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Ansrru.cr
Equations are derived for predicting the lengths of unit-cell edges and the symmetry of

hollandite-type compounds with the general formula Ao_rB8(O,OH),6. The unit-cell size of
a hollandite-type compound is determined largely by the average B-O bond distance, and
additionally by the charge of the ,B cation (Z), the excess size of the tunnel cation (,4)
relative to the ,BOu octahedral framework (Dr), and the excess size of the B cation relative
to the octahedral cavity (6"). These factors are incorporated in the following equations,
which accurately estimate the unit-cell edge lengths:

a(A) :5.130(ro 4 r " )  -  0 .02gtzB + 0.4416A

c(A) : *41ro + r,) + 0.0366 zB + 0.55268.

The symmetry of a hollandite-type compound is related to the size of the tunnel cation
(A).If rn > tf2(ro + r") - ro, the compound cannot be monoclinic, whereas if ru < yf2(ro
* r) - r" - 0. 15 it cannot be tetragonal. These relationships make it possible to predict
the symmetry and unit-cell size of a hollandite-type compound based on composi-
tion alone.

INrnoouctroN

Hollandite-type compounds are important to miner-
alogists and materials scientists. Several types occur as
minerals (e.g., hollandite, cryptomelane, priderite, and
a-MnOr), whereas many others have been synthesized.
Some hollandite types have special properties such as fer-
romagnetism (Endo et al., 1976) or superionic conductiv-
ity (Beyeler, 1976). The natural phases are important deep-
sea minerals (Burns and Burns, 1977). A synthetic rock
(SYNROC) containing hollandite as a major constituent
has been proposed for use in the storage of radioactive
wastes (Ringwood et al., 1979). The common crustal
mineral feldspar transforms to the hollandite structure at
high pressures and temperatures and may be a repository
for light elements and HrO in the mantle (Zhang et al.,
I 993). The aluminosilicate hollandite-type compounds are
among the few phases so far discovered having both Al
and Si in octahedral coordination.

The ideal hollandite structure is tetragonal with the
space group 14/m (Fig. l). The general formula is Ao_rBr.
(O,OH),6, where I is an alkali or alkaline-earth cation
and ,B is usually a mixture of tetravalent and trivalent
cations. ,BOu octahedra share edges to form a wall of dou-
ble chains, each ofwhich shares corners with neighboring
walls to form a framework with tunnels that accommo-
date large I cations and HrO molecules. The coordina-
tion number ofl is 8, and the average coordination num-
ber of O'?- is 4 if the A (tunnel) sites are fully occupied.
Atomic coordinates of ideal hollandite are derived in
Appendix l.
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It has been recognized that the unit-cell size ofa hol-
landite phase is largely determined by the size of the BOu
octahedron (Ringwood et al., 1967). One might, however,
expect that the size ofthe tunnel cation and other struc-
tural factors would play roles as well, although at present
no methods for estimating hollandite unit-cell sizes in-
corporate such structural factors. Many hollandite phases
are tetragonal, but some are monoclinic; which structural
factors are most important in determining the symmetry
of a particular hollandite phase has been unclear. A1-
though empirical criteria have been suggested, it would
be useful to develop criteria that are more clearly asso-
ciated with specific structural factors and have a better
theoretical basis. In this study we have modeled the unit-
cell parameters and the symmetry of the hollandite struc-
ture based on detailed seometric considerations.

Dnnrv,trroNs

We use effective ionic radii, r,, taken from Shannon
and Prewitt (1969). Basic geometric parameters of a reg-
ular 8Ou octahedron include the apex to apex length, 2(ro
* rr), and the O-O edge length, yo(ro + rr). The height
(parallel to c) ofthe tetragonal coordination prism around
the tunnel cation is equal to the octahedral edge length
(see Fig. l). The tunnel edge length, IO2 in Figure l, is
twice the horizontal projection of octahedral edge JOl,
or 2r/2(ro * rr)cos 36" : /6(ro * rr). The tunnel edge
is also the (001) face diagonal ofthe tetragonal coordi-
nation prism around the tunnel cation. The body diago-
nal of the tetragonal coordination Orism 1:2 x lAOl l)
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is thus

\/[f f i tr" + r,)] 'z+ltDQ"* r")) '  :2f2Qo+ r").
V

The radius of a tunnel cation that fits perfectly into the
tetragonal prism, r., must therefore meet the condition
2(ro * r.) : 2t/2(r" * r") from which

r.: r,/21ro I ru) - ro. (l)

