A revised dispersion method for determining the composition of olivine, orthopyroxene, augite, and plagioclase

SHU-CHUN SU

Hercules Incorporated, Research Center, 500 Hercules Road, Wilmington, Delaware 19808-1599, U.S.A.

For a solid immersed in a liquid, if the solid's refractive index (RI) matches that of the liquid at the wavelength λ_0 , Su (1993) has derived the following equation, assuming the variation of RI with wavelength obeys the Hartmann dispersion relationship (Hallimond, 1970):

$$n_{\rm D}^{\rm s} = n_{\rm D}^{\rm L} + (\Delta^{\rm L} - \Delta^{\rm s})k_{\rm D} \tag{1}$$

where n_D^s is the RI of a solid at 589 nm; n_D^L , the RI of the liquid at 589 nm; Δ^{L} , the dispersion coefficient of the liquid, $n_{\rm F}^{\rm L} - n_{\rm C}^{\rm L}$; $\Delta^{\rm s}$, the dispersion coefficient of the solid, $n_{\rm F}^{\rm s} - n_{\rm C}^{\rm s}$; and $k_{\rm D}$ equals $[(\lambda_0 - 200)^{-1} - (589 - 200)^{-1}]/$ $[(486 - 200)^{-1} - (656 - 200)^{-1}]$ or $[(\lambda - 200)^{-1} -$ 0.002571]/0.001304. A conversion table (Table 1) was computed to facilitate the conversion of λ_0 to $k_{\rm D}$.

For olivine, orthopyroxene, and augite, Berg and Morse (1981) have established

$$\Delta^{\rm s} = n_{\rm F}^{\rm s} - n_{\rm C}^{\rm s} = z + w n_{\rm D}^{\rm s} \tag{2}$$

where z and w are constants listed by them and given in the equations below.

Substituting Equation 2 into Equation 1, we have

$$n_{\rm D}^{\rm s} = n_{\rm D}^{\rm L} + (\Delta^{\rm L} - \mathrm{z} - \mathrm{w} n_{\rm D}^{\rm s}) k_{\rm D}$$

or

$$n_{\rm D}^{\rm s} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} - z)k_{\rm D}]/(1 + wk_{\rm D}).$$
(3)

For evaluating $X_{\text{end-member 1}}$, which represents the mole fraction of the end-member 1 in a solid-solution series formed between end-members 1 and 2, we have

$$X_{\text{end-member 1}} = (n_{\text{D}}^{\text{end-member 2}} - n_{\text{D}}^{\text{unknown}})$$

$$\div (n_{\text{D}}^{\text{end-member 2}} - n_{\text{D}}^{\text{end-member 1}}). \quad (4)$$

Using the data of Berg and Morse (1981), respective equations can be derived for three mafic solid-solution series.

For olivine, if $n_{\rm D}^{\rm s} = \beta$, we have

$$n_{\rm D}^{\rm s} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} + 0.12265)k_{\rm D}]/(1 + 0.07911k_{\rm D})$$
(5)

and

$$X_{\rm Fo} = (1.8650 - n_{\rm D}^{\rm s})/0.2140 \tag{6}$$

where X_{Fo} is the mole fraction of forsterite in the forsterite-fayalite series.

For orthopyroxene, if $n_{\rm D}^{\rm s} = \gamma$, we have

$$n_{\rm D}^{\rm s} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} + 0.07526)k_{\rm D}]/(1 + 0.05047k_{\rm D})$$
(7)

and

$$X_{\rm En} = (1.7886 - n_{\rm D}^{\rm s})/0.1236$$

$$(n_{\rm D}^{\rm s})/0.1236$$

0003-004X/94/1112-1204\$02.00

where X_{En} is the mole fraction of enstatite in the enstatiteferrosilite solution series.

For augite, if $n_{\rm D}^{\rm s} = \beta$, we have

$$n_{\rm D}^{\rm s} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} + 0.09479)k_{\rm D}]/(1 + 0.06236k_{\rm D})$$
(9)

and

$$X_{\rm En} = (1.7447 - n_{\rm D}^{\rm s})/0.0686 \tag{10}$$

where X_{En} is the mole fraction of enstatite in the augite solid solution.

