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A nonlinear dynamical model of oscillatory zoning in plagioclase
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ABSTRACT

A nonlinear dynamical model for oscillatory zoning found in many plagioclase crystals
is presented. This model is based on an isothermal, constitutional, undercooling mecha-
nism involving diffusion and growth kinetics in the melt. A phenomenological effective-
partition coefficient, K, which relates the composition in the melt to the composition of
the growing crystal, is introduced. A linear stability analysis and direct numerical solutions
of the model are presented. It is found that when K is larger than unity, the system evolves
to a stable, uniform-growth regime. However, when K is smaller than unity, which is a
realistic case for melts of intermediate An composition, the model shows the existence of
a Hopf bifurcation leading to oscillatory zoning. As the system is driven further from
equilibrium, chaotic solutions occur. The features of these zoning patterns are consistent

with those found in nature.

INTRODUCTION

Nonlinear dynamics has been applied to a wide variety
of physicochemical systems. Typically, these systems are
nonlinear because of feedback mechanisms that couple
dynamical variables. This coupling often has important
effects when the systems are far from equilibrium. For
near-equilibrium crystallization of solid solutions, we ex-
pect crystals of homogeneous composition. Farther from
equilibrium, a variety of different patterns may arise:
zoning, dendrites, and spherulites (Lofgren, 1974; Kessler
et al., 1988).

Oscillatory-zoned plagioclase crystals are very com-
mon in andesites and diorites with plagioclase that is <50
mol% An. The zoning is characterized typically by regular
compositional variations superposed onto irregular and
sharp discontinuities (e.g., Pearce and Kolisnik, 1990).
Recently, Higman and Pearce (1993) analyzed zone
thicknesses from many oscillatory-zoned plagioclase
crystals, concluding that the data are consistent with a
nonlinear deterministic mechanism for zoning.

There have been various nonlinear models proposed
to explain the origin of the zoning. Brandeis et al. (1984)
modeled oscillatory crystal growth as due to nucleation-
induced temperature oscillations. Allégre et al. (1981)
considered a model based on diffusion and a relaxation
time for the growth rate. Haase et al. (1980) and Ortoleva
(1990) proposed a model based on a diffusion mechanism
and an autocatalytic reaction scheme. Lasaga (1982)
modeled a diffusion-based growth mechanism with phys-
ically realistic expressions for the growth rate but did not
find oscillating solutions. In this work, we present a mod-
el based on the constitutional (isothermal) undercooling
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mechanism (Rutter and Chalmers, 1953; Tiller et al,,
1953; Sibley et al., 1976).

THE MODEL

Constitutional undercooling occurs when the liquid in
contact with the growing solid front has a composition
different from its bulk value. This results in a concentra-
tion gradient in the vicinity of the front. The liquidus
temperature corresponding to the concentration at the
growing front is then locally different from the liquidus
temperature of the bulk equilibrium system, and isother-
mal undercooling is therefore induced. The degree of con-
stitutional undercooling determines the growth rate. The
relative magnitudes of the diffusion process and the growth
in turn drive the change in concentration at the interface,
which affects the degree of undercooling. This interplay
in the growth kinetics therefore provides the nonlinear
feedback necessary for the existence of nontrivial asymp-
totic behavior.

Basic equations

Observed compositional zoning is often planar. Thus
we assume growth in one spatial dimension, x. As dif-
fusion processes in the solid are orders of magnitude
slower than diffusion in the melt, they are neglected.

To describe the growth process, we use a frame of ref-
erence, F, comoving with the growing crystal front, with
the origin x = 0 fixed at the front (Fig. 1). The region x
> 0 corresponds to the melt. Let ' denote the frame of
reference of the crystal, with the origin initially coinciding
with the origin of F. The positional coordinate of the
growing front in F’ is then
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Fig. 1. Schematic diagram of the growing crystal illustrating
the reference frames (symbols defined in Table 1).