Whereas the length of c corresponds simply to the edge
of the .BOu octahedron, the length of a is not as readily
understood. From Figure l, AA'is half the (001) unit-
cell face diagonal, and the following relationship is
observed:

AA'r: AF2 + FA,2. (2)

Here AF is the sum ofthe tunnel edge and the octahedral
wall thickness. The wall thickness, HOl, is equal to the
apex to base distance of the tetrahedral interstice in the
double octahedral chain. As the edge length ofthe tetra-
hedral interstice is /2(ro + rr), its height is \,a6/31\/2(ro
+ r")f -- (2t/3/3)(r" * r,), and

An: V6(ro * r,) *'!g" * ,"y. (3)
J

The following relationships also obtain:

A 'F :  A 'G  -  FG:  A 'G  -  H I

:  A 'G -  r " ( to t ) ' -  (Hol) ' :

where A'G is half the tunnel edge, IOI is an edge of the
octahedron, and HOI is the wall thickness. Thus,

\/6
A ' F :  

, ( r " + r u )

\12 lzr/1 l'- \/l\/ZO" 1 ',)1'- lf t'" + '"ll
v  L J  )

V 6: -(ro * r). (4)
o

Substituting relations for A'F and AF into Equation 2,
we obtain AA', : l$/erc)o" + r)12 + [16(ro -r r) *
Q\,5n)v. * ru)1, and

AA' : 3.627(r" + r,). (5)

Then the d axls rs

a:2(AA'cos 45")  :  5 .130(r"  + ru)  (6)

and the c axis rs

c : r'/11ro + ru1' Q)

Values of a and c calculated using Equations 6 and 7
are systematically larger and smaller, respectively, than
observed values. The calculated c/a ratio is,r/2/5.130 :

0.276,but hollandite typically has c/a ratios around 0.3.
The larger ratio arises because the -BOu octahedra are
elongated parallel to c and shortened perpendicular to c

'J

Fig. l. Schematic c-axis projection of ideal l4/mhollartdite
structure with regular octahedra. Shaded circles, I and A', rep-
resent tunnel cations; solid circle, B, is an octahedral cation.
Atoms Ol, 02, and B have ideal x and y coordinates derived in
the text. The tetragonal prismatic coordination polyhedron sur-
rounding tunnel cation l' is outlined inside the tunnel.

as a consequence of strong cation to cation repulsions
across the shared edges in the -BOu chains.

To account for B-B repulsions, we add a dependence
on the valence of -B to Equation 7: c -- y/2(ro + rB) +
vZ" where v is the coefficient of proportion ality and Z u is
the valence of the -B cation. Using observed data for
a-MnO, (Donnay and Ondik, 1973), we obtain 2.846 :

\/2(1.38 + 0.54) + 4v from which v ^, 0.0328 and the
equation for calculating c becomes

c: t/Z(ro + r) + 0.032828. (8)

Equation 8 produces reasonably good estimates of c, es-
pecially when c is small. As c increases above 2.9 A @or-
responding Io r, - 0.6 A for Zu:4), however, the de-
viation from experimental values also increases (see Fig.
2). On the basis of overly simplistic but familiar classical
packing considerations, we find that a B cation fits per-
fectly into the octahedral interstice when r, : 0.4l4ro; if
we use ro : 1.38 A 1ta6'-' Shannon and Prewitt, 1969),
the critical cation radius is 0.57 A, close to the value of
r, (0.6 A) at which the experimental data begin to deviate
from Equation 8. This suggests that octahedral distor-
tions increase, causing further elongation of c, when the
classical octahedral critical radius ratio is exceeded. We
include the anticipated effect of this distortion by intro-
ducing an additional dependence ofc on 6r, the amount
by which r, exceeds the critical octahedral cation radius.

The tunnel cation size may also influence the unit-cell
dimensions. From the examples of K'(MgTi')O'u(a :

10. I 57, c : 2.97 4 A) and Rb,(MgTi,)O ,u (a : 10.195, c
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Fig. 2. Calculated c values using Eq. 8, showing deviation
from a l: I relationship for c values >2.9 A, corresponding to r,
= 0.6 A.

:2.975 A;, it can be seen that the a axis increases as the
tunnel cation becomes larger, whereas the c axis is hardly
affected. We therefore anticipate a dependence of 4 on 6/,
the amount by which 11 exceeds r., the radius of a per-
fectly fitting tunnel cation (see Eq. l).