Using Equations 9 and 10 and the data for KI-4 augite $(n_{\rm D}^{\rm L} = 1.69313, \Delta^{\rm L} = 0.0356, \text{ and } \lambda_0 = 548 \text{ nm or } k_{\rm D} =$ 0.2338: Stoiber and Morse, 1992, Fig. 16-5, p. 293), X_{En} was calculated to be 0.668 or 66.8%, which is in exact agreement with the result obtained by Stoiber and Morse (1992, Fig. 16-5, p. 293).

A similar derivation can be applied also to the plagioclase series. The data of Tsuboi (1923) for the low (α') RI on (001) cleavage flakes suggested to Stoiber and Morse (1992) that

$$10^4(n_{\rm F} - n_{\rm C}) = 83 + 21X_{\rm An}$$

where $n = \alpha'$ and X_{An} is the mole fraction of anorthite in the albite-anorthite series (Ab-An), or

$$\Delta^{\rm s} = (n_{\rm F} - n_{\rm C}) = 0.0083 + 0.0021 X_{\rm An}.$$
(11)

We know also for the Ab-An series as a whole

$$X_{\rm An} = (n_{\rm D}^{\rm S} - n_{\rm D}^{\rm Ab})/(n_{\rm D}^{\rm An} - n_{\rm D}^{\rm Ab})$$

where $n_{\rm D}^{\rm s}$ is the low (α') RI on (001) cleavage flakes.

For individual compositional ranges, Stoiber and Morse (1992, p. 294) established

$$X_{\rm An} = (n_{\rm D}^{\rm s} - n_{\rm o})/\Delta n \tag{12}$$

where the following applies:

An range	n_0	Δn		
0-24	1.5287	0.05165		
24-31	1.5277	0.05587		
31-84	1.5290	0.05144		
84-100	1.5328	0.04688		

Substituting Equation 11 into Equation 1, we obtain

 $n_{\rm D}^{\rm s} = n_{\rm D}^{\rm L} + (\Delta^{\rm L} - 0.0083 - 0.0021 X_{\rm An}) k_{\rm D}.$ (13)

Substituting Equation 13 into Equation 12, we have

$$X_{\rm An} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} - 0.0083 - 0.0021X_{\rm An})k_{\rm D} - n_{\rm 0}]/\Delta n_{\rm N}$$

