
American Mineralogist, Volume 79, pages 1053-1067, 1994
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A general expression for the free energy ofordering, based on Landau theory, is proposed
for describing the thermodynamics of nonconvergent cation ordering in minerals. The
energy due to fundamental structural differences between crystallographic sites over which
ordering occurs is accounted for by adding a term that is linear in the order parameter, Q,
to an expansion ofthe form frequently used to describe phase transitions, giving

G: -hQ + lza(T - T")Q' + the,Q'

where ft, a, 7., and e, are constants and n: 3,4, or 6. Normal Landau symmetry rules
are relaxed, with the result that all spontaneous strains are expected to vary linearly with
Q. The excess entropy is shown to vary approximately linearly with Q'z, except at Q =
0.9, where higher order terms are required to account adequately for purely configurational
effects. If the Landau coefficients are allowed to vary with composition, nonconvergent
ordering in solid solutions can, in principle, also be described. Some advantages of the
proposed approach are that (l) it is quite general and does not depend on any structure-
specific model, (2) a wide variety of patterns of structural behavior can be produced by
selecting values for only a limited number of parameters, (3) the problem of identifoing
and determining the magnitudes of different entropy contributions is avoided, and (4) the
simple form of the expansion can be accommodated readily into wider thermodynamics-
based computer models of mineral stabilities.

Irqrnoouc-rrox

Atomic ordering processes in minerals influence both
the stability limits of individual minerals and the parti-
tioning of elements between different minerals. Their
pressure and temperature dependencies have attracted at-
tention largely for the geobarometric and geothermomet-
ric information that they might yield. Following Thomp-
son (1969) a distinction is usually drawn between
convergent and nonconvergent ordering. In the former,
two or more crystallographic sites can become related by
symmetry when their average occupancy by different at-
oms becomes the same. The ordering characteristically
gives rise to a reduction in symmetry at a discrete phase
transition. In contrast, the sites over which nonconver-
gent ordering occurs can never become related by sym-
metry even if their occupancies are identical-a degree of
site preference by different atoms is retained at all tem-
peratures and pressures because of some fundamental dif-
ferences in local coordination or bonding.

Progressively more sophisticated models have been de-

veloped for describing the thermodynamics of noncon-
vergent cation ordering in such minerals as spinels (recent
reviews: Navrotsky, 1987; Ghiorso and Sack, 199 l; Wood
et al., l99l; Della Giusta and Ottonello, 1993), ortho-
pyroxenes (Sack and Ghiorso, 1989; Davidson and
Lindsley, 1989; Shi et al., 1992, and references therein),
and olivines (e.g., Sack and Ghiorso, 1989). At the same
time, advances have been made in the quantitative treat-
ment of convergent cation ordering (e.9., Cohen, 1986a,
1 986b; Salje, 1 990; Carpenter, 1 988, 1992a, 1992b; Car-
penter et al., 1990a). The purpose ofthe present paper is
to present a new method ofanalyzing nonconvergent pro-
cesses, which makes use of recent developments of Lan-
dau theory for describing the thermodynamics of phase
transitions. By setting both convergent and nonconver-
gent processes under the same theoretical framework, a
significant step toward a unified treatment of all order-
disorder phenomena in minerals may be achieved. In two
companion papers (Carpenter and Salje, 1994a, 1994b)
some practical applications ofthe approach are present-
ed, making use of experimental data for NiAlrOo and
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MgAlrOo spinels, the (Mg,Fe)SiO. orthopyroxene solid
solution, and potassium feldspar, to illustrate its strengths
and weaknesses.

Landau free energy expansions appear to provide use-
ful thermodynamic descriptions of phase transitions in
minerals with both displacive and order-disorder char-
acter (recent reviews: Salje, 1990, 1991,1992a; Carpenter
1988, 1992a). Salje and Kroll (1991) have shown that the
same formal approach can be applied to nonconvergent
ordering, in which no phase transition is involved, if an
additional term that is linear in the order parametet, Q,
is included (see also Salje, 1992b). The physical basis of
this extension ofthe theory can be understood by analogy
with magnetic ordering processes occurring in an exter-
nally applied magnetic field. A magnetic ordering tran-
sition occurs by the spontaneous alignment of magnetic
dipoles. Above a critical temperature the dipoles may be
aligned spin-up or spin-down at random, whereas below
this temperature they will have some degree of preferred
orientation. If the crystals are held in a magnetic field,
one orientation of the magnetic dipoles becomes ener-
getically favored at all temperatures; there is then no phase
transition, and the disordered state no longer has an equi-
librium stability field. Thus, in the presence of an applied
field, the magnetic ordering becomes nonconvergent. The
importance of this analogy is that the methodology for
describing the macroscopic effect ofapplied fields on phase
transitions has been thoroughly investigated for a variety
of materials (see Bruce and Cowley, 1981, for example).
The effects of a field on materials that are expected to
conform to Landau theory (e.g., with large spontaneous
strains) appear to be quite well reproduced by normal
expansions in B when a linear term is added.

Harris et al. (1989) and Salje and Kroll (1991) argued,
in effect, that the energy associated with structural differ-
ences between two crystallographic sites over which non-
convergent ordering occurs can be represented in the same
way as energy differences arising from the application of
an external field. The field term is sometimes referred to
as being a symmetry-breaking term because its existence
stabilizes the low symmetry state and ensures that crys-
tals with Q: 0 cannot have an equilibrium stability field.
One implication of that, however, is that the normal sym-
metry rules for determining which terms are allowed in
Landau expansions no longer apply. Odd order terms
cannot be automatically excluded, and so the form of
expansion that would be expected to apply to a general
case ofnonconvergent ordering might be

G: -hQ + t/za(T - T.)Q'

+ t / t b Q 3  *  t / + c Q a  + . . . .  ( l )

Here, a, b, c, ... are standard Landau coefficients, f is
some critical temperature, and ft refers to the effective
field. This equation provides the basis for the present
analysis. It bears qualitative similarities to the series ex-
pansions introduced into the geological literature by
Thompson (1969, 1970), though its origin derives from
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the group theoretical treatment of phase transitions by
Landau and Lifshitz (Landau, 1937; Lifshitz, 1942a,
1942b; Landau and Lifshitz, 1980). In particular, the
treatment of entropy is rather different from that of
Thompson and many subsequent workers.

The paper is divided into four main sections. Firstly,
since many readers may not be familiar with the ap-
proach, the consequences ofadding a field term to a nor-
mal Landau expansion are illustrated schematically. A
theoretical justification, with some analysis of the phys-
ical origin of the terms in Equation l, is then offered.
Comparison is also made with Boltzmann and Bragg-
Williams type solutions and with some of the models
currently used for minerals. In the following section, a
few intimations of the possibilities for describing ther-
modynamic effects due to nonconvergent ordering in
mineral solid solutions are offered. Finally, the way
in which the basic ideas may be applied in practice is
outlined.

