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Numerical modeling of crystal shapes in thin sections: Estimation of
crystal habit and true size
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ABSTRACT

Although the size and shape of crystals in thin sections have been measured in a number
of studies, it has not been possible so far to calculate from these data the true, three-
dimensional shape and size of the crystals. A numerical model, based on orthogonal solids,
has been developed to attack this problem. This model shows that crystal habit can be
calculated from width to length ratio distributions for most crystals in massive rocks and
for all crystals in laminated or lineated rocks. Variations in the habit of minerals can
reveal aspects of the physicochemical conditions of crystallization.

The same model has also been used to develop the equations necessary to transform
two-dimensional crystal size distributions into true crystal size distributions. Corrections
for the cut effect and the intersection probability effect both require a knowledge of the

crystal habat.

INTRODUCTION

Although most quantitative studies of igneous rocks
concentrate on whole rock and mineral chemistry, re-
cently there has been a growing interest in quantification
of the textures of igneous rocks. Most work has been con-
fined to the study of crystal size distributions (see review
by Cashman, 1990), with a little work on crystal habit
and orientation (Higgins, 1991) and none on the spatial
arrangement of crystals. All these studies have been lim-
ited by the lack of knowledge of stereological effects, mea-
surements are generally made in two dimensions on thin
sections, but crystals, and textures, are three dimensional.
An exact solution to this problem is only possible for
spherical objects, and empirical methods must be used
for other shapes. Earlier stereological studies were con-
fined to spheres and equidimensional objects (see reviews
in Cashman and Marsh, 1988; Cashman, 1990; Royet,
1991), but the numerical model presented here can be
applied to any orthogonal solid. The particular stereolog-
ical problems addressed here are the determination of
crystal habit and the extraction of three-dimensional
crystal size distributions from two-dimensional measure-
ments of crystals in thin sections.

Crystal habit

The study of crystal habit has a long history. In 1669
Nicolaus Steno (1968), well known for his law concerning
the constancy of interfacial angles, proposed that the ex-
ternal form of a crystal depends on the growth rates of
the different faces. Since that time the factors controlling
growth rate anisotropy, such as temperature and chemical
potential gradient, have become better known (see recent
reviews in Sunagawa, 1987a). These studies imply that
observations of the actual habits of crystals can reveal
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something about their chemical and physical environ-
ment of formation.

Many studies of the habits of silicate minerals have
been concerned with the forms developed during rapid
cooling, such as those seen in some experimental prod-
ucts and volcanic rocks (see for example Lofgren, 1980).
Relatively little work has been done on the habits of the
generally larger crystals in plutonic rocks or the more
euhedral forms in some volcanic rocks (see the review in
Sunagawa, 1987b). Crystal habit is easily measured if a
rock can be disaggregated, but that is not usually practi-
cable. Generally, only two-dimensional slices through a
rock are available, in the form of thin sections.

If a sufficient number of crystals are observed in thin
section, then those with special orientations, for example,
those intersected parallel to their crystallographic axes,
can be distinguished and their dimensions used to estab-
lish the habit and true size of the crystals. However, this
technique has several limitations: crystals with suitable
orientations must be available, and they must be known
to be representative of the whole population. A different
approach is presented in this paper. It will be shown that
statistical analysis of crystal shapes and sizes in thin sec-
tions can be used to establish the habits of most crystals
and their true sizes.

Crystal size distributions

Recently, there has been a resurgence of interest in
crystal size distributions in igneous rocks (see review by
Cashman, 1990). Such studies can provide important in-
formation on the kinetics of crystallization, such as nu-
cleation and growth rates. In this way they can comple-
ment information from chemical and isotopic studies on
the environment of crystallization of the component min-
erals in a rock.
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Fig. 1. Intersection shapes of 100 randomly oriented and po-

sitioned planes with four orthogonal solids of different aspect
ratios (shortest: intermediate : longest). In each case the L pa-
rameter of the solid (1 or 10) is approximately equal to the spac-
ing between the figures.

For want of suitable stereological studies, it has fre-
quently been assumed that the modal crystal length ob-
served in thin section approaches the true length of the
crystal (e.g., Cashman and Marsh, 1988). Cashman (1990)
suggested that the crystal width may be a better measure
of crystal size. Others have suggested that crystal area
may be a better measure than length. Clearly it is impor-
tant to be able to relate all these measurements to a single
crystal-size distribution, where size is the true length of
the crystals. Other parameters, such as area and volume,
can be calculated from the crystal habit and true length.