X' =x + [LV() dr

where V{(f) is the velocity of the front (Table 1). The flux,
J, of a crystal component of concentration, ¢(x, £) (num-
ber of moles per unit volume), at position x and time ¢
is then given by

ac
J=-D— - V¢ 1
o (1
where D is the diffusion coefficient of the component in
the melt. For simplicity, we neglect the concentration and
temperature dependence of D. We use the mass conti-
nuity equation in the form

e _ aJ

—=—-——+
at ax J

where S stands for source terms, which describes the ef-
fects of eventual mass sinks or sources. We thus obtain
the diffusion equation:

96 _
ot

9% ac .
D8x2 + V- o T(c — 9). 2)
The T" crudely describes the effect of the source term and
corresponds to a mass-input flow rate per unit volume.
The T can then be interpreted as the inverse of the av-
erage residence time of the material component in the
reservoir. This considers the possibility that the melt res-
ervoir is an open system, with material input of concen-
tration ¢ far from the growing front. In the absence of
mass input (I' = 0), ¢ is simply interpreted as the bulk
concentration in the melt far from the growing front.

The initial condition is

c(x, 0) =c. 3)

The concentration far from the growing front is assumed
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TasLe 1. List of symbols

a growth-rate parameter
A constant defining the effective partition coefficient
b growth-rate parameter

B constant defining the effective partition coefficient

c(x, t) concentration of An in the meit
¢(0, ) concentration of An in the melt at the growing front
¢.(0, f) concentration of An in the crystal at the growing front
c concentration of An in the meit far from the growing front
C; initial concentration of An in the melt
Co steady-state value of ¢(0, 1)
D diffusion coefficient
G, growth-rate velocity derived from kinetic models
K effective partition coefficient
K constant defining the effective partition coefficient
R ideal gas constant
R continuous growth factor in G,
R, surface nucleation growth factor in G;
t time
T temperature
T, glass-transition temperature
T equilibrium liquidus temperature
u velocity scale factor in G;
Vam Van Molar volume of An and Ab
growth rate of the crystallization front
Ve steady-state value of V
x positional coordinate in a frame moving with the front
x' positional coordinate in a frame fixed with the crystal
X An composition of the melt at the growing front
a V1 + 4rDjV3
B 1/e?
AG molar Gibbs free-energy difference between crystal and melt
AH molar-enthalpy difference between crystal and melt
AH, molar enthalpy of fusion
AH, molar enthalpy of mixing
AT -7
r input-flow rate per unit volume
[ é dv

V, dc

to be equal to the input concentration (or the bulk value
in the absence of mass input):

c(oo, t) = ¢. 4

Continuity of the flux at the growing front gives another
boundary condition,

ac
Da o+ [0, ) — 0,0V =0 5)

where ¢,(0, ?) is the interface concentration of the com-
ponent in the crystal. To close the set of equations, a
relation between ¢,(0, t) and ¢(0, ¢) is needed. The sim-
plest phenomenological relation that can be used is a con-
stant partition coefficient, K:

¢,0, 1) = Ke(0, t). (6)

For the case where ¢ refers to a major component, other
phenomenological relations can be used. For instance, it
has been shown that an appropriate relation between the
melt and solid-interface concentrations for a two-com-
ponent system may be written as

KBc(0, ?)
A4+ (Kp — De(0, 2)

where A4, B, and K|, are approximately constant for a fixed

(0, = @)
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temperature (Lasaga, 1982). If the concentration c(0, ¢)
does not change appreciably with time, one can define an
effective partition coefficient,

KB
K=& - Do

@®)

where (c(0, £)) denotes the time average of the concen-
tration (Lasaga, 1982). One then approximately recovers
the phenomenological relation given by Equation 6. In
the following, we consider a constant K such that the
boundary condition at the interface becomes

ac

D B’
ox

o+ 0, (1 — K)V=0. ®
For the plagioclase system in basalts, the equilibrium val-
ue of the partition coefficient is larger than unity. How-
ever, in view of the interpretation given by Equation 8,
we consider the possibility that K may be smaller than
unity. Indeed, our calculations based on Equation 7 show
K = 1.5 for plagiocase of composition Any, in a typical
basaltic melt. However, for An,; plagioclase, K = 0.55 in
a typical basaltic melt and K = 0.61 in a typical andesitic
melt.