L.q,NDA.u THEoRY

Convergent ordering

For a material containing atoms of A and B that order
between sites s and s', the order parameter is usually de-
fined as

Q: lX""  -  X" ; l  :  lXb -  Xi l l  Q)

where Xi is the proportion (between 0 and l) of A atoms
on s sites, etc. Q: 0 represents fully disordered states,
and Q : I represents the fully ordered state of a crystal
with equal proportions of A and B atoms. For phase tran-
sitions that, for symmetry reasons, have odd order terms
that must be strictly zero, the familiar form of the Landau
free energy expansion (without degeneracies, coupling,
etc.) is

G : t / z a ( T  -  T , ) Q ' +  V o b Q o  r  t A c Q 6  + . . . .  ( 3 )

The free energy, G, is, as usual, defined as the excess due
to the transition with respect to the fully disordered state.
It is commonly found that the expansion can be truncated
after the fourth-order term to describe observed excess
properties (second-order transitions). In some systems the
fourth-order term is found to be negligibly small, and the
series can be truncated after the sixth-order term (tricrit-
ical transitions). In both these cases, I is the equilibrium
transition temperature. Ifthe fourth-order term is nega-
tive, the sixth-order term must be positive for stability
(first-order transitions).

Experimental data are rarely of adequate precision 1o
allow the determination of coefficients for more than three
terms of a Landau expansion in one order parameter. For
nonconvergent ordering that would include the term lin-
ear in Q, and so, for comparative purposes, it is conve-
nient to consider only two terms in Equation 3, which
may be rewritten as

G:'/ 'a(T - T.)Q' + t/,e,Q'. @)
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Values of n that are going to be of principal interest are
3, 4, and 6 (n :4 is the second-order case, /, : 6 the
tricritical case, and n : 3 would give a truncated expan-
sion describing a transition in which odd order tenns are
not constrained to be strictly zero). Also for comparative
pulposes, it is convenient to reduce the number of vari-
ables. By dividing by aT., Equation 4 becomes

C = 

"f9.: 
%(T' - DQ, + t/,e',Q, (5)

0.8

Q '

0.6
where Z' : (T/7.) and e;: (e"/aT.).

The equilibrium value of Q is found from the mini-
mum in g, i.e., from

dP ^ 0.4

n:  
O:  ( f '  -  l )Q + e ' ,Q^ , .  (6)

In the l imit * , '  :0, Q attains a l imiting value Qo,
which gives o'2

et. : 
| 

(7)'  
Q6 - ' '

This, substituted into Equation 6, gives

H- . :o : ( : r ' -  \e ,+  g ,a  o  (8 )
00'

and, hence

Q ' @ - 2 r : T ' _ l  ( 9 )

where g' : @tG) and Q' : Q/Q).The form of Q' as a
function of I' that results for n: 3. 4. and 6 is shown in
Figure l.

Nonconvergent ordering

The important step in adapting conventional Landau
theory to describe nonconvergent processes is the as-
sumption that the factors that ensure that crystallograph-
ic sites in a structure are invariably distinct can be treated
as being equivalent to an applied field. By following the
argument that only three terms are likely to be of prac-
tical use, Equation I may be written in the form of Equa-
tion 4 as

G: -hQ + 'La(T - T")Q, + 'he,Q". (10)

Reducing the number of variables as before gives a sim-
plified condition for equilibrium:

Ao '
; * :0  :  -h '  +  ( : r '  -  DQ'  +  (h '  +  r )Q 'a  t  ( l l )
du

*n"f," h' : (h/aT"Q).This has two a-djustable parame-
ters, h' and n. The Z dependence of Q' for n:3, 4, and
6 is illustrated for different values of h'. i.e.. for different
field strengths, in Figure 2. The most important conse-
quences of introducing the linear field term are that there
is no longer any phase transition and that a degree of
order (finite B) is retained at all temperatures. At T' >>
l, the order parameter becomes small, giving Q' >> Q'r-,
for n > 3. In the high-temperature limit the solution for

0 0.2 0.4 0.6 0.9 -, 1
I

Fig. l. The variation of Q' : Q/Qoas a function of T' : T/7.
for convergent processes, obtained by solwing Equarion 8 with
values of n : 3. 4- and 6.

O 'becomes

(r2)

which is independent of the details of the model.
A wide range of equilibrium behavior can be repro-

duced using equations with the form of Equation l0 by
adjusting only a small number of parameters. The field
term can be positive or negative, for example favoring A
atoms ordering onto s sites or A atoms ordering onto s'
sites. Similarly, the order parameter can itself be positive
or negative if it is expressed as Q : (X"" - X{). The
concept of a first-order transition becomes of limited im-
portance in this context because, in the absence of any
phase transition, discontinuities are not expected in the
variation of Q with temperature. However, there is an
advantage in deriving the equation from Landau theory
in this way because it then becomes possible to draw on
the substantial experience gained in the study of phase
transitions as to the likely importance of high-order terms.
Thus, for example, Q3 terms can be small even when they
are allowed by symmetry (Devarajan and Salje, 1984;
Palmer et al., 1990; Hatch et al., 1990; de Dombal and
Carpenter, 1993), and / terms can be small in systems
with order-disorder transitions (Redfern et al., 1989; Car-
penter et al., 1990a).

The linear field term has been added to account for
intrinsic energetic differences between the crystallograph-

Q' :L=! -



I 056

1

0.8
Q'

0.6

0.4

0.2

1

0.8
Q'

0.6

0.4

CARPENTER ET AL.: NONCOIWERGENT CATION ORDERING I

h'contours
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Fig.2. The variation of Q' : Q/Q"as a function of T' : T/T,for nonconverg€nt processes, obtained by solving Equation ll
The contours are for different values of h' (: h/aT.Q).

ic sites on which nonconvergent ordering occurs. It might
reasonably be expected to be at least weakly temperature
dependent, and the assumption of a linear temperature
dependence for f in Equation I I allows this possibility
to be explored. If h' decreases with increasing tempera-
ture there should be some extrapolated value of T', Ti,^,
at which it goes to zero. At T' < ?"i- and Ii,- > l, this
variation can be described as

1

0.8
Q'

0.6

0 .5  1T '1 .5

roscopic Landau coefficients can be understood in terms
of specific microscopic origins (e.9., Salje, 1992a; Salje
and Marais, 1992: Dove et al., 1992:, Heine et al., 1992).
Moreover, the predicted variations of Q and of other ex-
cess properties extrapolated over temperature intervals of
hundreds of degrees are consistent with observed varia-
tions in many systems (see reviews by Carpenter, 1988,
1992a; Salje, I 990, I 99 l, 1992a, 1992b). To explain why
that is so and to examine some of the assumptions in-
volved, it is helpful to compare the physical origin of
terms in the Landau expression with comparable terms
in models of ordering processes that are likely to be more
familiar to mineralogists. The methods of accounting for
entropy and enthalpy, the roles of symmetry and lattice
distortions, and possible behavior at low temperatures as

Q- | are discussed here.