NUMERICAL MODELING
Isotropic materials

A numerical model has been constructed to simulate
the variations in apparent two-dimensional grain shape
and size in isotropic materials for various different grain
shapes of uniform size. This model is a development of
that described by Naslund et al. (1986). In an isotropic
material any plane intersects crystals with every orien-
tation. From the frame of reference of the crystals, the
intersection can be considered to be that of randomly
oriented and positioned planes. This is the frame of ref-
erence used in the model. The simplified crystal used in
these calculations has the form of an orthogonal solid,
with dimensions S = shortest dimension, I = intermedi-
ate dimension, and L = longest dimension.

A randomly oriented plane was produced as follows:
randomly distributed points were generated with X, Y,
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Fig. 2. Distribution of intersection shapes for different aspect
ratios of orthogonal solids.

and Z coordinates between —1 and + 1, until one point
fell inside a sphere of radius 1 centered on the origin. The
point was projected from the origin onto the surface of
the sphere, and the resulting X, Y, and Z coordinates were
used as the direction cosines of the equation of the plane.
The addition of a randomly distributed number between
—1 and +1 determined the position of the plane. Such
planes were produced until one cut the solid, when the
number of sides and the area, length, and width of the
intersection were calculated. Typical intersection shapes
are shown in Figure 1 for four shapes of orthogonal solid.
Trials for 50000 planes were conducted for S = 1, for I
and L = 1, 2, 5, and 10, and for unconstrained and con-
strained orientations of the planes. The program is writ-
ten in Pascal, and a copy is available from the author.

The intersection of a plane with an orthogonal solid
can produce three-, four-, five-, and six-sided figures (Fig.
2). The most common figure has four sides, and the least
common six. Three-sided figures are generally smaller, in
contrast to five- and six-sided figures, which are among
the largest. The proportions of different shapes are most
strongly dictated by the length of the longest dimension
(L) of the aspect ratio.

Distributions of intersection lengths are complex, with
two or three peaks (Fig. 3A): the mode (highest peak) is
at a length equal to the intermediate dimension, I, of the
crystal, and there are subsidiary peaks at L and \/L? + I2.
Distributions of intersection widths are slightly simpler
than those of lengths (Fig. 3B): the mode is at S, and the
peak is strongly asymmetric, with few narrower intersec-
tions and a long tail to wider intersections. There is a
small subsidiary peak at 1. Distributions of intersection
areas show two to four peaks (Fig. 3C). All habits show
a narrow peak close to zero. This is not an artifact but
reflects a real concentration of intersections of small area,
at the corners of the crystal. The most important peak is
at S-1, with subsidiary peaks at S-L and, for high values
of I, at 1/2. Width to length ratio distributions have one
or two peaks (Fig. 3D). The main peak for prisms (in
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Fig. 3. Frequency vs. (A) intersection lengths, (B) intersection widths, (C) intersection areas, and (D) intersection width to length
ratios for orthogonal solids with different aspect ratios. The distribution of the intersection planes is isotropic.

which I = L) is usually broad and in the region 0.5-1.0.
For other aspect ratios the main peak is at S/I and is
sharp. There is a subsidiary peak at S/L, but it is general-
ly small.

The results of this model can also be revealed in a
qualitative way by an examination of the intersection
shapes (Fig. 1). The cube (1:1:1) has few square intersec-
tions, but most intersections are equidimensional. How-
ever, most of the intersections with the prisms (1:1:10)
are almost square, and few are elongated. Most intersec-
tions with the tablets (1:5:10 and 1:10:10) are elongated,
and few show the face of the tablet. Therefore, almost
square outlines in a thin section indicates the presence of
prismatic crystals, whereas elongated outlines indicate
tabular crystals.