A more realistic model would consider the energy-con-
servation equation, with a coupling of the temperature
field to the concentration field through the temperature
dependence of the diffusion or through the effect of the
latent heat released at the crystal front. Actually, the latter
coupling is responsible for the oscillatory pattern ob-
served in explosive crystallization (Van Saarloos and
Weeks, 1984). However, the heat diffusivity is very dif-
ferent from the matter-diffusion coeflicient. Consequent-
ly, the length scales for a latent heat-driven crystallization
are on the order of centimeters (Brandeis et al., 1984),
corresponding to much slower dynamics. Thus an iso-
thermal model constitutes a good approximation for the
investigation of small-scale zoning patterns.

Growth rate

To complete the model, the velocity of the growing
front is required. This provides the nonlinear feedback
necessary for the existence of solutions exhibiting a non-
trivial asymptotic behavior. As the growth process is usu-
ally slow (<1 um/s), we assume that the velocity of the
growing front relaxes instantaneously to its growth-rate
value, G{c(0, )], defined by growth kinetic models (see
below) at temperature 7T~

V() = G.c(O, 1). (10)

A realistic expression for G, has been established
(L’Heureux, 1993) by fitting the laboratory measure-
ments of Kirkpatrick et al. (1979) to the Calvert-Uhl-
mann growth model (Calvert and Uhlmann, 1972). This
model expresses the overall growth rate as a geometric
average of two processes: a longitudinal growth, R, by
surface nucleation and a continuous growth, R, respon-
sible for the lateral spread of crystalline layers,

Gr = URRsRE)"? D
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where
Ry = exp<~ %,)exp(- 7 f Tg> (12)
R. = [1 = exp(—%)]exp(— T f Tg)' (13)

Here, U is a velocity scale, a and b are constants, and AT
is the undercooling,

AT=T,—-T (14)

where T is the equilibrium liquidus temperature, T, de-
notes the ideal glass transition temperature defined as the
temperature for which the melt has infinite viscosity be-
cause of the vanishing of its configurational entropy, and
AG > 0 denotes the molar Gibbs free-energy difference
between the crystal and the liquid. For small degrees of
undercooling, this quantity is conventionally related to
AT through the relation

AG = AHAT/T, (15)

(e.g., Dowty, 1980), where AH = AH, + AH,, is the molar
enthalpy difference between the crystal and the liquid at
the liquidus temperature. The latter quantity is expressed
as the sum of the molar enthalpy of fusion, AH,, and the
molar enthalpy of mixing, AH,,. Our approach is similar
to Lasaga (1982) and Muncill and Lasaga (1987) but does
not require the use of viscosity data.

Finally, the relation between the concentration c(0, ¢)
of An and the An composition (mole fraction) X in the
melt at the interface is

X
VanX T (1 — X)va,

0, = (16)
where v,, and »,, are the molar volumes of An and Ab,
respectively. As these two molar volumes are nearly equal
(ran = 100.79 cm?*/mol, v,, = 100.07 cm?®*/mol), a good
approximation is

(0, 1) = X/vpn (17

Thus, the concentration c(0, ¢) of An, expressed in units
of inverse molar volume, is directly given by the com-
position X.

Expressions for 7, (X) were taken from Lasaga (1982).
Weill et al. (1980) provided AH,(X) and T,(X) (approx-
imated as the actual glass-transition temperature). For
simplicity, we assume that the enthalpy of fusion, AH,, is
given by the sum of the Ab and An pure-component en-
thalpies of fusion weighted by the composition

AH(X) = XAHp + (1 — X)AHP (18)

where AH2* = 19 kcal/mol (Robie et al., 1978) and
AH? = 14.26 kcal/mol (Weill et al., 1980). Other ex-
pressions for AH(X) could be used, but growth curves
are not sensitive to the particular value of AH (L’Heu-
reux, 1993).