Configurational and nonconfigurational entropy

The excess entropy, S, due to ordering with respect to
a fully disordered state, as derived from both Equation 4
(convergent ordering) and Equation l0 (nonconvergent
ordering), is given by

s: -dqf : _ion' ( l  5)

This is, in reality, a series expansion truncated after the
second-order term. For phase transitions that are purely
displacive in character, the excess entropy is nonconfigu-
rational, and the higher order terms can be shown to be
small (Salje et al., l99t).

For atomic ordering processes, the configurational en-
tropy would usually be calculated from an expression of
the form -R(X1ln Xi + X;ln X; + Xiln Xi + X;iln
Xii), for a crystal with equal numbers of s and s' sites.
Rewriting this in terms of Q and defining the excess con-
figurational entropy, S.""n", ?s being relative to the dis-
ordered state gives

0.5
T'

(  l3 )

where li is the value of h' aI T' : l. Equation I I then
becomes

_ : o : - r'tru-t-, \ + (r' - De'
d Q '  

-  ' " ' \ t t i m - r /

.[',(ffi) +rfo'" (r4)
The variation of Q' has been calculated as a function of
T' for Ti,^: 2 and Ti,^: 4, and the results are shown in
Figure 3. The temperature dependence of h' cerlainly
causes changes in the detailed evolution of Q' but does
not give distinctly different patterns. The same variation
of Q' could probably be reproduced quite closely by as-
suming h' to be constant and allowing its temperature
dependence to be accommodated in the selection of al-
ternative (but constant) values of n, a, T.and e,. For the
present, therefore, a pragmatic approach is maintained,
and it is assumed that any temperature dependence of the
effective field can be ignored.

Trreonrrrclr, JUsrrrIcATroN

In using qualitatively similar types of expansion to de-
scribe thermodynamic changes in minerals, it is some-
times assumed that the coefficients are merely fit param-
eters that have little or no physical meaning. This is not
the case in Landau theorv. for it is known that the mac-
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where n is the number of sites per formula unit over
which the ordering occurs, and R is the gas constant.
Expandingeachof(l + Q)ln(l + Q)and(l - Q)ln(l -

Q) then gives

n R /  t  |  |S.onne: -Tln,  *  Io^ *  *g.  *  *u.  )
(r7)

In this case the series expansion converges relatively
slowly, but for values of Q less than -0.9, S.",0, is still
close to being a linear function of Q2, as shown in Fig-
ure 4.

Equation I 5 is known to account for nonconfiguration-
al contributions to the total excess entropy of phase tran-
sitions that might be predominantly order-disorder in
character (Salje, 1990, 1992a). The origin of these con-
tributions might be understood as arising from so-called
hard phonon modes, for example (Bismayer, 1990; Salje,
1990, 1992b). Any extra configurational effects due to

0.8

0.6

o.4

0.5

local short-range ordering are expected to be consistent
with an expression based on summations of the form
2 Xln X, and therefore also with a series expansion of the
same general form as Equation 17. Real systems may not
necessarily be purely displacive or purely order-disorder
in character, and so the most accurate representation of
the excess entropy would be by some appropriately scaled
combination of equations with the forms of Equations l5
and 17. In practice it is rarely possible to separate and
account explicitly for the different contributions, and the
important question is then, to what extent will the normal
Landau description of entropy (Eq. 15) be valid for the
total excess entropy? As already pointed out, a linear re-
lationship between S"o,n" and Q2 is a reasonable approx-
imation, at least up to O = 0.9 (Fig. 4). Adding some
nonconfigurational entropy to this would then improve
the linearity. For a considerable range of values of B,
therefore, Equation l5 should indeed provide a good de-
scription of all the entropy changes accompanying an
atomic ordering process, if an empirically derived value
of the a coefficient is used. It should be emphasized that,
because the derivative dG/dT is the same for both Equa-
tions 3 and 10, these arguments apply equally to conver-

0.8
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0.6

0.4

0.0 .

0.5 1 
TJ.s

1 .5
T' T' T'

Fig. 3. Variation of Q'as a function of 1'' as in Fig. 2, but with h' alinear function of temperature. Contours are for constant
h'o, which is related to h' in the manner expressed by Equation I 3. Different temperature dependencies are given by setting Ii,* :
2 (top) or T'"^:4 (bottom) in Equation 13.
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S.o"ne:  - ; t ( t  +  B) ln ( t  +  e )

+ (l - Q)rn(r - Q)l (16 )

f( l im) = 2 f( l im) = 2
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Fig. 4. Comparison ofpurely configurational excess entropy,
S..,0., from Equation 15, with a Landau excess entropy, S, (:
aQ2/2), obtained by setting & : S"-0, (J/mol.K) at Q: l. The
calculations were made for ordering equal proportions ofA and
B atoms between two crystallographic sites per formula unit. The
dashed line shows a linear representation of the excess entropy
as a function of Q'?, which would be approximately valid up to
Q =  0 . 9 .

gent and nonconvergent ordering processes. Also, it is
self-evident that the purely configurational entropy could
be given in its standard form and an excess entropy term
in Q2 expressed separately. As discussed at length by Co-
hen (1986a), however, the formal description of config-
urational entropy for systems with ions whose configu-
rations may be constrained by charge balancing
requirements is not so straightforward. Such a division
ofentropy contributions results in a loss ofgenerality and
may not always be helpful.

The direct relationship between excess entropy and Q2
has been demonstrated experimentally for phase transi-
tions in which equilibration at each temperature is suffi-
ciently rapid that heat capacity changes due to all the
structural effects involved can be measured in a scanning
calorimeter. Some examples of this are provided by the
transitions in KrCdr(SOo), (Devarajan and Salje, 1984),
Pb3(POo), (Salje and Wruck, 1983), and NaNO, (Reeder
et al., 1988). The transition in NaNO, is predominantly
of an order-disorder character. If a direct experimental
method for determining the excess heat capacity (and,
hence, the excess entropy) is not feasible, some indirect
means of obtaining a value for the d coemcient must be
used. As discussed in the following section, thetenn aT.Q
contributes directly to the excess enthalpy in such a way
that, in principle, measurements of enthalpy differences
between samples with different states of order can pro-
vide a means of quantifying the associated entropy
vanatrons.

