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Pressure-induced phase transition in cristobalite: An X-ray powder
diffraction study to 4.4 GPa
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ABSTRACT

The structural behavior of cristobalite, SiO,, has been studied under hydrostatic con-
ditions in a diamond-anvil cell to 4.4 GPa, using high-resolution synchrotron X-ray pow-
der diffraction. On increasing pressure, we observed a phase transition at P, ~ 1.5 GPa,
characterized by the onset of twinning and the splitting of powder diffraction lines. This
transition is reversible and first-order in character. The high-pressure phase, referred to
here as cristobalite I1, can be indexed according to a monoclinic unit cell with a = 9.124(5),
b= 4.625(3), c = 8.394(5) A, 8 = 124.91(5)°, and ¥V = 290.5(2) A at P = 3.1 GPa. The
transition from tetragonal « cristobalite to monoclinic cristobalite II involves a doubling
of the unit-cell size and must therefore be induced by a zone-boundary instability. The
resulting components of the spontaneous strain tensor are analyzed in terms of the change
in point group symmetry from 422 to 2 and of coupling with the macroscopic order
parameter. There is a significant non-symmetry-breaking (volume) strain. The actual sym-
metry-breaking process is a shear parallel to [101] in the tetragonal (101) planes, corre-
sponding to slip on the {111} tetrahedral sheets of the high-7 cubic 8-cristobalite phase.

INTRODUCTION

The phase transition behavior of framework silicate
minerals has been the subject of major interest in recent
years. The concomitant development of mean-field the-
ories of phase transition behavior, microscopic computer
modeling, and new experimental techniques probing a
range of length scales and dynamical phenomena has fa-
cilitated a profound reevaluation of structural behavior
in complex silicates. Many common rock-forming alu-
minosilicates exhibit diverse structural behavior with
changing temperature (and presumably also with chang-
ing pressure), such as cation order-disorder processes (e.g.,
Al-Si), and elastic instabilities that lead to displacive phase
transitions. The coupling between individual order pa-
rameters, often by means of a common lattice strain, can
make the overall behavior very complex.

One way in which the resulting behavior can be ration-
alized is by comparison with well-characterized model
systems, which exemplify particular aspects of structural
behavior. Many phase transitions involve distortions of
the aluminosilicate framework. Attention has therefore
been focused on similar distortions observed in the tet-
rahedral framework structures of pure SiO, polymorphs
in the absence of cation ordering effects, cation mobility,
etc. The expectation is that these phases are most likely
to epitomize the intrinsic behavior of SiO, linkages.

* Present addresses: Emmanuel College, Cambridge, CB2 3AP,
England, and Department of Earth Sciences, University of Cam-
bridge, Downing Street, Cambridge CB2 3EQ, England.

0003-004X/94/0102-0001502.00

Cristobalite is a high-temperature polymorph of SiO,,
generally associated with the late stages of crystallization
in volcanic rocks. In common with tridymite (with which
it is often associated in nature), cristobalite is metastable
under standard conditions, the expected reconstructive
transformation to the equilibrium polymorph, quartz, be-
ing kinetically hindered. The crystal structure of cristo-
balite comprises a three-dimensional network of corner-
sharing SiO, tetrahedra. Each O atom is a bridging O
atom, and so the structure is a fully polymerized tetra-
hedral framework. The SiO, tetrahedra are arrayed in six-
membered rings, within close-packed layers, stacked par-
allel to [111], with three-layer, ABCABC. . . repeat. (This
idealized cubic structure is analogous to that of diamond,
with the C-C bond replaced by Si-O-Si.)

At high temperatures cristobalite shows macroscopic
cubic symmetry, and an aristotype structure of space group
Fd3m is inferred, although the microscopic nature of this
phase is the subject of some debate (Wright and Lead-
better, 1975; Hatch and Ghose, 1991; Schmahl et al.,
1992; Swainson, 1992). On decreasing temperature there
is a first-order displacive phase transition to a tetragonal
form with space group P4,2,2. This phase transition in-
volves a large spontaneous strain (~4%), which can cause
some single crystals to fracture (Schmahl et al., 1992).
Recent theoretical analysis (Swainson, 1992; Dove et
al., 1992; Giddy et al., 1993) suggests that this phase tran-
sition is due to the condensation of a low-lying rigid-
unit mode.