The functions InU(X) [U(X) in cm/min], a(X), and b(X)
were fitted to quadratic polynomials:
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TaBLE 2. Growth-rate parameters
n u, a, (K?) b, (K)
0 —4.0204 1225890 1099.6
1 71197 —-3509543 2193
2 0 2566582 —-2114.3
2 2
In UX) = D u, X", a(X) = D, a,X"
n=0 n=0
and

21
bX)= 2 bX"

n=0
(Table 2). A good fit to the experimental data was ob-
tained with this model (see L’Heureux, 1993). Recent
measurements of growth velocity at low An concentra-
tions (Muncill and Lasaga, 1987) are also consistent with
this analytical expression. The main terms defining the
shape of the growth curve as a function of ¢ (or X) are
U(X) and T, (X). The growth curves depend only slightly
on a(X), b(X), T,(X), and AH(X). As shown in Figure 2,
the calculated growth velocity is a strongly increasing
function of the concentration.

In summary, Equations 2, 3, 4, 9, and 10 describe the

model considered here. The governing parameters are D,
T, 7, ¢ and K.

RESULTS

In the following, we use a value of the diffusion coef-
ficient between 10-!' and 10-'° m?/s (Maalge, 1985). The
value of I' may be estimated on the basis of typical mag-
ma chamber volumes and volcanic-eruption rates. We
use data from the Hawaiian volcanoes (Decker et al.,
1987), as their properties are relatively well known: T' =
10-1/s.

Stability analysis

By setting the left side of Equation 2 to 0, solving for
the steady-state growth velocity, V,, and concentration,
o, 18 straightforward:

22 —172
V, = 2\/FD{[1 — 2K + 2%] = 1} (19)
-
1+«
2K+ a — 1

where a = \/1 + 4TD/V3. A linear-stability analysis about
this steady-state solution (L’Heureux, 1993) allows the
time evolution (growth or decay) of a small perturbation
about the steady state to be investigated. The analysis
showed that, when K > 1, the steady state is stable; no
asymptotic oscillatory behavior is possible. This confirms
the numerical findings of Lasaga (1982).

On the other hand, when K is smaller than unity, the
dynamics are more complicated (Fig. 3). The axes on this

(20)

c=2¢
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Fig. 2. Behavior of the growth velocity, V' = G, as a function
of An content for various temperatures: (a) 7 = 1200 K; (b) T
= 1400 K; (¢) T = 1600 K; (d) T = 1800 K. See Egs. 11-13.

diagram are the dimensionless slope of the growth curve

é dv
=—— 21
V,dc @
and a parameter related to T,
B8=a2=1/(1 + 4TD/V3). (22)

In region A, the steady state is stable, but damped oscil-
lations are possible. As the system moves from region A
to region B, it undergoes a Hopf bifurcation. This signifies
that the steady state loses stability at a critical value of
the governing parameter, 6, and is replaced by a periodic
solution. Oscillatory zoning is therefore possible near the
Hopf bifurcation line. As the system approaches region
C from lower values of 6, it may undergo further insta-
bilities. However, the nature of these instabilities is not
determined by the linear stability analysis summarized
here, as it pertains to the steady state only. In region C,
the steady state is unstable without oscillation. In region
D, the steady state is stable and does not support any
damped oscillation. Finally, in region E, the linear sta-
bility analysis does not give a solution.

Numerical solutions

To verify these findings and to investigate the nature
of the linearly unstable solutions, a numerical analysis of
the model was also made by L’Heureux (1993). The
scheme is convergent and stable over a wide range of
parameter values. As further verification, the numerical
solution for the linear problem V' = constantand I' = 0
agrees with the known analytical solution (Eq. 10 of Smith
et al., 1955).

Figure 4a—4c extends the work of L’Heureux (1993)
and gives the concentration of An in the solid as a func-
tion of the distance from the core of the crystal for vari-
ous parameter values. These figures are typical, and other
parameter values give the same overall behavior. When
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0 3 6 9 12 15

Fig. 3. Stability diagram showing the behavior of the steady
state according to a linear stability analysis for K = 0.63 (for
other choices of K < 1, the stability diagrams are qualitatively
similar). See text for an explanation of the stability fields.