The most significant points here are, firstly, that the
empirical a coefficient can account, to a good approxi-
mation, for all the entropy contributions due to ordering
even if details of all the atomic processes involved, such
as thermal vibrations, charge balancing, or positional dis-
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order, are only poorly understood. Secondly, assigning
the excess entropy to a single coemcient ofthe expansion
in this way means that its value can be determined ex-
perimentally from measurements of excess enthalpy. If
the total excess entropy is assigned separately to ideal
configurational and other terms, this aspect of the ap-
proach is lost.

Enthalpy and the meaning of Z"

Since fI : G + fS, the excess enthalpy, H, due to
convergent ordering is given in the usual way from Equa-
tion 4 as

H : _\AaT.Q2 -l t/,e"Q,. (18)

The excess enthalpy due to nonconvergent ordering, from
Equation 10, is given (for ft independent of 7) by

H: -hQ - t /zaT,Q2 + tke,Q'. ( le)

In the case of convergent processes, T. can have an
obvious physical meaning as the equilibrium transition
temperature when the phase transition is second order or
tricritical in character. More fundamentally, the product
aI. defines an energy whose origin may be understood in
terms of interaction effects of the nearest neighbor type
(A-A, A-B, B-B, etc.). This is illustrated most clearly by
taking two of the general results from the Bragg-Williams
model of atomic ordering in AB alloys. If enthalpy is
assumed to be equivalent to internal energy, the Bragg-
Williams excess enthalpy, Ha*, defined with respect to a
fully disordered state is

Y
; - 5
E

- 1 0

Hu*: -Xr.*Q' (20)

where N is the number of sites per formula unit over
which the ordering occurs. The interaction parameter,
Wu*, is taken to be a constant and depends linearly on
A-A, A-B, and B-B nearest neighbor interaction energies.
The equilibrium transition temperature, f , is given by

(2r)

and. hence.

Hu* : - {*t o,. ez)

This is not quite identical to a truncated Landau expan-
sion for the excess enthalpy but makes a direct connec-
tion between the coefficient for the Q term, nearest
neighbor interaction energies, and a critical temperature.
The geometrical origin of this relationship arises from the
fact that, for a structure with equal proportions of A and
B atoms, the total number of A-A, A-B, and B-B linkages
is proportional ro Q2.If some constant enthalpy is as-
signed to each linkage, the net enthalpy must also be pro-
portional to Q2. The value of Z" then represents a scaling
of this energy. Or course, real mineral structures have
more complex topologies and bonding than simple AB

W"*
2R



alloys, but that fact does not prevent an effective inter-
action parameter relating to nearest neighbor cation sites
from being determined in terms of f in each case. An
almost identical result emerges from the regular solution
model for binary solid solutions, in which the nearest
neighbor interaction energies and a different critical tem-
perature, the solvus crest, are linearly related (e.g., Car-
michael et al., 197 4; Christian, 1975). Thus, in the Lan-
dau expansion, { scales a measure ofconfiguration, a(J/
mol.K), into an energy, aT.(J/mol), whether the ordering
is convergent or nonconvergent, and association with the
Q2 term implies a microscopic origin of the pairwise near-
est neighbor type. A large value of I would signify a
strong driving force for ordering because of this energy
contribution, whereas a small value of f would imply a
relatively small driving force.

Higher order terms in the Landau expansion should
allow the effects of more distant neighbor interactions or
many-body interactions to be expressed. Furthermore,
both long-range and short-range ordering are incorporat-
ed in Equations l8 and 19, if the coefficients are extracted
from experimental measurements of 11 as a function of
Q. In some cases, there may be sufficient evidence from
other sources, such as nuclear magnetic resonance spec-
troscopy, to separate the coefficients into long-range and
short-range contributions. For example, the expected re-
lationship o q Q2, where o is a short-range order param-
eter, appears to describe the degree of short-range Al-Si
ordering in anorthite (Carpenter, l99l; Phil l ips et
ar., 1992).

The physical origin of the linear term in Equation 19
and, hence, ofthe effective field coefficienl, h, lies in the
difference in site energies between the crystallographically
distinct sites involved in nonconvergent ordering. When
complete, exchanging all A atoms from s sites to s' sites
and all B atoms from s' sites to s sites is equivalent to
changing Qfrom +l (fullyordered)to -l (antiordered).
The enthalpy for that would be 2h if n is even.

Symmetry constraints

As discussed in the introduction, adding the symmetry-
breaking linear term to a Landau expansion ensures that
only the low symmetry (ordered) state of a crystal can
have an equilibrium stability field. The normal symmetry
rules governing whether odd order terms (in Q3, Q5, etc.)
must be strictly zero no longer apply. In the first instance,
it might therefore be reasonable to choose n : 3 when
fitting Equation l0 to experimental data. However, ex-
perience with some phase transitions suggests that the
third-order term tends to be small even when it is not
required by symmetry to be zero. Some examples of this
are the cubic + tetragonal transition in leucite (Palmer et
al., 1990; Hatch et al., 1990), the cubic + orthorhombic
transition in K,Cd,(SOo), (Devarajan and Salje, 1984)
and the hexagonal = orthorhombic transition in tridy-
mite (de Dombal and Carpenter, 1993). This is presum-
ably a reflection of the microscopic physical origin of the
Q3 term, along the lines discussed above for the B and
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Q2 terms. No explanation is offered here as to why this
term might in general be small, but the immediate im-
plication is that a more appropriate initial choice for de-
scribing data from some real nonconvergent system may
be n : 4. A choice of n: 6 might be equally appropriate
in that the single high-order term might provide an ade-
quate approximation for several physically real high-or-
der terms that could not be distinguished on the basis of
available experimental data.

The role of strain

lattice distortions accompanying structural changes can
be described formally in terms of spontaneous strains (see
recent reviews by Carpenter, 1988, 1992a; Salje, 1990,
l99l). The analysis for nonconvergent ordering parallels
exactly that for convergent processes. The spontaneous
strain, e, can be accounted for explicitly, rather than im-
plicitly as in Equation 10, by rewriting the Landau ex-
panslon as

G: -hQ + t/za(T - T.)Q' + tke,Q' + peQ

* q r Q ' + . . . + r e z . (23)

The coefficients p and 4 are strain-order parameter cou-
pling constants, and the term in re'? is the (Hooke's law)
elastic energy. The coefficient rconsists ofan appropriate
combination of elastic constants that can be written out
in full for individual cases, as necessary.

At equilibrium a crystal must be at a free energy min-
imum with respect to strain, so that
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and, hence

(24)

(2s)

(26)

Because there are no symmetry constraints determining
which terms are strictly zero in the free energy expansion,
the term in peQ is always allowed. Experience derived
from strain measurements in many materials that under-
go phase transitions indicates that more than one term
may only very rarely be required to account for observed
relationships between Q and e. It is likely, therefore, that
the qeQ2 term (and higher order terms) will be small with
respect to peQand can be ignored. Equation 25 then gives
an expected relationship ofthe form

,: -(+)n
for nonconvergent ordering in this approximation.