Early evidence for an additional structural phase tran-
sition, occurring at high pressures, came from unpub-
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lished Raman spectroscopy experiments (Russell Hem-
ley, personal communication), which showed the splitting
of certain modes above P ~ 2.0 GPa. These findings were
confirmed by later, more detailed Raman spectroscopy
experiments (Palmer et al., 1991). The first direct evi-
dence for a structural phase transition was reported. by
Yeganeh-Haeri et al. (1990), who used energy-dispersive
X-ray diffraction on a powdered sample in a large-vol-
ume press. They observed the splitting of certain diffrac-
tion lines at P, ~ 1.0 GPa, which suggested a phase tran-
sition to a new phase with lower symmetry. The authors
noted that the phase transition appeared to be second-
order and nonquenchable but were unable to index the
high-pressure phase. This low-pressure phase transition
was not detected in another diffraction study on cristo-
balite (Tsuchida and Yagi, 1990), which nevertheless
managed to uncover two other phase transitions at the
higher pressures of 10 and 30-40 GPa. Again, the nature
of the high-pressure phases remained a mystery.

Our own study is part of a long-term investigation con-
cerned with the pressure dependence of structural behav-
ior in tectosilicates. We focus on the low-pressure phase
transition in cristobalite to illuminate possible frame-
work distortions that may occur in other, commonly oc-
curring tectosilicates at moderate pressures.

EXPERIMENTAL

The sample used for this work is cristobalite from the
Ellora Caves, near Hyderabad, India (Harvard Mineral-
ogical Museum, no. 97849), and is described by Van Val-
kenburg and Buie (1945) and Wolfe (1945). The crystals
formed in a hydrothermal vein, nucleating on fibers of
the zeolite mordenite. Most of the cristobalite crystals are
gem-quality octahedra, about 0.5 mm in diameter, some
with interpenetrant growth twins. In addition, the crystals
are very heavily twinned on a microscopic scale, presum-
ably as a result of the cubic-tetragonal phase transition at
T. ~ 220 °C. The same sample has been used in a number
of other studies (Dollase, 1965; Peacor, 1973; Yeganch-
Haeri et al., 1992; Downs and Palmer, 1994).

For these experiments, a single cristobalite octahedron
was crushed to a fine powder, and transferred to Merrill-
Bassett-type diamond-anvil cell. We used an Inconel al-
loy gasket, between opposing diamond crystals with 600-
pm culets. A 4:1 methanol to ethanol mixture was the
hydrostatic pressure medium. Pressure calibration was
achieved by measuring the laser-induced fluorescence of
tiny ruby chips scattered throughout the sample chamber
and correlating it with the ruby pressure scale of Mao et
al. (1978). Because of the relatively low pressures in this
study, we put great emphasis on trying to ensure a con-
sistent and relatively accurate pressure calibration. Ruby
fluorescence spectra were fitted using least-squares profile
refinement, with Lorentzian functions for the R1 and R2
peaks. Absolute calibration was achieved with reference
to a ruby 1-atm standard, measured in an identical man-
ner to the sample at pressure. In these experiments, pres-
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sure gradients were all less than the experimental preci-
sion of +0.5 kbar.

Synchrotron X-ray diffraction experiments were car-
ried out at beam line X7A of the National Synchrotron
Light Source, Brookhaven National Laboratory, New
York. Monochromatic X-radiation of wavelength A ~ 0.7
A was selected with a curved, asymmetrically cut Si(111)
or Ge(111) monochromator crystal. The diamond-anvil
cell was mounted with its axis parallel to the incident
X-rays, and this orientation was maintained throughout
the experiment. The scattered X-rays were measured by
scanning a detector through 26. Two types of detectors
were used during this work: a conventional, single-chan-
nel Kevex detector and a linear position-sensitive detec-
tor. The position-sensitive detector allowed simultaneous
data collection within a diffraction window of 2° 26, with
the detector moved in 2° steps between successive scans.
This allowed for relatively fast data collection, at high
resolution: Ad/d = 0.001, an order of magnitude better
than the best resolution possible from energy-dispersive
detectors. Further details about this design may be found
in Jephcoat et al. (1992).

Wavelength and 26, calibrations were determined by
measuring a CeQO, reference specimen mounted in the
same position as the diamond-anvil cell. The positions
of diffraction peaks were determined by least-squares
profile refinement, employing a pseudo-Voigt function and
an asymmetry correction.

