the optic axis figure ana-
log of l l ichel-L6vy's equation, (31). To be consistent, one would assume
that the points (r, y) and (q, yr) represent an orthographic projection
of the interference sphere. However, Wright assumed the projection to
be gnomonic in calculating his isogyre curves. The only justification for
such an assumption, as far as I can see, is that it gives the correct type of
isogyre (a straight l ine) for 2V:90", which an orthographic projection
would not.
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In his 1907 paper, Wright superseded the earlier curves with a new

set, apparently determined from the skiodrome theory. Nevertheless, the

older curves have found their way into optical mineralogy texts and the

newer ones not, perhaps because the newer curves do not look much like

the isogyres actually seen in interference figures.

The present theory may be applied by using Fig. 17. Written in co-

Frc. 17. Diagrams for analysis of optic axis figures. 17o represents the interference

field (orthographic projection) , and 77b is a stereographic projection of the interference

hemisphere.

ordinates (9, ry') measured with respect to the cross-hair axes r' y, the

isogyre equation is

s indcot  2V lcos 0s in ( ,y '  -  p)  -  cot  2,1 'cos( ' !  -p) :0.  (38)

For the isogyre in the 45o position, puL 1r:r/1in (38);the isogyre then

has the form shown by the solid curve in Fig. 16. A good test of Wright's

curves (1905, p. 291) is to compare the angle tr (FiS. 16) at the periphery

of the field (which Wright chose as0,:30o) with the corresponding val-

ues calculated from (38).

Since 4: r /2-* ,  (38)  becomes

t zn2V :
sin d (3e)

/ T  \
:ot 24 cos (; 

- ,/ - cos d sin

from which values of tr/ can be calculated for a
given value of 0, A curve for d:30o is plotted in

\ r- ' l
series of 4 values, at a
Fig.  18.  Note that ,  to  a

v

o X '
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. Wrighl,(19o5) Fig 3

o W?'9h1,(19O6) Fig 4

30 
?v 

6b eo

Fto. 18. Curve showing 2q (30') as a function of 2V, from equation (39). For comparison
are plotted values measured from Wright's isogyre curves (1905, Figs. 3 and 4).

good approximalion, IeV, a fact that may be convenient to remember.
Plotted also in Fig. 18 are points measured from Wright's (1905) Fig. 3
and Fig. 4. The agreement is remarkably close, certainly well within the
accuracy needed for practical work.

This unexpected agreement has an interesting explanation. If we sup-
pose the interference sphere to be orthographically projected, so that

r : p s i n r l t ,  y : p c o s r l ' ,

12 I  Y2:  p2,  p :  s in d,

then (38) becomes, in cartest ian coordinates,  and wi th p:T/4i

(x2 -  y2)\x - l  y)  -  21 lp2xy cot2V -  2vL -  p, \x -  y)ry:0 (40)

(40) is to be compared with Wright's equation, (37).
In case p is small enough that we can write

t / L - P ' : l - t r P 2

then (40) reduces to

(* - y)(l I ry) - 2f2 ry cot 2V : O. (41)

This is of the same form as (37), except for the factor (1f*y). The fac-
tor is always near 1 for points in the conoscope field, where fiy has a

? l
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maximum value of 1/4. Hence (a1) is approximated by

*,  +Y!] :-  (y -  , r)  :  o (42)
2{2

which is a rectangular hyperbola passing through the origin.
Now if (37) were a plot in gnomonic projection, with the plane of pro-

jection tangent to the unit sphere about the projection point, presum-
ably this would mean taking

tan 2I/
Jr : pr srn V, : 

\-t

and this substitution makes (37) and (42) identical. This is the reason
for the close agreement between Wright's curves and the predictions of
(39) .It seems remarkable that the gnomonic projection of a sphere that
should be orthographically projected, combined with the planar analog
of a law that applies to the surface of a sphere, should yield a result so
nearly correct. It seems unlikely that there is anything specially suitable
about the gnomonic projection, because the substitution pt:tan Z in
Nfichel-Levy's equation, (31), does not yield the correct result, (28).

11. Swmmary and Conclwsion

The most usefui result obtained with the present theory is a relation
from which 2V can be measured in centered -Bro figures of large 2V, and
in centered Bro figures. One measures the angle of stage rotation po re-
quired to disperse the isogyres from a centered cross (extinction) to the
edee of the interference field of radius

sin a-
P o : S I n A o : - - - :

n

where 0- is the half-aperture of the conoscope in air and z is the average
index of refraction of the mineral examined. p^ is the numerical aper-
ture of the objective lens. 7"r, is then related to pt : sin trz by

!::- : -!!'- sin 2p"
l - i p " '  l - i p "

which is plotted in Fig. 14 for N.A. 0.85 and 0.65, and various values of
a. Experimental verification of this relation is considered a verification
of the theory here used. The relation does not depend on the validity of
NIallard's law. It provides in particular a means for distinguishing be-
tween Bxa and Bxo figures.

An important practical feature of the theory is that, although the
effect on isogyre position of the much-debated "rotation" of the polari-
zation plane in the conoscope is small but definite, it can be entirely
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eliminated from the measurements simply by averaging the p.. values
obtained by turning from the two extinction positions (optic piane NS
or EW).

An appiication of the theory to the optic axis figure shows that the
45o isogyre curves derived by Wright (1905) are very nearly correct,
quite good enough for practical work. This seems remarkable, in view
of the peculiar assumptions made in Wright's derivation of the curves.

The skiodrome theory gives incorrect isogyres, significantly incorrect
even near the center of the field. Stereographic projection of the refer-

Frc.

ence sphere
tern. If the

o b

19. "Extinction direction nets" for uniaxial flash figure (o) and
optic normal figure with 2V:90" (b)

would give a much better representation of the isogyre pat-
stereographic projection is carried out by the relation

p' : 1.945 tan 0/2

the radial distance p' wil l differ l i tt le from the radial distance

P : s i n d

for orthogonal projection of the interference sphere, within the lield of
practical conoscopes (d<30'). The outer portion of the stereographically
projected pattern would be enlarged, but this part is never seen anyway.

The main advantage of the skiodrome is that the projected isotaques
are easily calculated, at ieast when projected on the principal planes,
where they are eil ipses or hyperbolae. The same advantage probably
will not accure to the stereographically projected curves. fn principal it
is possible to calculate the two orthogonal sets of curves of a net which
would correctly represent the isogyres in the orthogonally projected in-
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terference sphere, according to the theory here developed. Ifowever, for
quantitative purposes the direct approach used in this paper is more use-
ful, and for qualitative purposes, as in teaching, a diagram can be drawn
from qualitative considerations that shows all the features that are im-
portant, without the need of resorting to exact calculation of the net.
Thus Fig. 19o represents the "extinction direction net" for the uniaxial
flash figure-it rather resembles a stereographic projection of the refer-
ence sphere-and Fig. 196 represents the net for an optic normal f igure
o I  2V :90 " .
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