K > 1 (Fig. 4a), the solution approaches the (stable) steady
state without oscillation, in accordance with the stability
analysis of the previous section. In Figure 4b and 4c, the
effective partition constant is smaller than unity (K =
0.63), and ¢ is varied. Figure 4b corresponds to a point
in region A of the stability diagram of Figure 3. As ex-
pected from the stability analysis, the solution has an
oscillatory character as it approaches the stable steady
state. Figure 4c corresponds to a point in region B of the
stability diagram, where the steady state is unstable. In
this instance, the model corresponds to a point in the
stability diagram located just beyond the Hopf bifurca-
tion line where a periodic solution is expected. This is
indeed the case. The distance between the peaks in the
signal is 5.29D/V, = 390 um. Because V, is quite insen-
sitive to the value of D in the range of interest, this spatial
periodicity corresponds to 39-390 um for D = 10—
10-'° m?/s, respectively. This value (particularly for the
lower values of D) is consistent with typical observations
of compositional zoning in plagioclase.

Figure 5 shows typical patterns for a different temper-
ature (7= 1400 K) and K = 0.55. In Figure 5a, the model
corresponds to a point in the stability diagram that is just
beyond the Hopf bifurcation line in region B of Figure 3.
The solution shows an oscillatory behavior, leading to an
average distance between peaks that is equal to 46~460
um for D = 10-1'-10-'° m?/s, respectively.

Finally, Figure 5b shows the dynamics after ¢ was fur-
ther increased with respect to the value of Figure 5a. This
has the effect of shifting the system further to the right of
the Hopf bifurcation line of the corresponding stability
diagram while keeping the stable point in region B of
Figure 3. We see that the solution has developed an ir-
regular, chaotic behavior. It should be noted that, in this
last instance, the peak values of the numerically obtained
melt concentration were sometimes slightly higher than
1. This problem should not arise with a more exact ex-
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Fig. 4. Numerical solution for the An concentration in the
crystal, ¢, (0, ?), at the growing front as a function of the distance
from the core x' = [ V(¢')dt’. D = 10~ m?*/s,T' = 10-!"/s, and
T=1600K.(a) K=1.5,¢=0.5,¢=0.5(,=0.0362 pm/s);
(b)) K =0.63, ¢ =0.40, ¢, = 0.6 (V, = 5.566 um/s); (c) K = 0.63,
¢ =0.32, ¢, = 0.5 (V, = 1.343 um/s).
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Fig. 5. Asin Fig. 4but T = 1400 K and K = 0.55; (@) ¢ = ¢
=0.33 (V, = 1.158 um/s), (b) ¢ = ¢; = 0.416 (V, = 4.402 um/s).

pression for the growth rate, particularly at higher under-
coolings.

DiscussioN
Zoning features

We compare the results of the model with known fea-
tures of oscillatory-zoned plagioclase. Zoning tends to be
very diverse within individual crystals and among crys-
tals of the same sample, so that it is difficult to classify
the zoning features. Nevertheless, some general charac-
teristics can be identified. Oscillatory-zoned plagioclase
commonly has zone widths ranging from 1 to 100 pm
and amplitudes of 1-40 mol% An. The An content (lower
base line of Pearce and Kolisnik, 1990) may remain con-
stant over a zoned interval or decrease with distance out-
ward from the crystal core (Pearce et al., 1987). The os-
cillations have an asymmetric sawtooth shape with respect
to distance. In addition, the oscillating patterns in the
crystals are often interrupted by a change in the mode of
oscillations or another style of crystal growth (e.g., Pearce
and Kolisnik, 1990).
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In our model, the wavelengths range from ~40 to ~500
um, depending on the value of D, T, and K. The lower
values accord well with those found in nature. The de-
pendence of the wavelength on D is approximately linear,
and this effect is discussed below. Results of several sim-
ulations show that model amplitudes are consistent with
those found in nature. Because the model does not in-
corporate explicit variations in temperature or bulk con-
centration, the steady state is invariant. Consequently,
the simulations have no base-line shift in An content.