Linear and laminar fabrics

The alignment of nonequant crystals gives linear or
laminar fabrics or both. The numerical model for these
materials is similar to that for the isotropic materials de-
scribed above, except that variation in the orientation of
the planes of intersection is constrained. In contrast to
isotropic materials, the orientation of the section with
respect to the fabric is important. Two orientations are
considered here: parallel and normal to the lamination or
the lineation. For both linear and planar fabrics, the con-

straints on the orientations of the intersection planes in
sections normal to the fabric are different from those in
sections parallel to the fabric. It is assumed that all crys-
tals are perfectly aligned, and hence the fabric is devel-
oped to the maximum extent. All intersections have
four sides.

Crystals in rocks with a laminar fabric are aligned with
their short axes pointing in the same direction. Sections
normal to the lamination have modal lengths, areas, width
to length ratios, and overall data shapes similar to those
of isotropic materials with crystals of the same habit (Ta-
ble 1). In contrast, sections parallel to the lamination are

TaeLe 1. Equations relating modal values and invariant values

of different parameters to the crystal dimensions

Width/

Fabric Length Width  Area length
Isotropic | S S-l /S
Laminar (normal) I S S /S
Laminar (parallel) L I* bl L/
Linear (normal) I s* S 1/8*
Linear (parallel) L | S- L/s
Laminated and linear (normal) " s S-Ir /8"
Laminated and linear (paraltel) L I [ L/

Note: S = shortest, | = intermediate, L = longest.

* Denotes invariant values.
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Fig. 4. Frequency vs. width to length ratios for five series of
500 planes cutting an orthogonal solid of dimensions 1:2:5.

invariant, in that they have single values of length, area,
and width to length, different from those of the normal
section (Table 1).

Crystals in rocks with a linear fabric are aligned with
their long axes pointing in the same direction. Sections
normal to the lineation are invariant and have length,
area, and width to length values similar to the modal
values of isotropic materials with crystals of the same
shape (Table 1). In sections parallel to the lineation, length
is invariant, but the area and width to length ratio are
variable (Table 1).

Crystals in rocks with a linear-laminar fabric are all
aligned in the same direction. This is the simplest case of
all. Sections parallel to the lamination and normal to the
lineation and lamination give invariant values of length,
area, and width to length ratios. These values are equal
to modal or invariant values of a material that has only
a laminar fabric (Table 1).

Differences between the model and crystals

This model is for orthogonal blocks, but crystals rarely
correspond to this shape. The greatest difference is for the
edges and corners: sharp for the model and rounded, or
multifaceted, for the crystals. This difference shows up as
a reduced number of small intersections, that is, short
intersections with small areas, in the crystals. The peak
near zero in the area distributions (Fig. 3C) is unlikely to
exist in nature.

The sharpness of most of the peaks in the synthetic
data (Fig. 3A-3D; length, width, area, and width to length)
is also unlikely to be observed in crystals, partly because
of the more irregular nature of crystals and partly because
of the much smaller number of observations, which ne-
cessitates broader data intervals. However, distributions
of width to length ratios for only 500 trials show that the
position of the peaks and form of the curves can be de-
termined readily from this small number of observations
(Fig. 4).

The invariant values for sections parallel to the lami-
nation or lineation are unlikely to be observed, as the
alignment of crystals is never perfect, and crystal habit is
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Fig. 5. Skewness (mean-mode/standard deviation) vs. I/L

parameters for different habits. There is a strong correlation for
tabular and prismatic habits (squares), but nearly equidimen-
sional figures depart from the line (+). The solid line is a re-
gression of the data excluding the nearly equidimensional data.
Dashed lines are standard errors.

never perfectly uniform. Instead there is a spread in the
data, and the shape of the data distribution changes with
the degree of lamination from the invariant value to that
of the isotropic material.

DETERMINATION OF CRYSTAL HABIT

The model presented above is for blocks of uniform
size. The determination of crystal habit (S, I, and L pa-
rameters) for this special case will first be discussed, and
then the arguments will be extended to the more realistic
case of varying crystal sizes.

For isotropic (massive) materials, a broad peak at large
ratios of width to length indicates that the crystals have
a prismatic habit (i.e., S = I), whereas tabular crystals
produce sharp peaks at S/1. Therefore, in both cases the
I parameter can be determined.

The L parameter can, in theory, be determined from
the subsidiary peak at I/L, but this peak is small and is
unlikely to be observed in natural distributions. Another
approach is to use the skewness of the distributions, where
skewness = (mean mode)/(standard deviation).