LATTICE PARAMETERS

X-ray diffraction patterns were collected at five pres-
sures in the diamond-anvil cell, with an additional pat-
tern measured at 1 atm using a laboratory-based Scintag
powder diffractometer. At P ~ 0.7 GPa the cristobalite
remained tetragonal, but, on increasing the pressure to P
= 1.5 GPa, a dramatic difference was observed in the
diffraction patterns. Formerly single tetragonal reflections
had split into a cluster of weaker peaks, as illustrated in
Figure 1. With a further increase in pressure, the split-
tings became better resolved, and the diffraction peaks
moved to higher angles.

The distinct and sudden splitting of diffraction lines
denotes a structural phase transition, as reported by Ye-
ganeh-Haeri et al. (1990) and Palmer et al. (1991). More
specifically, the similarity between clusters of peaks in the
high-P phase and individual peaks in the low-P phase
suggests a definite crystallographic relationship (e.g., sub-
group-supergroup) between the two phases. In our own
single-crystal study of the tetragonal phase (Downs and
Palmer, 1994), we had noticed a transition at P ~ 1.2
GPa; slow, « and 6/26 scans across selected diffrac-
tion peaks revealed splittings characteristic of lamellar
twinning.

In order to distinguish the various phases of cristobal-
ite at high pressures, we recommend an alternative to the
traditional «, 8 nomenclature. We opt for a numbered
system, reflecting the number of symmetry reductions that
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the high-temperature aristotype structure might undergo.
Other workers, e.g., Tolédano and Tolédano (1987), have
already advocated a numbered system, based as it is on
a symmetry classification. The phase with highest possi-
ble symmetry, i.e., the aristotype, is denoted phase 0,
then its subgroups are numbered in succession, with de-
creasing symmetry. The high-temperature, cubic aristo-
type structure (Fd3m) therefore becomes cristobalite 0,
the tetragonal « phase (P4,2,2) is cristobalite I, and this
new, high-pressure phase is henceforth referred to as cris-
tobalite II.

Indexing the high-pressure unit cell

Although we were able to resolve the separation of te-
tragonal peaks into a number of components, it was not
immediately obvious how the diffraction peaks of the
high-P phase could be indexed. The suddenness of the
phase transition and the identical profiles displayed by
all diffraction peaks at and above this pressure indicated
that we were dealing with one specific phase, and not a
mixture of two or more phases. [This was confirmed in
Raman spectroscopy experiments (Palmer et al., in prep-
aration), which show an abrupt discontinuity in the fre-
quencies of certain modes on moving from one phase to
the other. These measurements also indicate that for
samples repeatedly cycled through the phase transition,
it is possible to observe the coexistence of both low-P
and high-P phases within the well-defined hysteresis in-
terval (P, = 0.2; P. = 1.2 GPa), characteristic of a first-
order displacive transition.]

Using the TREOR90 computer program (Werner et al.,
1985) we were able to index the high-P powder diffraction
data automatically on the basis of a monoclinic unit cell.
Since the phase transition is a reversible one, apparently
displacive, we would expect a simple relationship be-
tween the unit cells of low- and high-P phases. In order
to compare these unit cells directly, the tetragonal cell
must be extrapolated to the corresponding pressure with-
in the stability field of the monoclinic phase. The unit-
cell data of Downs and Palmer (1994) for the same (te-
tragonal) cristobalite sample are used for comparison. A
least-squares fit of the third-order Birch-Murnaghan
equation of state, with ¥, = 171.1 A?, gives values of
11(1) GPa for the isothermal bulk modulus, K;,, and 12(4)
for the pressure derivative, K'. By replacing the term V,/V
by the axial ratio a,/a or ¢,/c, we can extrapolate the cell
parameters @ and c¢ to high pressures. The resulting mod-
uli are K,; = 39(5), K’ = 40(20), and K, = 30 + 10, K,;
= 26(3) GPa for the g and ¢ axes, respectively.