TABLE 1. Conversion from λ_0 to k_D

λ	0	1	2	3	4	5	6	7	8	9
400	1.8649	1.8458	1.8269	1.8082	1.7897	1.7713	1.7532	1.7352	1.7174	1.6997
410	1.6822	1.6649	1.6478	1.6308	1.6140	1.5973	1.5808	1.5644	1.5482	1.5321
420	1.5162	1.5004	1.4848	1.4693	1.4539	1.4387	1.4236	1.4087	1.3939	1.3792
430	1.3646	1.3502	1.3359	1.3217	1.3076	1.2937	1.2798	1.2661	1.2525	1.2390
440	1.2257	1.2124	1,1993	1.1862	1.1733	1.1604	1.1477	1.1351	1.1226	1.1102
450	1.0978	1.0856	1.0735	1.0615	1.0495	1.0377	1.0259	1.0143	1.0027	0.9912
460	0.9798	0.9685	0.9573	0.9462	0.9351	0.9242	0.9133	0.9025	0.8918	0.8811
470	0.8706	0.8601	0.8497	0.8393	0.8291	0.8189	0.8088	0.7988	0.7888	0.7789
480	0.7691	0.7594	0.7497	0.7401	0.7305	0.7210	0.7116	0.7023	0.6930	0.6838
490	0.6746	0.6656	0.6565	0.6476	0.6387	0.6298	0.6210	0.6123	0.6036	0.5950
500	0.5865	0.5780	0.5695	0.5612	0.5528	0.5446	0.5363	0.5282	0.5201	0.5120
510	0.5040	0.4961	0.4881	0.4803	0.4725	0.4647	0.4570	0.4494	0.4418	0.4342
520	0.4267	0.4192	0.4118	0.4044	0.3971	0.3898	0.3826	0.3754	0.3682	0.3611
530	0.3541	0.3470	0.3400	0.3331	0.3262	0.3194	0.3125	0.3058	0.2990	0.2923
540	0.2857	0.2791	0.2725	0.2660	0.2595	0.2530	0.2466	0.2402	0.2338	0.2275
550	0.2212	0.2150	0.2088	0.2026	0.1965	0.1904	0.1843	0.1783	0.1723	0.1663
560	0.1604	0.1545	0.1486	0.1427	0.1369	0.1312	0.1254	0.1197	0.1140	0.1084
570	0.1028	0.0972	0.0916	0.0861	0.0806	0.0751	0.0697	0.0643	0.0589	0.0535
580	0.0482	0.0429	0.0377	0.0324	0.0272	0.0220	0.0168	0.0117	0.0066	0.0015
590	-0.0035	-0.0086	-0.0136	-0.0185	-0.0235	-0.0284	-0.0333	-0.0382	-0.0431	-0.0479
600	-0.0527	-0.0575	-0.0622	-0.0670	-0.0717	-0.0764	-0.0810	-0.0857	-0.0903	-0.0949
610	-0.0995	-0.1040	-0.1086	-0.1131	-0.1175	-0.1220	-0.1265	-0.1309	-0.1353	-0.1397
620	-0.1440	-0.1484	-0.1527	-0.1570	-0.1612	-0.1655	-0.1697	-0.1740	-0.1782	-0.1823
630	-0.1865	-0.1906	-0.1947	-0.1988	-0.2029	-0.2070	-0.2110	-0.2151	-0.2191	-0.2231
640	-0.2270	-0.2310	-0.2349	-0.2388	-0.2427	-0.2466	-0.2505	-0.2543	-0.2582	-0.2620
650	-0.2658	-0.2695	-0.2733	-0.2771	-0.2808	-0.2845	-0.2882	-0.2919	-0.2955	-0.2992
660	-0.3028	-0.3064	-0.3100	-0.3136	-0.3172	-0.3208	-0.3243	-0.3278	-0.3313	-0.3348
670	-0.3383	-0.3418	-0.3452	-0.3486	-0.3521	-0.3555	-0.3589	-0.3622	-0.3656	-0.3690
680	-0.3723	-0.3756	-0.3789	-0.3822	-0.3855	-0.3888	-0.3920	-0.3953	-0.3985	-0.4017
690	-0.4049	-0.4081	-0.4113	-0.4144	-0.4176	-0.4207	-0.4238	-0.4270	-0.4301	-0.4331
700	-0.4362	-0.4393	-0.4423	-0.4454	-0.4484	-0.4514	-0.4544	-0.4574	-0.4604	-0.4633
720	-0.4952	~0.4980	-0.5009	-0.5037	-0.5065	-0.5093	-0.5120	-0.5148	-0.5176	-0.5203
740	-0.5498	-0.5525	-0.5551	-0.5577	-0.5603	-0.5629	-0.5655	-0.5680	-0.5706	-0.5731
760	-0.6006	-0.6030	-0.6055	-0.6079	-0.6103	-0.6127	-0.6151	-0.6175	-0.6199	-0.6222
780	-0.6478	-0.6501	-0.6524	-0.6546	-0.6569	-0.6591	-0.6613	-0.6636	-0.6658	-0.6680
800	-0.6919	-0.6940	-0.6961	-0.6983	-0.7004	-0.7025	-0.7045	-0.7066	-0.7087	-0.7108

$$X_{\rm An} = [n_{\rm D}^{\rm L} + (\Delta^{\rm L} - 0.0083)k_{\rm D} - n_0]/(\Delta n + 0.0021k_{\rm D}).$$
(14)

Using Equation 14 and the PG-721 plagioclase data (assuming the broadest range of An₃₁₋₈₄: $n_0 = 1.5290$, $\Delta n = 0.05144$, $n_D^L = 1.5542$, $\Delta^L = 0.01764$, and $\lambda_0 = 538$ nm or $k_D = 0.2990$: Stoiber and Morse, 1992, Fig. 16-8, p. 297), X_{An} was calculated to be 0.537 or 53.7%, which is in exact agreement with the result obtained by Stoiber and Morse (1992, Fig. 16-8, p. 297).