The spontaneous strain is a second-rank tensor prop-
erty, and e consists of six components. Each of the com-
ponents is defined in terms of differences in lattice param-
eters of crystals with a specified degree of order at some
temperature, relative to the lattice parameters of the same
crystals at the same temperature but with C : 0. For
example, in the simple case of nonconvergent ordering in
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crystals with orthogonal crystallographic axes, the three
nonzero spontaneous strain tensor components would be

Q - Q o
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where a, b, and c are lattice parameters for the crystals
and eo, bo, and co are the lattice parameters for fully dis-
ordered crystals at the same temperature. The volume
sttain, 4, is given by:

The observation that a given material with noncon-
vergent ordering showed spontaneous strains of greater
than -0.001 would, of itself, have significant thermo-
dynamic implications. Since the strain arises by coupling
with the order parameter, the effective interaction length
of Q becomes large (see references and discussion of min-
erals in Carpenter and Salje, 1989; Salje, 1990). This
causes any fluctuations in the local degree oforder, which
can cause deviations from the simple predictions of Lan-
dau theory, to be reduced or entirely suppressed (see Salje,
1992a, for example). In addition, if there are lattice dis-
tortions, it necessarily follows that there will be changes
in phonon frequencies (e.g., see Bismayer, 1990; Giittler,
I 990; Salje, 1992b) and, hence, also in the excess entropy.
The system will become increasingly of a displacive rath-
er than a pure order-disorder character (in the sense used
by physicists, cf. Bruce and Cowley, I 98 l), and is increas-
ingly likely to conform to the thermodynamic description
generated from a Landau free energy expansion.

Order parameter saturation and behavior as O + I

Conventional Landau expansions give invalid results
for the variation of Q with temperature at very low tem-
peratures in that they incorrectly predict dQ/dT + 0 at
f : 0 K. Additional terms must be included to correct
for this, and Salje et al. (1991) have shown how order
parameter saturation can be accounted for. This satura-
tion, which is observed as a leveling off of Q to some
constant value and is due to quantum effects, appears to
be significant only below a few hundred kelvins, however.
It need not be considered when the ordering processes of
interest occur at normal geological temperatures.

Of more serious concern for the treatment of noncon-
vergent ordering in minerals is the progressively less re-
liable approximation of excess entropy as Q+ I for pure
order-disorder systems and the substantially enhanced
degrees of order promoted by large effective fields. This
issue was evaded in Figures 2 and 3 by scaling Q with
respect ro Qo, the (unspecified) degree of order at 0 K.
Taking Equation l0 as it stands, with , as a positive
quantity, could lead to values of Qo > I, unless the rel-
ative values ofthe coefficients are constrained. The pre-
dicted variation in Q in relation to the true variation
might be as represented in Figure 5. Three solutions are
possible for this problem. Firstly, higher order terms might
be added or the coefficients of the high-order terms made
temperature dependent to ensure Q - | as 7t - 0 K. As
already pointed out, however, experimental data for min-
erals are unlikely to be sufficiently accurate to allow the
extra coefficients to be determined uniquely. Alternative-
ly, fixing Q : I at 0 K (for a crystal with equal propor-
tions of A and B atoms) gives, from the equilibrium con-
dition derived for Equation 10,

h : e , - a T , . (33)

In the fitting procedure to extract values of coefficients
from experimental data it may be just as convenient to
incorporate this constraint by using Q: I at 0 K as an

€ r t :

c22  -

€zz :

ao

b - b o

huo

(27)

(28)

(2e)

(30)

co

V - V ^v :  "
" v o

where the subscript has the same meaning as before. Z.
is also given by the sum of the diagonalized components
of the spontaneous strain matrix (for small volume
strains), and, in the case of orthogonal axes to which
Equations 27-29 refer, this implies

V"-- er, + e22 + er. (3 l )

Strictly speaking, the lattice parameters should be mea-
sured at the equilibration temperature of the sample, to
give a, b, c, a, 0, t, V, or extrapolated from high-tem-
perature measurements from disordered crystals, to give
ao, bo, co, do, 0o,.yo, and Vo. In practice, measurements at
room temperature on crystals with degrees of order
quenched in from higher temperatures can be adequate
(e.g., Carpenter et al., 1990b; Carpenter and Salje, 1994a,
1994b). Given that O: 0 is a stable solution for crystals
of a nonconvergent ordering material only at infinite tem-
perature, values of ao, bo, etc., have to be obtained by
extrapolation. In many cases the individual lattice pa-
rameters may vary linearly lw'tth Q, though, formally, the
expected relationship between lattice strains and the de-
gree of order for nonconvergent processes is expected
to be

e , o u  V , a .  Q (32)

where i, k : l-6. Expressions for the six strain compo-
nents, 4k, in terms of lattice parameters of ordered (Q +
0) and disordered (Q : 0) forms are given by Redfern
and Salje (1987). As with linear strain-order parameter
coupling in convergent systems, the strain and elastic en-
ergy terms can be eliminated from the Landau expansion
by substituting Equation 26 into Equation 23 to give a
renormalized value of 2...." : T, + Qt,/2ar) (e.g., see Salje
and Devarajan, 1986, or Carpenter, 1992a).2"..." would
refer to a crystal that is allowed to deform freely in re-
sponse to changes in the degree of order, and ?". would
refer to a crystal that is clamped in such a way as to
prevent such deformation. The coupling may account for
a substantial proportion ofthe total energy reduction as-
sociated with the orderine.
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(37)

For the limiting case of lhl >> kT, the solution is sim-
ply Q : + l, where the sign depends on the orientation
of the field. This means that the crystal would be fully
ordered. The situation relevant for nonconvergent order-
ing corresponds to lll = kf, in which case the equilib-
rium degree of order would be much lower. For ll | <<
k7. i.e.. for small effective fields. onlv the first term in
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Fig. 5. Variation of Q as a function of 7, illustrating sche-
matically the effect of adding a field term to a normal Landau
expansion. The predicted variation of Q for a Iandau second-
order transition is indicated by L.. Addition ofonly a field term
gives L*., which has Q > | at 0 K. The real behavior at low
temperatures is represented by a broken line and could be re-
produced by a Landau expansion iffurther constraints concern-
ing the relative values of the coefficients were assumed, or if
extra terms were added.

Equation 37 is significant, and the solution is identical in
form to Equation 12.