Equations 6 and 7 , modified to include the anticipated
dependencies of unit-cell parameters on octahedral cation
valence, Zu, and on the excess sizes of octahedral and
tunnel cations, du and 6r, become

a : 5.130(r" + r) + tZu * u6n (9)

c : x/l1ro + r) + vZ" + w6". (10)

We have determined optimal values for the coefficients
t, u, v, and w by least-squares analysis using data for 48
of the 55 hollandite-type compounds listed in Table l.
Seven phases containing cations having two possible spin
states were omitted from the analysis because the actual
spin states of transition metal cations in hollandite are
largely unknown, and effective high-spin and low-spin
ionic radii are very different. The least-squares analysis
yields the following equations for calculating the lengths
ofunit-cell edges:

a (A ) :5 .130 ( ro  t  r )  -  0 .02g l zB  +  0 .41 ld ,  ( l  l )

c(A): xaeo + r) + 0.03662D + 0.5526R 1r2)
where

ru>r , /1Qo+r" )
r n < V r ( r o + r " )

.4

. / .

10.6
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Fig. 3. Comparison of calculated and observed a values; cal-
culated a values are based on Eo. I l

Rrsulrs AND DlscussroN

Unit-cell edges

The unit-cell edges of 55 hollandite-type phases cal-
culated with Equations I I and 12 are listed in Table l.
Most of the experimental data are from Donnay and On-
dik (1973). The mean error for calculated a values is 0.036
A, and that for calculated c values is 0.020 A. The mean
relative error is 0.360lo for a and 0.670/o for c. In Figures
3 and 4, the calculated a and c values are plotted vs.
observed values. The points follow closely the l:l line,
demonstrating that Equations I I and 12 include appro-
priately the structural dependencies of unit-cell dimen-
sions of hollandite-type compounds.

In some hollandite samples, distortions reduce the
symmetry to monoclinic with a + b and 7 > 90' (c axis
unique). The deviations of unit-cell geometry from te-
tragonal are always small, with a and b differing only
slightly and 7 being no more than 2 greater than 90". For
this reason, we believe Equation I I can be used to cal-
culate satisfactorily the average of a and b for monoclinic
phases, whereas Equation 12 is still applicable for cal-
culating the length of c. Results for five monoclinic phases
that confirm these assertions are listed at the bottom of
Table l.

Some hollandite-type phases contain OH- in addition
to 02 . Because the two species have similar sizes (Shan-
non, 1976), Equations I I and 12 are assumed to remain
valid for such cases. The agreement between calculated
and observed unit-cell edges for the OH--containing
phases listed in Table I appears as good as that for OH--
free compositions. Additionally, small amounts of HrO
incorporated in some hollandite-type phases appear to
have negligible effects on unit-cell size.

Some of the transition metals occupying octahedral sites
in hollandite can occur in either high- or low-spin state.
Unit-cell edges calculated using high-spin radii agree bet-

^  :  J r ,  
-  0 .414 ro ,  i f  r "  >  0 .4 l4 ro

[0.  i f  r "  < 0.414ro.
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TmLe 1. Comparison of observed and calculated a and c of hollandite-type compounds

t7 l

No. Composition Diff.

1
2
3
4

o
7
8
I

1 0
1 1
1 2
1 3
1 4
1 5

K,(At,Ti6)O16
K, 7s(Al1 TrTi6 rr)O16
K, 60(A1 1 6oTi6 4o)O1 6
K,(Ti3+Ti3+)O,6
K,(Cr,Ti6)O,6
K,(Fe,Ti.)O,"
K,(Ga,Ti6)O16
K,(MgTi?)Oi6
K,(CoTi?)O,6
K,(NiTi?)O16
K.(CuTir)O,u
Kr(ZnTi7)O,6
Rb,(At,Ti6)o16
Rb,(Tig+Ti3+)o16
Rb,(Cr,Ti6)O16
Rb,(Fe,Ti6)O,6
Rb,(Ga,Ti6)O16
Rb,(MgTi,)O,6
Rb,(CoTiz)O,6
Rb,(NiTi7)o16
Rb,(CuTi,)O16
Rb,(ZnTi?)O16
BaoTsAll 5Si2 sO8
Sror5Al ,55 i25Os
RbAlGe"O.
KAlGe306
NaAlGe306
Tio,(H)
KAlSisOr
NaAlSiaO6
(Ba,KXMn,Mn,Fe,ADB(O,OH),6
c-MnO.
(Mg,CaXTi,Cr,Si)sO,6
K2Lio67Ti?$06
RbrAlssbsol6
K2Al5Sb3O'6
KrGasSboO,6
KrC15SbsOr6
K2Ni3 sSb4 67016
KrFesSb3Or6
K2Zna sSbn 6rOr6
KrMg...Sbo.rO,"
KrCu...SbourO,u
Kzcos $Sbn 62O,6
Krln"SnuO,u
KrMnsSb3O,6
(G eoBao oEXTi,Fe,Mg).O,"
(Bao escao $Zro o2XAl, ,oNio osTi" o)O,6
TlAlGeoOo
AgAlGe3OB
(CaosMgos)AlrSirO6
BaFeMnTOi6
(Ba,Pb,K,Na), @(Mn,Mn,Fe,Al,Sih s-