There is a correlation between the skewness and I/L
for most solids, except for solids that are almost equidi-
mensional (Fig. 5). Hence the skewness generally can be
used to estimate the L parameter, even if the precision is
not very good. However, it is best to confirm L values by
the examination of hand specimens or specially oriented
crystals in thin section.

All three parameters of crystal habit (S, I, and L) can
be determined in lineated and laminated materials from
the mode of the width to length data in the sections nor-
mal and parallel to the fabric, using the relationships in
Table 1.

In most natural materials crystal sizes vary, and it is
always possible that habit varies with size. It is pertinent,
then, to ask how such variations can be determined. Ex-
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Fig. 6. (A) Massive and (B) laminated anorthosite from the Sept Iles mafic intrusion. Maximum field of view is 7 cm. Scale bar

is 1 cm.

amination of the distributions of intersections (Fig. 3)
shows that there are few short or narrow intersections for
all the shapes considered here. Therefore, most of the
width to length ratios used to determine the crystal habit
are contributed by the larger intersections with a rela-
tively limited range in intersection size. Hence, in a pop-
ulation of crystals with different true sizes, the width to
length distribution of each class of intersection lengths
(or areas etc.) will reflect the habit of the corresponding
class of crystals. That is, the habit of crystals in each true
size class can be determined more or less independently
from the variations in the width to length ratios, subject
to the limitations described above.

Plagioclase habit

Compositionally similar massive (isotropic) and lami-
nar anorthosite (Fig. 6) occur together in the upper part
of the Sept Iles mafic intrusion (Higgins and Doig, 1981).
Higgins (1991) described these rocks and used intuitive
arguments to determine the difference in habit between
plagioclase grains in these two facies. Data on the shapes
of plagioclase grains (Higgins, 1991) from the massive
and laminar anorthosite have been replotted in Figure 7,

together with theoretical values from the numerical mod-
el presented above.

The massive anorthosite has a broad peak centered at
a width to length ratio of 0.5, which gives I/S = 2 (Table
1). The skewness of the width to length distribution is
—0.07, indicating an I/L value of 0.4 (Fig. 5) and hence
an L value of 5. The width to length distribution for an
orthogonal solid with dimensions 1:2:5 broadly follows
the data for the massive anorthosite (Fig. 7A).

Data from a cut section of the laminar anorthosite nor-
mal to the lamination have a broad peak with a mode at
0.2-0.25 (Fig. 7B). Application of the model gives I/S =
5 or 4. The section parallel to the lamination has a broad
peak, with a mode at about 0.6. The numerical model
presented here implies that if the crystals were perfectly
aligned, then only a single value of width to length would
be present. The crystals are not perfectly aligned in this
rock, and that contributes to the observed broad peak.
This value gives I/L = 1.7, and hence an overall aspect
ratio of 1:5:8 or 1:4:7. The two different width to length
distributions are shown in Figure 7B: the fit is much bet-
ter for 1:5:8 than for 1:4:7.

The difference in plagioclase habit between the massive
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(1:2:5) and laminated (1:5:8) anorthosite is probably re-
lated to the effects of magma movement (stirring) during
the production of the lamination in the following way. In
a stationary magma, slow rates of chemical diffusion lead
to the production of a chemical boundary layer adjacent
to the crystal face depleted in the crystal components and
enriched in the rejected components. It is the chemical
potential adjacent to the crystal face that controls the
rates of growth of the different faces and hence the habit
of the crystal. Movement of magma mechanically re-
moves material from the chemical boundary layer and
replaces it with fresh material less depleted in crystal
components. This changes the chemical potential near
the crystal face and hence the growth rate and crystal
habit. Those faces with the fastest growth rates are most
strongly affected by this process, as they are those most
depleted in the crystal components. For example, stirring
of the magma during the production of the lamination
doubled the growth rates of the I and L dimensions, rel-
ative to the S dimension.