At P = 3.1 GPa, the high-P monoclinic cell is approx-
imately double the volume of the extrapolated tetragonal
cell (Table 1). Furthermore, the b cell length is close
(within 3%) to the extrapolated a (or b) parameter for the
tetragonal cell. In order to facilitate the comparison of
the two structures, it is useful to describe the high-pres-
sure cell in terms of a pseudotetragonal cell, with its axes
approximately parallel to the axes of the low-P tetragonal
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Fig. 1 X-ray diffraction patterns for cristobalite at 1 atm and
3.1 GPa (X-ray wavelength = 0.700 A). Diffraction peaks are
indexed according to the monoclinic B cell of cristobalite IT, with
the corresponding indices for the tetragonal P unit cell (cristo-
balite I) given in parentheses.

unit cell. This nonconventional cell is double the volume
of the standard cell and is B-face centered. The orienta-
tion relation may therefore be expressed as

a 101 a
b = 010){b] . (1)
/) —-101 ¢/ pu

In the absence of single-crystal diffraction data for the
cristobalite II phase, we cannot be absolutely certain of
the relative orientations of the cristobalite I and II lattic-
es. However, it is possible to infer the orientation relation
by observing how the tetragonal powder diffraction lines
split into their monoclinic counterparts (Fig. 1) and not-
ing relationships between the unit-cell parameters. Our
proposed relationship between the extrapolated tetrago-
nal unit cell and the monoclinic P (conventional) and B
(nonconventional) unit cells is illustrated in Figure 2. The
monoclinic B cell is interpreted as a supercell comprising
four unit cells of the low-pressure tetragonal cell. The
orientational relationship between cristobalite I (tetrag-
onal P) and cristobalite II (monoclinic B) can then be
approximated by

a 200 a
b ={010])(Db}) . 2)
€/ su 002 ¢/ m
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TasLE 1. Lattice parameters for cristobalite | and cristobalite II

P(GPa) a(A) b(A) c(A) 8 V(&)
0.0001 Y2 x 9.950(2) 4.975(1) Y2 x 13.848(8) 90 Ya x 658.5(3)
1.61(1) 9.401(9) 4.746(3) 13.890(9) 91.63(4) 618.6(5)
2.04(3) 9.312(9) 4.706(3) 13.83(1) 91.80(5) 605.8(5)
2.81(7) 9.146(96) 4.639(4) 13.792(12) 92.08(5) 584.7(5)
3.05(6) 9.123(5) 4.625(3) 13.775(8) 92.02(4) 580.9(4)
4.37(4) 8.951(2) 4.561(1) 13.743(3) 92.43(1) 560.5(1)

Note: lattice parameters for the tetragonal cell extrapolated to P = 3.05 GPa are a = V2 x 9.554, b= 4.777, ¢ =2 x 13.046 A, V=1 x 597.6

Az. A monoclinic B cell is used for cristobalite Il.

The inferred space group of the monoclinic phase is
P2,, which is a subgroup of P4,2,2; for this case the unit-
cell volume doubles at the phase transition, with the driv-
ing order parameter relating to an R-point zone-bound-
ary instability (Stokes and Hatch, 1988). The crystal
structure has been solved from a combination of DLS
and Rietveld techniques and will be presented elsewhere
(Palmer and Finger, in preparation). The new structure
has a displacive relationship with the low-P form, con-
sistent with the relations presented here.

Pressure-dependence of the lattice parameters

Using the orientation relation between the tetragonal
and monoclinic structures, we may directly compare the
lattice parameters for a cristobalite (single-crystal data
from the same crystals. Downs and Palmer, 1994) and
cristobalite II (this study). Figure 3 reveals the abrupt
nature of the structural phase transition at P ~ 1.6 GPa.
The unit cell collapses parallel to a and b, and the 8 angle
increases dramatically from 90 to 91.6° at the phase tran-
sition. Rather intriguingly, the ¢ axis, which is the most
compressible axis in the tetragonal phase, shows a re-
markable increase, or rebound, at P, almost as if a com-
pressed structural spring had been released. The cell pa-
rameters then follow a curved path of decreasing slope,
with continued compression, which must reflect a high
compressibility and pressure derivative for cristobalite II.

CRISTOBALITE
Il
(Moneclinic P)

CRISTOBALITE

{Monoclinic B)
CHISTDlEIALlTE

(Tetragonal)

Fig. 2. Comparison of the low- and high-P phases of cristo-
balite (designated cristobalite I and II, respectively), projected
onto (010). The low-P cell (shaded and with a dashed outline) is
based on the extrapolation of tetragonal parameters to 3.1 GPa.
Two settings of the monoclinic cell are shown.