Bragg-Williams theory

The enthalpy change associated with ordering in the
Bragg-Williams model can be given in the form of Equa-
tion 20. An inherent assumption is that interactions be-
tween cations on different sites occur in a pairwise and
harmonic manner. With the strength of these interactions
being kZ. li.e., W"*/(2 x Avogadro's number)1, the same
result is obtained by asserting that there is a mean field
of strength kZ"Q favoring ordering (see, for example,
Becker, 1978, and the discussion of the Bragg-Williams
model in Christian, 1975). For nonconvergent ordering,
this field, due to the pairwise interactions, is additional
to the effective field, h, and Equation 36 for the order
parameter then becomes

o:'""n(ry#a) (38)

For h :0, this is the traditional Bragg-Williams result:
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additional data point. Finally, the question of what hap-
pens as Q. - | can be ignored when the equilibrium val-
ues of Q in a temperature interval of interest are relatively
small. Each of the terms h, a, 7., and e, could be assumed
to be independent.

Coprplmsox wrrH orHER MoDEr^s

So far, the use of an effective field for describing non-
convergent ordering has been discussed only in the con-
text of Landau free energy expansions. It is instructive to
compare the resulting solutions with those from more
familiar approaches. Here it is shown that, for high tem-
peratures and small fields at least, Landau, Boltzmann,
and Bragg-Williams models predict identical variations
for the equilibrium order parameter. Rather similar ex-
pressions for the energetics are also obtained by treating
the ordering in terms of independent mixing of atoms on
separate sites.

Boltzmann distribution for noninteracting sites

Ifthere are no interactions between cations on different
crystallographic sites, there will not be an order-disorder
phase transition. Some ordering occurs ifthere are ener-
getic differences between the sites, however. Again, with
the efective field, h, representing these energetic differ-
ences and with the earlier formalism for A and B atoms
distributed between s and s' sites maintained, the Boltz-
mann probabilities for the s and s' sites being occupied
by an A atom become

",:*r(#) (34)

and

where k is the Boltzmann constant. Substituting these
equations into Equation 2 and normalizing to express the
ordering in terms of B instead of Xi and Xl gives

T6T

*'(#) -*'(#)
*,(#) **o(

xr: e*o@) rrrr

:,""n(ual (36y
t)
(

)

- h

KT

z l
- l

l 5 '

-  t t

KT

z l
- l

l 5 '

zrJ
a )

Q: tznh. (3e)
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Fig. 6. In a solid solution of the form (A,BXX-Y,2"), the
mixing of A and B atoms on s and s' sites can be described in
terms of two separate solutions. Each site has its own excess
enthalpy of mixing, A11-,.. In crystals with bulk composition,
Xo, preferential ordering of A atoms onto s sites and B atoms
onto s' sites to give site occupancies of Xi and X1, respectively,
gives a net change ofenthalpy ofI1.,o., + I1"d.i.

Thus, the Boltzmann solution (Eq. 36) is only a special
case of Equation 38, namely for f : 0.

The quantitative temperature dependence of Q for T
>> Z. follows from the same series expansion as in Equa-
tion 37, extended by the interaction term T.Q/T:

(40)
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oms on independent crystallographic sites. As has already
been discussed with respect to the Bragg-Williams model
for ordering, pairwise symmetric interactions between
cations on equivalent crystallographic sites and between
cations on nonequivalent crystallographic sites are qua-
dratic in the site occupancies and so are also quadratic in
O (see, for example, Powell, 1977,1983:- Wood and Nich-
olls, 1978). To illustrate the implications of this, consider
a solid solution of the form A(X-Y/.") - B(XJZ.)
where the A and B atoms spread between crystallograph-
ically distinct s and s' sites in some stmcture containing
proportions of X, Y, and Z atoms. The two sites may be
treated as independent solutions with their own associ-
ated excess enthalpies of mixing due to the substitution
A + B. From the regular solution model, the excess en-
thalpy of mixing, AI1-,., on each site would be

AH-,_..: W"X\X|

AH-,-,",: W",X";Xi

where the subscripts s and s' identify the separate sites,
X"n, Xh, etc., are the mole fractions of A and B atoms
occupying these sites, as before, and W, W", are standard
regular solution mixing parameters.

If both W" and W", are positive, there can be a net
reduction in enthalpy, f1.., if the proportion of A atoms
on s sites is increased and the proportion on s' sites de-
creased (Fig. 6). For a bulk composition X^, ordering to
give the occupancies X1 and Xl shown in Figure 6 gives
a net enthalpy ofordering of

H*o -- H*o," * H.,0,". (44)

The enthalpy changes f1.,0." and 11".0',, caused by the
change in occupancy of the two sites, are themselves de-
rived from Equations 42 and 43 as

H*o": W"lX'^(t - X'e) - X^(t - X)l (45)

and

H*at: W",lX";(r - Xi) - X^(r - X)1. (46)

These may be written in terms of the bulk composition,
Xn, and the degree of order, Q, by substituting

(42)

(43)

For small values of Q and aI T >> T. this can be rewrit-
ten as

h
o:* ' -Tn

| / r \f/ a_\' * ,( h\'(le\- i\r - ..-71\-/ -'\r.r/ \ r /

o:Lw.ry +C*.ry)'+

.'G\P)',.(9'] +
(41 )

Temperature, I, in the leading term is now replaced by
T - 7". For lD | << k?i terms in (h/kT)r, (h/kT)3 are
irrelevant, and higher order terms depend on Q2 and Q3
in a manner that is not dissimilar to the high-order terms
in a Landau solution (Eq. 11). The main difference is that
in Equation 4l the higher order terms disappear more
quickly because of prefactors in (7./T), or (7"/T)3.

Independent mixing on sites

The starting point for many models of nonconvergent
ordering in mineral solid solutions is the assumption that
a substantial part ofthe stabilization energy for ordering
can be identified as arising from nonideal mixing of at-

(41)

(48)

(4e)

Equation 44 for the total enthalpy change due to order-
ing becomes

H-o: (w. - ,;(:- *^)n - (%t-Y")o, (so)
\Z

To this must be added the direct energy advantage,

and

XX: X^-3



often referred to as the site preference energy, ofordering
the A and B atoms onto their preferred sites. This may
be taken as a linear function of Q and amounts to 2h for
the complete exchange Q: +l - Q: - l. Equation 50
then becomes

H",o:  -hQ + (W" -

1063

essentially the same as Equation 54. All the models are
likely to give rather similar patterns for the equilibrium
variation of Q as a function of temperature. They may
differ in the detailed variations of G, H, and S that they
predict, however.

ExrnNsrox ro solrD soLUTroNs

In most mineral systems showing nonconvergent atomic
ordering, the variations of thermodynamic properties with
changing composition are as important as the variations
with changing temperature. landau expansions can, in
principle, be used to describe the excess energies due to
ordering in a solid solution by allowing the coefficients to
become composition dependent. Two different approach-
es might be adopted: either a microscopic model of atom-
ic interactions is built up to predict a theoretical form for
the composition dependence, or a macroscopic and em-
pirical course is followed. The latter is of more immediate
practical value, and in this section the possibilities of both
linear and nonlinear composition dependencies for the
coefficients are briefly outlined.