Note that the shape of the simulated profiles is also an
asymmetric sawtooth pattern. Several simulations indi-
cate that the degree of asymmetry is determined mainly
by temperature. For larger undercoolings, the system is
further from the equilibrium, and the degree of asym-
metry increases (Figs. 4c and 5a). The individual peaks
are characterized by a smooth rise to higher An content
followed by a rather sharp drop. This is in contrast to the
interpretation of Pearce and Kolisnik (1990), which de-
picts a sharp rise followed by a smooth decay. On the
basis of the physical model of constitutional undercool-
ing, we expect the type of pattern exhibited by our sim-
ulations; it corresponds to a progressive buildup of re-
jected solute at the crystal interface driven by fast growth
and sluggish diffusion. The increase in concentration gen-
erates a strong gradient so that diffusion eventually dom-
inates the process, resulting in a sudden decrease of the
interface concentration. This discrepancy in peak shape
may be resolved by the collection of more empirical data
or, alternatively, by the introduction of other physico-
chemical processes into the model.

The diversity of zoning patterns that arises in nature
may be due to large scale effects (e.g., eruptions), in ad-
dition to nonlinear, microscopic effects. Recall from Fig-
ure 5b that the dynamical behavior may be very rich and
include chaos; inspection suggests that it is possible to
have sudden and irregular shifts in the zoning patterns,
as is observed (Pearce and Kolisnik, 1990). We expect
irregular zoning to be chaotic in the sense that the cor-
relation between crystal zone thicknesses decay with dis-
tance (e.g., Bergé et al., 1984). However, we caution that
the interplay of small, large-scale, and random events may
render the detection of chaos difficult. Another causative
factor of pattern diversity may be the existence of ran-
dom fluctuations in the governing parameters. These may
stochastically drive the system such that various modes
of oscillation may be selected in an unpredictable fashion.
The study of such noise-induced transitions (e.g., Horst-
hemke and Lefever, 1984) is the subject of continuing
investigation.

Effects of the governing parameters

Varying critical model parameters on the system dy-
namics has several effects. Oscillatory behavior may oc-
cur when K < 1; K = 1.5 for An,, plagioclase, and K =
0.55 for An,, plagioclase within a typical basaltic melt,
whereas K = 0.61 for An,, plagioclase in a typical andes-
itic melt. This is consistent with the idea that oscillatory
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zoning is most prevalent in intermediate systems (ande-
sites and diorites) containing plagioclase of approximate-
ly An,,.

The wavelength of the oscillating pattern approximate-
ly scales linearly with the diffusion coeflicient, D. Smaller
wavelengths are obtained if D values are reduced (e.g.,
10-'2 m2/s).

An increase in T leads to a decrease in the parameter
8 (see Eq. 22), thus narrowing the window of the existence
of oscillating solutions (Fig. 3). However, for geologic
conditions, 8 is very close to 1, and thus the effect of the
introduction of new material is negligible.

Our calculations indicate that the range of ¢ for which
oscillatory behavior may be observed is relatively large
(e.g., =0.30 + 0.05 An mole fraction for K = 0.63 at T
= 1600 K). As the undercooling increases, the domain of
existence of oscillatory behavior corresponds to slightly
higher ¢ values (e.g., =0.35 + 0.05 An mole fraction for
K = 0.55 for T < 1600 K). However, the oscillatory re-
gime strongly depends on K and hence on the geochem-
istry and average composition of the system.

An extension of this model that includes a relaxation
time between the actual growth rate, ¥, and its nonequi-
librium kinetic value, G, was considered by L’Heureux
(1993). Linear stability analysis shows that, for K > 1,
the steady state is still stable, but damped oscillations are
possible, in agreement with the findings of Brandeis et al.
(1984) and Allegre et al. (1981).
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