A change in plagioclase size and habit has also been
observed in basalts from the 1984 Mauna Loa eruption
(Cashman, 1990). The modal width to length ratio varies
from 0.33 to 0.13, implying a change in S/I from 1:3 to
1:8. Unfortunately the data are insufficient to assess the
variation in the L parameter. The variation in S/I was
interpreted by Cashman (1990) as reflecting changing
conditions of crystallization with time, specifically an ap-
proach to equilibrium. However, it could also be related
to the increased stirring of the magma as the eruption
proceeds. It is interesting to note that the change in the I
parameter is of the same magnitude as the difference be-
tween the plagioclase in massive and laminated anortho-
site at Sept Iles.

Corrections of crystal size distributions

The conversion of apparently two-dimensional size
distributions to true three-dimensional size distributions
is a complex stereological problem (see review by Royet,
1991). There are two separate sectioning problems: the
cut effect, which has been developed in the model above,
and the intersection probability effect, which will be dis-
cussed later.

The cut effect concerns the reduction in intersection
sizes produced when the intersection plane does not pass
directly through the center of the crystal, parallel to the
longest axis. The model presented here shows that the
mode of the crystal length in thin sections of isotropic
materials is equal to the I dimension. For sections normal
to the fabric of laminated or lineated materials, the mode
of crystal length is also equal to I, whereas in sections
parallel to the fabric the modal length is equal to the true
length L.

Cashman (1990) suggested that intersection widths
might be less variable than intersection lengths. The re-
sults of this model confirm that, especially for prismatic
crystals. However, the advantages of width measurement
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Fig. 7. Width to length distributions for massive and laminar
anorthosite from the Sept Iles intrusion are shown in solid lines
(Higgins, 1991), model distributions in broken lines. The verti-
cal axis is abundance normalized for the interval width and
number of data points. (A) Massive anorthosite compared with
results from a model with dimensions 1:2:5. (B) Sections of lam-
inar anorthosite normal and parallel to the lamination. The
models are for sections normal to lamination with dimensions
1:4:7 and 1:5:8. The model predicts an invariant value for the
section parallel to the lamination.

must be balanced against the greater errors associated
with the smaller sizes to be measured.

Crystal size distributions (Cashman and Marsh, 1988;
Marsh, 1988; Cashman, 1990) can be corrected for the
cut effect in two ways. The simplest is to assume that all
observed crystals have the same length as that of the modal
value. Then all that is necessary is to multiply the crystal
size distributions by correction factors derived from Ta-
ble 1. A more complex correction can be made using the
calculated distribution of intersection lengths for a crystal
of a particular habit, such as those in Figure 3A. These
corrections are applied stepwise to the length intervals.
The added complexity of this procedure and the possible
introduction of further errors is probably not justified by
the precision of measurement in most studies.

The intersection probability effect concerns the likeli-
hood that a random plane would intersect a crystal. For
spheres of uniform size this effect is related to size, by
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size [(S + I + L)/3] vs. number per unit area (N,) for various
sizes and shapes of orthogonal solids. The dashed line is a re-
gression of the data. It has a slope of 1.56 (1/0.64).

means of the relation N, = N,/D where N, is the number
of crystals per unit volume, N, is the number of crystals
per unit area, and D is the diameter.

The computer program used above to investigate the
cut effect also gives values for N, and N,, shown in Figure
8 for orthogonal solids of different sizes and shapes. These
data indicate that for orthogonal solids the equation must
be modified to N, = N,/(0.64 D') where D' = mean size
=(S + I+ L)/3 and 0.64 is a shape constant. This equa-
tion must be applied separately to each size interval of
the crystal size distribution. It has been shown above that
in most situations the modal length is equal to the I di-
mension. The mean size (D’) for the interval can then be
calculated from the midpoint of the interval and the crys-
tal habit (values of S, I, and L). This correction is applied
in addition to that for the cut effect.

CONCLUSIONS

Numerical modeling presented here shows that for an
orthogonal crystal the distribution of width to length ra-
tios of the intersections can be used to establish the crys-
tal habit of the solid, except for almost equidimensional
crystals in isotropic materials. The model also illustrates
that cubic crystals rarely produce square intersections,
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but instead they are produced commonly by prismatic
crystals. Tabular crystals commonly yield elongated in-
tersections.

Once the crystal habit has been determined, then dis-
tribution of crystal lengths, widths, or areas in thin sec-
tion can be partly corrected for stereological effects and
transformed into three-dimensional crystal size distri-
butions. Among other uses, the true growth rates of the
different faces of crystals can be determined from such data.
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