SPONTANEOUS STRAIN

For a displacive phase transition involving a super-
group to subgroup relation, the order parameter, O, may
couple to the lattice strain. The resulting excess lattice
distortion is characteristic of the phase transition and is
usually expressed as the spontaneous strain, ¢ (Carpenter,
1992). Because one can never measure @ directly, mea-
surements of macroscopic properties, such as the spon-
taneous strain, are essential for the thermodynamic de-
scription of phase transition behavior. The zone-boundary
nature of the cristobalite I — II phase transition (accept-
ing the change in space group from P4,2,2 to P2)) leads
us to expect quadratic coupling, € oc O? (in lowest order),
to the spontaneous strain.

The symmetry of the spontanecous strain tensor is de-
termined by point-group relations. The subgroups of 422
and the nonzero components of their spontaneous strain
tensors are listed in Table 2. For the phase transition 422
— 2, the active representation is of type E (Janovec et
al., 1975; Salje, 1990), comprising an orthogonal pair of
basis functions. The xz (e5) basis function describes a shear
parallel to a, such that the angle 8 departs from 90° (Fig.
4a). The tetragonal condition a = b is relaxed in the
monoclinic system, and so an additional improper strain
is allowed, involving extensions or contractions parallel
to these two axes (i.e., nonzero e,,, €¢,,). This strain is
subject to the constraint that there shall be no net vol-
ume change, and therefore we have the condition that
€, = —é.

The alternative basis function yz — xz (e; = —e,) 1s a
shear parallel to [110] in the (1T0) plane of the tetragonal
cell, leaving a unique (diad) axis perpendicular to the (110)
shear plane (Fig. 4b). There is no longer any constraint
that ¥ = 90°, and so an additional improper strain, e,,, is
allowed. The resulting unit cell has « = 8 # 90° (because
of e,; and e,;, respectively) and vy # 90°. This is better
described by a conventional, monoclinic unit cell, with b
perpendicular to the (110) shear plane of the tetragonal
phase and with a and c¢ lying within this plane.

The two distortion schemes and the unit-cell relation-
ships are summarized in Figure 4. By comparing this fig-
ure with the actual monoclinic unit cell (and its pseudo-
tetragonal relation) displayed in Figure 2, it is clear that
deformation can be described by the xz basis function
but not by the yz — xz basis function.

We have described the spontaneous strain that violates
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TaBLe 2. Spontaneous strain relations for the subgroups of 422

: No.

Active  Sub- Spontaneous strain elastic Basis

repn. group  Proper Improper domains functions
A, 4 1 z
B, 222 e =-¢, 2 (x2 — y?)
B, 222 [ 2 xy
E 2 =X e =6 4
E 2 e=-g e 4 X, ¥, X2, yz
E 1 €, € €, 6= —6 8

Note: the monoclinic subgroups correspond to an orientation with the
unique axis parallel to [010]; after Salje (1990).

the symmetry of the supergroup 422. In addition to this
symmetry-breaking strain (e®), extra, non-symmetry-
breaking strains {e™*) are allowed, which couple to the A
representation of 422. These strains do not affect the off-
diagonal (shear) terms of the strain tensor but may mod-
ify the on-diagonal terms, and hence, the unit-cell vol-
ume. From Table 2, we expect symmetry-breaking strains
parallel to a and b, but not ¢; we may therefore express
the axial strains as

e, = e+ e 3)
en = e + en “4)
ey = e &)

The non-symmetry-breaking strains must conform to the
high-symmetry point group 422, and therefore we have
the condition that

e = ey * ey (6)
Also, we already have a relation between two symmetry-
breaking strain components (i.e., for no volume change)

that

el = —e. Q)

From these conditions, we arrive at the relations
er = e, + e,) 8)
es = Ye,, — e,). %)