(o,oH),6
(Bao 75Pbo r6Nao loKo @XMn,Fe,Al)6(0,OH)r6
(Ko sNao 2sSro,sBao 1o)(Mn,Fe,AIXO,OH)16

10 040
10.056
10.067
10.170
1 0 .125
1 0.148
1 0 .1  19
1 0.157
1 0 .139
1 0 .140
1 0.1 35
1 0 . 1 6 1
10.1  02
10.210
1 0.1 68
10.189
10.167
10.195
10.202
1 0 .191
1 0 .196
10.203
9.41
9 3 2
9.78
9.72
9.648

10.161
9.315
9.30
9.96
9.815

1 0 . 1  1 5
10.135
10.03
9.955

10.165
10.17
10.30
10.24
10 35
10.31
10.295
10.305
10.595
10.24
1 0.1 39
10.039
9.809
9.662
9.321
9.955
9.830

9.878
9.831

10.04
10.05
10.06
10.2'l
10 .14
10.18
10.15
10.20
10.16
1 0 .19
10.21
10.22
10.06
10.23
1 0 . 1 6
10 20
10.17
10.22
10.18
10.21
10.22
10.23
9.35
9.33
9.82
9.80
9.77

10.'12
9.30
9.24
9.92
9.79

10.05
1 0 .19
9.93
9.91

10.19
10.17
10.34
10.26
10.43
10.38
10.40
10.41
10.68
10.28
10.17
10.06
9.82
9.77
9.40
9.94
9.97

9.91
9.90

0.00
-0.01
-0,01

0.04
0.02
0.03
0.03
0.04
0.02
0.05
0.08
0.06

-0.04
o.02

-0.01
0.01
0.00
0.03

-0.02
0.02
0.02
0.03

-0.06
0.01
0.04
0.08
0.12

-0.04
-0.02
-0.06
-0.04
-0.03
-0.07

0.06
-0 .10
-0.05

0.03
0.00
0.04
0.02
0.08
0.07
0 . 1 1
0.11
0.09
0.04
0.03
0.02
0.01
0 . 1 1
0.08

-0.02
0.14

0.03
0.o7

2.94
2.94
2.939
2.958
2.955
2.969
2.962
2.974
2.575
2.965
2.977
2.973
2.941
2.965
2.957
2.976
2.964
2.975
2.978
2.967
2.980
2.976
2.72
2.72
2.86
2.86
2.856
2.970
2.723
2.73
2.86
2.847
2.94
2.965
2.94
294
3.01
3.015
3.07
3.06
3.10
3.09
3.095
3.10
3.20
3 . 1 1
2.966
2.943
2.857
2.860
2.716
2.88
2.872

2.878
2.871

2.92
2.92
2.93
3.00
2.97
2.99
2.97
3.00
2.98
2.99
3.00
3 0 1
2.92
3.00
2.97
2.99
2.97
3.00
2.98
2.99
3.00
3.01
2.71
2.71
2.83
2.83
2.83
2.97
2.69
2.69
2.87
2.85
2.93
2.99
2.87
2.87
2.99
2.98
3.06
3.03
3.11
3.09
3.10
3.10
3.23
3.04
2.99
2.93
2.83

-0.02
-0.02
-0.01

0.04
0.01
0.o2
0.01
0.03
0.01
0.03
0.02
0.04

-o.02
0.04
0.01
0.01
0.01
0.03
0.00
0.02
o.02
0.03

-0.01
-0.01
-0.03
-0.03
-0.03

0.00
-0.03
-0.04

0.01
0.00

-0.01
0.03

-0.07
-0.07
-0.02
-0.04
-0.01
-0.03

0.01
0.00
0.01
0.00
0.03

-0.07
0.02

-0.01
-0.03
-0.03

0.00
0.00
o.o2

-0.01
0.00

2.83
2.72
2.88
2.89

2.87
2.87

1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
ao

40
41
42
43
44
45
46
47
48
49
50
4 1 r

52'
53'

54-
55.