Linear composition dependence for Landau coefficients

As a first approximation, the Landau coefficients might
be treated as linear functions of the mole fraction, X of
a second component added to some solid solution. In the
case of the monoclinic + triclinic transition in alkali feld-
spars with complete Al-Si disorder, available thermody-
namic data can be reproduced by allowing T. ro vary
linearly with composition (Carpenter, 1988). This is a
transition that is probably close to the displacive limit,
however, and may not necessarily typify the behavior at
order-disorder transitions. For a limited composition
range in Na-rich pyroxenes, the cation ordering transition
in omphacite appears to be described by a tricritical ex-
pansion with only T" as a linear function of jadeite con-
tent (Carpenter et al., 1990a). On the other hand, the
Al-Si ordering transition in anorthite-rich plagioclase
feldspars appears to require that the coefficients for the

U and @ terms, as well as f, should vary with albite
content (Carpenter, 1992b).

The basic constraints of composition as a variable can
be illustrated by allowing f to be linearly dependent on
X in Equation 10. The coefficients h, a, and en are as-
sumed to be constant. Q is defined with respect to com-
plete order (Q : l) at the composition A'rBo.' (X-Y,2.)
and is taken as being equal to X"" - X"i irrespective of
bulk composition. For the composition range 0 < XB <
0.5, 4 may be replaced by Zl where

T: : T,lr - u(0.5 - x")l (55)

with z as a constant. Substituting T:' : T/T: for 7' (:
T/7")inEquations l0 and I I then allows the equilibrium
value of Q as a function of Xu to be examined for selected
values of u and n. The value of Qo is taken to be unity
for Ao ,Bo ,(X ̂ Y ,2") at 0 K and, because of the definition
of Q chosen above, does not vary with composition. Two
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(5  1 )

Finally, the coefficient for the quadratic term may be cor-
rected to account for the non-coplanarity ofthe standard
enthalpies, Hooo, Houu, etc., of the pure end-member
phases, S'A" 1X-Y Z,)r, B'By(X-Y l,)r, A'8"' (X-Y Z),,
B,A{(X^YZ)r, where A" represents an A atom on an s
site, etc. (Sack, 1980; Sack and Ghiorso, 1989). The cor-
rection term, A-F/p.., is the enthalpy for the reciprocal re-
action where

a119" : /19,.", + 118,". - H9..", - H8"". (52)

and is incorporated into Equation 5l as

H",u:  -hQ + (W" -

,,)(t - *^)o

w)(;- x")o

The form of the enthalpy of ordering is now identical to
that used by Sack and Ghiorso (1989). For the l:l com-
position, AB(X-Y,Z.)r, it becomes

W '. (53)

w"+ w

which differs from the Landau excess enthalpy by the
absence of a higher order term. The term Af1$. is equiv-
alent to the Bragg-Williams term W"* in Equation 20
(also discussed by Sack, 1980), and so the coefficient for
the quadratic Ierm (t/zaT. in Eq. 20) is seen to contain
contributions both from pairwise nearest neighbor inter-
actions between atoms on s sites and between atoms on
s' sites (intrasite, from the regular solution origin of IZ"
and W",) and from pairwise interactions between atoms
on different sites (intersite).

Configurational and nonconfigurational entropy con-
tributions to the free energy ofordering can be accounted
for either by assuming the latter to be negligible (Sack
and Ghiorso, 1989), or by allowing all or some of the
coefficients to be temperature dependent (Davidson and
Lindsley, 1989; Shi et aI., 1992). This contrasts with the
Landau entropy, which incorporates all the configura-
tional and nonconfigurational contributions in the coef-
ficient of the second-order term.

The significant conclusion, here, is that the Landau free
energy expansion has the characteristics ofa generalized
version of more specific models of nonconvergent order-
ing. Even the semiempirical approach of O'Neill and Na-
vrotsky (1983) gives enthalpy changes in a form that is

, . ,":  -hO - ( '  (54)
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0.6

0.4

compositions. A crystal cannot have a value of Q rcpre-
senting a state with more than all the available B atoms
Iocated on the s' site. Furthermore, Q + 0 is physically
invalid at XB: 0 (Fig. 7 top), since there are no B atoms
available to become ordered in the pure end-member.
Thus, although there may be solid solutions for which
linear changes of the coefficients with composition are
not unreasonable, nonlinear behavior must also be an-
ticipated.

Nonlinear composition dependence for Landau
coefficients

Once a linear solution is excluded, the variety of pos-
sible compositional relationships that may be tried be-
comes almost infinite. There is at present no theoretical
basis for choosing a unique compositional dependence,
and an empirical approach of fitting trial expressions to
observed data for real systems has to be adopted. The
most fundamental constraint is that Q : 0 for all tem-
peratures in pure end-member phases where there are no
atoms of a second component to be ordered. Such a sin-
gularity can be incorporated by making the coefficients a
and e, diverge as Xu - 0. Z. can be chosen to be constant
or allowed to vary. One suitable expression for a as a
function of composition might be

a(X) - a(X : 0.5) : (56)

where a(X : 0.5) is the value of the a coefficient at Xo:
X" : 0.5 and AX is the deviation from this composition;
v and w are constants. An alternative form with the same
characteristics might be

0.1 0.2 0.3 0.4
X(B)

0.5

b*(

'x{

t l

CI

0.6

0.4

0.2

0 0 .1

Fig.7. Variation of Q as a function of composition, X", for
nonconvergent ordering with 7. as a linear function ofXu, from
Equation 55. The contours are for constant 7(normalized with
respect to the value of T"at X" : 0.5). (top) In Equation 55 z :
1, and so 7f remains positive at all compositions; (bottom) z :
2.5, and so 7f becomes negative with decreasing X". Note that
in each case some physically impossible values of @ i.e., values
above the dotted line, are predicted.

sets of solution, with n: 4. h' : 0.001. and u: I or u:
2.5, are shown in Figure 7. The contours are for different
values of ?" renormalized with respect Io T" at the com-
position X" : 0.5. If u : | (Fig. 7 top), 7"j remains pos-
itive over the complete composition range, and if u: 2.5
(Fig. 7 bottom), 7] becomes negative as Xu decreases.