The phase transition involves a shear plus a volume

—

Fig. 3 Pressure dependence of the unit-cell parameters for
cristobalite. The subscript O refers to the tetragonal phase and
m refers to the pseudotetragonal setting of the monoclinic, cris-
tobalite Il phase. The solid symbols denote measurements from
this study, using X-ray powder diffraction; the open symbols
denote single-crystal X-ray diffraction measurements on the same
sample, from Downs and Palmer (1994) (symbol size exceeds
the experimental estimated standard deviations). The dashed lines
through the tetragonal cell parameters q,, ¢,, and V| represent
the best-fit Birch-Murnaghan-type functions and are used to ex-
trapolate the tetragonal base lines into the stability region of the
monoclinic phase.
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(b)
____Me23(= —£€13)
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Fig. 4. Possible strain relations for the two distortion mech-
anisms characteristic of a phase transition from tetragonal 422
to monoclinic 2. The axial vectors of the undistorted tetragonal
cell are indicated by x,—X;. (a) The xz basis function. The proper
strain is e ;. Additional, improper strains, e,, and ¢,, (= —é,,)
are allowed. (b) The yz-xz basis function. The proper strain is
e, (= —e,;). Additional improper strain, e,,, is possible (not
illustrated here), which acts as a symmetrical shear of the unit
cell, extending or compressing it parallel to [110], while preserv-
ing the diad perpendicular to the (110) plane.

X1

<}
X3

€29

Xy

change. The measured strain tensor, S, can therefore be
separated into symmetry-breaking and non-symmetry-
breaking tensors:

en 0 ey e 00 e 0 ey
S= e, 0 )= e 0 )+ —e5 0
€35 g © €3y g . 0

(10)

The symmetry-breaking strain tensor may be diagonal-
ized to reveal the orientation (i.e., the shear plane) and
magnitude of the corresponding strain ellipsoid.

The individual components of the spontaneous strain
tensor may be calculated from the unit-cell parameters of
cristobalite I1, and those of cristobalite I extrapolated to
the same pressure, using the general equations of Schlenker
et al. (1978), summarized in Carpenter (1988). The spon-
taneous strain components are plotted in Figure 5. Note
the very large non-symmetry-breaking strains emb, eusp,
and e, in contrast to the rather smaller symmetry-break-
ing strains e and ¢33 and the shear strain, e,,.

DiscussioN

One of the crucial questions facing anyone trying to
extend the Landau description of phase transitions to
conditions of high pressure is the behavior of the excess
volume. It transforms according to the identity represen-
tation A,, which is proportional to Q? in lowest order,
but there may be higher order dependencies on Q. For
high-temperature phase transitions where the volume
changes tend to be relatively small, the volume strain is

0'08 ‘I LI I LI L l LI L I Trra I LI I_'
i —o
0.06 |~ 33 ~
o) & =
'a 0.04 _— —-
a F | 2
w 0.02 [ | -
3 = | = o—Jed
5} NG O - 2
£ 0.00 o
g ?’“*@O ........ [0 0 T u—— o) 1 sb
& -0.02 |
0.04 £
o 11
_0_06Illl.]_J_l]I[IIIIIIIIIIlIlI
0 1 2 3 4 5
Pressure [GPa]
Fig. 5. Spontaneous strain components for monoclinic cris-

tobalite. The solid symbols represent the measured lattice strains.
The lattice strains parallel to x and y (¢,, and e,,) involve sym-
metry-breaking e = —e3 and non-symmetry-breaking com-
ponents e} = e33°, which are plotted as open symbols. The mag-
nitudes of the e; calculated for data points below the phase-
transition pressure give an indication of the uncertainties in-
volved. The curves are guides for the eye to distinguish the dif-
ferent strain trends.

observed, apparently without exception (Carpenter, 1992),
to be proportional to the square of the order parameter.
By contrast, at high pressures the volume changes are
significantly larger, and one might expect to observe de-
viations from the ideal case V,, @« Q2.

One can test for nonideality by directly comparing the
pressure dependence of symmetry-breaking and non-
symmetry-breaking (volume) strains. Because of the zone-
boundary nature of the phase transition cristobalite T —
II, both the symmetry-breaking strain (E representation)
and the non-symmetry-breaking strain (A, representa-
tion, volume) are proportional to @? in lowest order. In
the absence of higher order terms, we would therefore
expect linear scaling between the different strain com-
ponents. However, if higher order coupling to the order
parameter is significant, there is no longer any reason to
believe that the various strain components will continue
to scale linearly. (It is highly unlikely that individual strain
components would have identical coupling constants).
Figure 6 demonstrates that ¢,, « e,,, indicating that either
these components have identical higher order couplings
to the order parameter (which would be exceedingly for-
tuitous), or, as seems more likely, there are no significant
higher order coupling terms at all—in which case, the
volume-changing strain remains proportional to the
square of the order parameter. That is despite the fact
that cristobalite is an example of a system with much
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Fig. 6. Symmetry-breaking strain component (e,;) as a func-
tion of a non-symmetry-breaking strain component (e,;). The
two strains scale linearly with each other, reflecting their depen-
dence on the square of the macroscopic order parameter for the
tetragonal to monoclinic phase transition.

larger spontaneous strains (~6-10% for ¢* and 2-4% for
e) than is typical for proper ferroelastics (~2%) and im-
proper ferroelastics (<1%).