. Monoclinic phase for which the calculated a is compared with the average of observed a and D (monoclinic first setting).

ter with experimental results than those calculated using
low-spin radii. For example, the observed a of
Rbr(FerTiu)O,u of 10.189 A compares more favorably with
a of 10. l9 A calculated using the high-spin radius ofFe3+
(0.645 A) than with a of 10.08 A calculated wirh the low-
spin radius (0.55 A).

If the unit cell of an ideal hollandite with regular oc-
tahedra were to expand in response to substitution of a
tunnel cation larger than the ideal size (rn > rJ without
changing the thickness of the octahedral walls, the ex-
pected increase of a would be 4Drcos 30' : 3.460,r. The

coefficient of 6, in Equation l1 is, however, only 0.41l,
indicating that much of the tunnel cation radius increase
is accommodated by thinning the octahedral walls rather
than expanding a. This is consistent with observations at
high pressure (Zhanget al., 1993) that show the wall be-
coming thinner as pressure increases, since increasing the
size of the I cation should affect the octahedral frame-
work the same way as subjecting the framework to com-
pression (Hazen and Finger, 1982). Our assumption that
the c axis is already so elongated from cation to cation
repulsion that an excess-sized tunnel cation has little ef-
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Fig. 4. Comparison of calculated and observed c values; cal-
culated c values are based on Eq. 12.

fect is borne out by the excellent agreement of calculated
with observed values (Fig. 3).

Finally, it might be possible to calculate the compress-
ibilities of a and c using Equations I I and 12, if the com-
pressibility of the B-O bond is known either empirically
or theoretically. If the variation of du with pressure is
negligible, then the compressibility along a will be the
same as the compressibility of the B-O bond, because,
with Equation I l,

l d a  I  d . - . ^ ^ .
: ;  : - ,  [ 5 . 1 3 0 ( r "  +  r r )  -  0 . 0 2 9 1 2 u +  0 . 4 l l a 1 ]
a a p  a d p -

_ d(ro * rr)
(ro + r)dp'

On the basis ofdata reported by Zhanget al. (1993), the
compressibility of the (Si,Al)-O bond in hollandite-struc-
tured KAlSi,O, is 1.85 x l0 3/GPa in the range 0-4.47
GPa, and so the compressibility along a should also be
1.85 x l0 3/GPa. This is in very good agreement with
the experimental a-axis compressibility of 1.82(4) x l0-3/
GPa (Zhang et al., 1993).

From Equation 12, the c-axis compressibility is pre-
dicted to be

: 1.14 x l0-3/GPa,

which is significantly larger than the experimental value
of 1.04 x l0 3/GPa. We believe this discrepancy is due
to the strong cation to cation repulsions in the c direction.
As the pressure increases, the coefficient v of Z" in Equa-
tion l0 is expected to increase dramatically because of
these .B-.8 repulsions, causing the c-axis compressibility
to be significantly smaller than the B-O bond compress-
ibility. One might account for this effect by assuming that
the decrease in c-axis compressibility due to cation to
cation repulsions is proportional to octahedral cat-
ion charge.

Tetragonal vs. monoclinic symmetry

Two structural criteria have been proposed to predict
hollandite symmetry. Sinclair et al. (1980) suggested that
the symmetry change takes place at cell volumes between
290 and 300 A'. Compounds having smaller unit cells
should be tetragonal, and ones with larger unit cells
monoclinic. Post et al. (1982) pointed out that this cri-
terion has many exceptions and suggested instead that on
a plot ofaverage octahedral cation radius vs. average tun-
nel cation radius, a straight line with ralio rB/rA: 0.48
would separate tetragonal (r"/ru < 0.48) from monoclinic
(r"/rn > 0.48) phases. This criterion also has many ex-
ceptions, and, in addition, it fails for phases without tun-
nel cations: a-MnO, and TiOr(H) are both tetragonal de-
spite their indeterminate r u/ ro ratro.