Solutions of the forms shown in Figure 7 might give
reasonable approximations for small deviations of X" from
0.5, but they both give the unreal result Q > 2X"at some

(57)

Some rationalization of why such expansions provide
useful approximations for the effect of composition is de-
rived from a consideration of purely configurational ef-
fects. If it is assumed that the equilibrium value of Q at
0K, q, represents the maximum degree of order possible
for a given stoichiometry and that the associated excess
configurational entropy is So,conne, Equation l5 yields

0.2 0.3 0.4 0.5
X(B)

a(Xt / o.s \-
a(X:0.5)  \0 .5 -  ax l

d.o.*(x):'zWf (58)

Here a.""or(X) represents the Landau coefficient defining
configurational entropy changes in a crystal with com-
position X. S".-*r(l) can be calculated for different com-
positions in the conventional way, and A : I may be
set for Xo : X, : 0. 5, with Q : 0 in the pure end-member
phases (X":  l ,  Xu:0 or  Xn:0,  Xu:  l ) .  At  in terme-
diate compositions the maximum possible degree of or-
der corresponds to one site being filled entirely by atoms
of A or atoms of B, and Qo is given by

Qo: 2X" (for 0 - X" = 0.5)

Qo: 2X" (for 0 < X" = 0.5).

(5e)

(60)



Rearranging terms and making substitutions in Equation
58 gives, for 0 < X" < 0.5,

a***(X) - a".".,r(X : 0.5)

: zs''"1!l(x) - 2s".* ns(x: 0.5). (61)
4Xt"

The question is, then, to what extent does the right side
ofEquation 56 provide an adequate representation ofthe
right side of Equation 6l? The relationship is not easy to
demonstrate analytically, but numerically it is found to
be close to linearity (see Fig. l0d of Carpenter and Salje,
1994a). A similarly linear relationship is found numeri-
cally using the right side ofEquation 57.

Nonconfigurational contributions to the excess entropy
in order-disorder systems result in deviations from these
relationships but are accounted for, to a first approxima-
tion, by fitting values for the coemcients v and w using a
coefficients extracted from experimental data. Thus, al-
though no rigorousjustification is offered here, equations
such as 56 and 57 are seen to provide a convenient means
of expressing smooth variations of a(X) with the required
divergence as Xo+ 0 or X" + 6.

The value of the coefficient e, in Equation 4 must also
diverge as the pure end-members are approached. Once
the value of Qat 0 K is specified, however, it is no longer
an independent parameter and can be determined from
the values of the other coefficients. lf h and f are con-
stant or vary only slightly with X e, diverges more strongly
than a, independently of temperature, such that Q + g

as Xo + 0 or as Xu - 0, and the same basic form of
Landau expansion is retained at all compositions.

Landau expansions of the form used here account for
the energy changes due to ordering with respect to the
fully disordered state (Q : 0).For a complete mixing
model it is therefore necessary to add terms for mixing
ofthe disordered solid solution.

Ax nuprmcAl. AppRoAcH FoR REAL SYSTEMS

A variety of arguments have been presented to justify
the use ofa Landau expansion to describe nonconvergent
processes. At the very least, it can be seen as a generalized
form of many more specific models. Once the basis for
including an effective field term and for accounting for
excess entropies in terms of S cr Q2 are accepted, the
application to real systems is quite straightforward. First,
experimental data for the variation of Q as a function of
Iare required. The condition for equilibrium from Equa-
tion l0 is

*: o: -h + a(T - T,)e + e,e'- ' .  (62)
do

Dividing J, , ,tlr",

o:-r *;e-r")e*7O"' (63)

An initial choice of n : 4 or n: 6 is sensible, and values
of Q > I can be excluded by incorporating Q: I at 0 K
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as a data point. Values of a/h, f, and e,/h can then be
determined from the observed values of Q at different 7",
using some convenient fitting procedure.

A second set of observations is required to determine
absolute values of a, h, and e, from their ratios. One of
the most useful properties to measure is enthalpy, both
because appropriate calorimetric techniques are often
available and because the expression for excess enthalpy
has a form (Eq. 19) that is nonlinear with Equation 63.
The tightest constraints on values of the coefficients are
obtained if the enthalpy data refer to crystals with the
widest possible range ofstates oforder.

If the system of interest forms an extensive solid so-
lution, the procedure must, at present, be repeated for
crystals with different compositions. An asymmetry in
the compositional dependence of Q might be used as an
argument for allowing the value of h to vary with X. On
the other hand, the assumption of constant ft, equal to
the value extracted, say, for Xo: Xu:0.5, allows values
of a(X'), T.(D, and e"(X) to be determined from mea-
surements of Q as a function of X and Z. Additional
enthalpy data would not necessarily be needed, though
they would provide further indications of the validity of
the model. Some empirical expression similar to Equa-
tion 56 could then be used to extrapolate between values
at different compositions, and the final free energy ex-
pansion used to back-calculate Q for all temperatures
and compositions.

Physical insights into the mechanisms of nonconver-
gent ordering processes are likely to result from such
analyses. In particular, the importance ofany nonconfigu-
rational contribution to the excess entropy should emerge.
If it is found that the value of a/2, which would be the
total excess entropy for crystals with a maximum deglee
of order, is similar in magnitude to the total expected
configurational entropy change for these crystals, it is likely
that the excess entropy is mainly configurational. In this
case it may be appropriate to return to the more standard
description ofconfigurational entropy. On the other hand,
a much larger value of a/2 would signify the contribution
of substantial nonconfigurational effects, whereas a small-
er value of a/2 might signify substantial local ordering.
The latter could arise, for example, from local charge-
balancing requirements. Given the nature of the approx-
imation for the excess entropy, as illustrated in Figure 4,
a/2 is unlikely to correspond exactly to S"onne. It is im-
portant to reemphasize, however, that prior assumptions
concerning the relative magnitudes of different entropy
contributions are not required when this overall approach
is followed; the real excess entropy of a system under
investigation can be extracted from experimental data for

Q and H alone.

Coxcr,usroxs
The main advantages in using a Iandau expansion to

describe nonconvergent ordering in minerals are, firstly,
that the approach is general and, secondly, that the some-
times difficult problem of determining different entropy

CARPENTER ET AL.: NONCONVERGENT CATION ORDERING I
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contributions directly can be avoided. Only four param-
eters need to be extracted from measurements of Q, H,
or of some other physical property related to Q. The form
ofthe expansion is also such that it can reproduce a great
variety of thermal or compositional behavior by the ad-
justment of relatively few parameters, and that it can be
incorporated into computer programs for wider thermo-
dynamics-based petrological calculations.

Further theoretical analysis ofsolid solutions is clearly
necessary, possibly through the development of micro-
scopic models. The behavior at high degrees of order may
also need to be examined but, as is demonstrated for
nonconvergent cation ordering in spinels, orthopyroxene,
and potassium feldspar in companion papers (Carpenter
and Salje, 1994a, 1994b), the overall approach appears
to be practical and can be convenient. Through the use
of the Ginzburg-Landau equation (e.g., Carpenter and
Salje, 1989; Salje and Kroll, l99l; Salje, 1992a), the ki-
netics of nonconvergent order-disorder processes might
also be analyzed.
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