ACKNOWLEDGMENTS

The author thanks S.A. Morse at University of Massachusetts for his helpful comments and suggestions that have improved this manuscript.

References cited

- Berg, J.H., and Morse, S.A. (1981) Dispersion method for olivine, orthopyroxene, and augite. American Mineralogist, 66, 985–989.
- Hallimond, A.F. (1970) The polarizing microscope, 302 p. Vickers Instruments, York, England.
- Stoiber, R.E., and Morse, S.A. (1992) Crystal identification with the polarizing microscope, 323 p. University of Massachusetts, Amherst, Massachusetts.
- Su, S.C. (1993) Determination of refractive index of solids by dispersion staining method: An analytical approach. In G.W. Bailey and C.L. Rieder, Eds., Proceedings of the 51st Annual Meeting of the Microscopy Society of America, 456–457.

Tsuboi, S. (1923) A dispersion method of determining the plagioclases in cleavage flakes. Mineralogical Magazine, 20, 108-122.

MANUSCRIPT RECEIVED APRIL 28, 1994 MANUSCRIPT ACCEPTED JULY 19, 1994

APPENDIX 1. DERIVATION OF EQUATIONS

This method is illustrated in Figure 1. Because of the similar triangular relationship between $\Delta n_{\rm E} n_0 n_{\rm E}^{\rm s}$ and $\Delta n_{\rm D} n_0 n_{\rm D}^{\rm s}$, we have

$$(n_{\rm F}^{\rm L} - n_{\rm F}^{\rm S})/(n_{\rm D}^{\rm S} - n_{\rm D}^{\rm L}) = (X_{\rm F} - X_0)/(X_0 - X_{\rm D}).$$
 (A1)

Furthermore, because of the similar triangular relationship between $\Delta n_{\rm b} n_0 n_{\rm p}^{\rm s}$ and $\Delta n_{\rm c}^{\rm L} n_0 n_{\rm c}^{\rm s}$, we have

$$(n_{\rm C}^{\rm s} - n_{\rm C}^{\rm L})/(n_{\rm D}^{\rm s} - n_{\rm D}^{\rm L}) = (X_0 - X_{\rm C})/(X_0 - X_{\rm D}).$$
 (A2)

By adding Equations A1 and A2 together, we have

$$[(n_{\rm F}^{\rm L} - n_{\rm C}^{\rm L}) - (n_{\rm F}^{\rm S} - n_{\rm C}^{\rm S})]/(n_{\rm D}^{\rm S} - n_{\rm D}^{\rm L}) = (X_{\rm F} - X_{\rm C})/(X_0 - X_{\rm D}).$$
 (A3)

Let $\Delta^{\text{L}} = (n_{\text{F}}^{\text{L}} - n_{\text{C}}^{\text{L}}), \Delta^{\text{s}} = (n_{\text{F}}^{\text{s}} - n_{\text{C}}^{\text{s}}), \text{ and } k_{\text{D}} = (X_0 - X_{\text{D}})/(X_{\text{F}} - X_{\text{C}}),$ and Equation A3 becomes

$$n_{\rm D}^{\rm s} = n_{\rm D}^{\rm L} + (\Delta^{\rm L} - \Delta^{\rm s})k_{\rm D}. \tag{A4}$$

By a similar derivation, a general form of Equation A4 can be derived for any given wavelength *i*:

$$n_i^{\rm s} = n_i^{\rm L} + (\Delta^{\rm L} - \Delta^{\rm s})k_i, \tag{A5}$$

Appendix Fig. 1. The dispersion curves of a liquid and a solid. The abscissa is plotted according to the Hartmann equation and is proportional to X or $(\lambda - 200)^{-1}$, where λ is wavelength in nanometers. The subscripts F, D, and C denote Fraunhöfer spectral lines.

where n_i^s is the RI of the solid at wavelength *i* (nm); n_i^L , the RI of the liquid at wavelength *i* (nm) and $k_i = [(\lambda_0 - 200)^{-1} - (i - 200)^{-1}]/[(486 - 200)^{-1} - (656 - 200)^{-1}]$ or $[(\lambda_0 - 200)^{-1} - (i - 200)^{-1}]/(0.001304)$.