Post and Burnham (1986) observed that tunnel cations
in hollandite structures have anomalously large temper-
ature factors that are, in part, manifestations of displace-
ments from the 4/m special position. They suggested that
the displacements increase as the tunnel cation becomes
smaller and less constrained inside its coordination poly-
hedron. If the cation is small enough, the octahedral walls
undergo twisting distortions to accommodate minimum
energy cation positions closer to the nearer coordinating
O atoms (Post et al., 1982). Such distortions cause the
symmetry reduction, through which the attractive poten-
tial between the tunnel cation and its neighboring O at-
oms becomes asymmetric in directions perpendicular to
c. Accordingly, if the size of the I cation is equal to or
larger than the cavity formed by the octahedral frame-
work, i.e., if ro > r., the structure is likely to be tetragonal
because the cation cannot move about in the cavity. So
the upper limit for monoclinic symmetry would occur
when the radius of the tunnel cation is equal to r., or
from Equation I,

ro: r/2(ro * ru) - ro. (13)

As r, becomes smaller than rr, the structure tends to be-
come monoclinic, but it will tolerate some displacements
ofthe tunnel cation before the onset ofoctahedral frame-
work distortions causes the actual symmetry reduction.
According to Post and Burnham (1986), refined tunnel
cation temperature factors indicate root-mean-square
displacements of 0. l2-0. l7 A perpendicular to the tunnel
direction at the 4/m special position. If we assume that
an average value of 0. l5 A is the limit of tunnel cation
displacement that tetragonal structures sustain without
octahedral wall distortions, then the following equation
defines a lower limit for tetragonal phases:

ro : r,/2(ro -l ru) - ro - 0. 15. (  l 4 )

Thus we propose that if ru is grealer than that given by
Equation 13, the symmetry should be tetragonal. If r, is
less than that given by Equation 14, the symmetry should
be monoclinic. If r, is intermediate between the two val-
ues, the symmetry can be either tetragonal or monoclinic,
depending on other factors, such as the ordering of oc-

2.70

ru)d(ro +

dp

l dc  r t
c d p  c
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tahedral cations or the presence of irregular octahedral
distortions. Because of-centering is moot in structures
having no tunnel cations, such structures should always
be tetragonal.

Figure 5, compiled using data from Post et al. (1982),
indicates that Equations 13 and 14 correctly delineate
(with one exception) the regions of tetragonal and mono-
clinic hollandite, with a region of overlap between them.
These equations, which can be used to predict the sym-
metry of a hollandite-type phase, have a clear geometrical
basis that includes a dependence on tunnel cation dis-
placements from the special position.

KAlSi3O8 hollandite is tetragonal at room pressure.
Zhang et al. (1993) observed that the KO, polyhedron
compresses passively, i.e., the compressibility of the KO,
polyhedron is dictated by changes in the (Si,Al)Ou octa-
hedral framework. It follows that the ratio of the tunnel
cation (K+ ) size to the octahedral cation size does not
decrease with increasing pressure. Therefore the KAI-
SirO, hollandite will remain above the upper line in Fig-
ure 5 and is not expected to transform to lower symmetry
at higher pressure.

Cotccr,usroNs

The key component of the hollandite structure is the
BOu octahedral framework. Assuming regular ,BOu octa-
hedra, unit-cell edges can be estimated simply from the
.B-O bond distance. The real BOu octahedra, of course,
are not regular, and the unit-cell size is not completely
determined by the B-O bond distance. Strong B-B cation
to cation repulsions elongate the c axis and shorten the a
axis. Ifthe tunnel cation is larger than the ideal size for
its coordination polyhedron, its excess size expands the
a axis. The increase in tunnel size brought on by an excess
size of the A cation is largely offset by the thinning of the
octahedral walls, and the result is just a slight increase in
a as the excess size of the I cation increases. Finally, if
the octahedral cation to anion radius ratio exceeds the
classical critical value, the.BOu octahedron undergoes fur-
ther distortion, and more elongation along c results. Two
simple equations embodying these factors can be used to
estimate the lengths of a and c axes to about +0.04 and
+0.02 A, respectively.