Because the strain components are observed to be all
proportional to each other, the overall spontaneous strain
ellipsoid must change in size, but not orientation, with
changing P and T. For the total strain (including sym-
metry-breaking and non-symmetry-breaking compo-
nents), the principal axis of the tensor is found to remain
at about 8 = 10° to the x axis, while the ellipsoid of the
symmetry-breaking strain remains oriented at approxi-
mately 6> = 40° to the x axis for all pressures. For fer-
roelastic phase transitions we consider the strain-order
parameter coupling only, leading to renormalized elastic
constants, reflecting the inverse susceptibility. Because the
orientation of our strain ellipsoids is invariant with pres-
sure, we can confidently state that the strain-order param-
eter coupling is invariant over this pressure range. This
high-pressure phase transition can therefore be treated in
the same Landau manner as many high-temperature
structural phase transitions.

Because of the constant e-Q coupling, it is valid to cal-
culate a total, scalar spontaneous strain from the different
strain components. There are various definitions for such
a strain, but perhaps the most commonly used one (e.g.,
Redfern and Salje, 1987; Carpenter, 1988; Salje, 1990) is

= \/f}_e (11)

i=1

where e, are the components of the spontaneous strain
tensor derived above. The total strain, proportional to
(2, is plotted in Figure 7 and shows good agreement with
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Fig. 7. Pressure dependence of the total spontaneous strain,
€. The solid line represents the best-fit Landau function cor-
responding to ¢ o« Q2 for a first-order phase transition. The mag-
nitude of ¢, calculated for data points below the phase tran-
sition pressure gives an indication of the uncertainties involved.

this first-order Landau model. The size of the step in ¢ at
the phase transition is particularly important: it is pro-
portional to the ratio of the Q? and Q* coefficients in the
Landau potential. By combining this information with
further measurements of other macroscopic properties, it
will be possible to construct the effective Landau poten-
tial, and hence obtain the thermodynamic implications
of the phase transition cristobalite I — II.

The orientation of the symmetry-breaking strain ellip-
soid is intriguing. The extensional axis (¢} is parallel to
[101] in the (101) plane of the tetragonal phase: a plane
of distorted six-membered tetrahedral rings, which in the
high-temperature cubic phase, becomes the pseudo-close-
packed (111) plane. This direction is equivalent to [T12],
precisely the slip direction one would expect for the
smallest possible shear of the {111} layers. The cristo-
balite I — cristobalite II phase transition can therefore
be viewed as a shear of the crystal structure, involving
the sliding of adjacent close-packed sheets against each
other, much as in the martensitic-type transformations of
close-packed metals. Such transitions give rise to a defect
microstructure, and one might predict the formation of
stacking faults, and even glide twinning. In our single-
crystal diffraction work on the high-pressure phase of
cristobalite (Palmer and Downs, 1991), we observed split
single-crystal diffraction peaks, as measured in w and 6/26
scans, indicative of such twinning. In addition, repeated
cycling of the crystal through the phase transition, fol-
lowed by quenching to ambient pressure, yielded a
twinned, tetragonal crystal, whereas the original tetrago-
nal crystal, before pressure treatment, had been un-
twinned. These deformation twins must be distinct from
the tetragonal to monoclinic transformation twins, as the
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latter cannot exist in the tetragonal phase. Further evi-
dence for a strain-related, deformation microstructure is
the coexistence of both high- and low-pressure phases
within the hysteresis region, observed in the single-crystal
X-ray experiments (Downs and Palmer, 1994) and Ra-
man spectroscopy experiments (Palmer et al., 1991). The
underlying microstructure should be revealed by trans-
mission electron microscopy, and a systematic study of
cristobalite before and after phase transition cycling would
be very rewarding.
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