The collapse of distorted octahedral walls around small
tunnel cations causes hollandite-type phases to become
monoclinic. When the tunnel cation is equal to or larger
than the cavity formed by the surrounding O atoms, the
cation cannot move around freely and is constrained to
the center of the tunnel. The forces are centric, and the
symmetry is tetragonal. Wben the tunnel cation is smaller
than its cavity, it can be displaced from the 4/m special
position, and that makes it easier for the octahedral walls
to twist and collapse somewhat around the tunnel cation,
causing the structure to adopt lower symmetry. The te-
tragonal structure tolerates tunnel cation displacements
up to -0. l5 A, but, if the cation is smaller than the cavity
by more than about 0. 15 A, the octahedral walls twist,

o .a/

a a-a aa a tttaa J a

r ^ > { T ( r o +  r d  -  r o  , /  /

o

. L  / -  o o D
o /
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. . E E
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. i-  r .5o
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ts, A

Fig. 5. Theoretical boundaries of symmetry compared with
experimental data. Eqs. 13 (upper) and 14 (lower) divide the
hollandite-type phases into three fields in the plot of average r,
vs. average r, The dashed line is the criterion r"/rn: 0.48 pro-
posed by Post et al. (1982), from which all data are quoted.

sometimes accompanied by movement of the small cat-
ions to off-centered positions, thereby lowering the sym-
metry to monoclinic. If the tunnel cation size is between
these two limits, hollandite can be either tetragonal or
monoclinic, depending on other factors such as, for ex-
ample, octahedral distortions induced by the John-Teller
effect or octahedral ordering.
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Appnxnrx l. Arovrrc cooRDTNATES FoR rDEAL
HOLLANDITE

Atomic coordinates for B, O 1, and 02 atoms in an
ideal hollandite lAo_rB8(O,OH),ul may be derived under
the following assumptions: (l) I4/m space-group sym-
metry; (2) ,B cations at the centers of regular O octahedra;
(3) tunnel cations (A) at the centers of ideal square pris-
matic coordination polyhedra. Tunnel cations, A, occupy
equipoint 2b (4/ m) at 00Yz; octahedrally coordinated cat-
ions, -8, and two crystallographically distinct O atoms,
Ol and 02, occupy equipoints 8h (m) at xy}.

Referring to Figure l, a c-axis projection of the ideal
structure, observe that the horizontal projection ofvector
AOl, line segment AOl, is normal to the octahedral wall
and has a length equal to 7z of the tunnel edge. From
Equation 3

AOI: r , /6(ro+ r") /2. (Al )

Because LaAA' : /0, the components of AOI along x,
xora, and alongy, /orb, are given by

rcorr: cos(% + LA'AD.AOl

-/o,b: sin(/o + LA'AD.AOl

where

LA,AF: sin (^"*):,'" l#*". ru"-l

(42)

:  s in- ' (0 . I  126)  :  6 .464. (A3)

Values of A'F and A'A are from Equations 4 and 5, re-
spectively. Note that LA'AF is constant for all ideal hol-

landite-type compounds. Substituting the ideal value of
a [: b : 5.130(ro + r"),Eq.6], and the value of AOI
(Eq. Al) into Equation A2, we obtain ror : 0. 1487 and
y " ,  : 0 .1868 .

Coordinates of O, are obtained from the components
of vector AO2, where

AO2: AOI + OtO2.

Let d be the angle between OlO2 and the direction of a.
Then

xoza-: xora + OlO2 cos f

lorh :.yo,b * OlO2 sin d. (A4)

From Figure l, we see that

0 : v ,  +  1A 'AD -%+ LJO|OZ.  (A5 )

The LJOIO2 is obtained from the geometry of the ideal
octahedron, with ,B at the midpoint of OlO2, and JB
equal to 'l the octahedral edge length:

lJOlOz:  tan-r (JB/OIB)

: ran 'I{2/r(ro r r")/(ro + r,)l : 35.264.
(A6)

Substituting values from Equations ,A,3 and ,4'6 into
Equation A5, we find 4 : -3.273. Then substituting the
ideal value of OlO2 : 2(ro * r") and the value of @ into
Equations A4, we obtain xo, : 0.5380 and yor: 0. 1645.

Noting that B is located at the midpoint of OlO2, we
obtain

xs:  xot  -F (xo,  -  xo) /2:0.3434

ls: lor * (jo, - !"r)/2 
-- 0.1757.

From this analysis the atom coordinates of any ideal
hollandite are

A t o m x y z
A 0 0 y ,
B 0.3434 0.1757 0

01 0 . t487 0 .1868 0
02 0.5380 0.1645 0.


