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An orbital approach to the theory of bond valence
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ABSTRACT

Molecular orbital ideas, by means of a perturbation expansion of the orbital interaction
energy, are used to probe the origin of the bond-valence sum rule that is used extensively
in crystal chemistry. It is shown that regular octahedral and tetrahedral coordination ge-
ometries have an electronic stabilization arising through interactions between cation (4)
orbitals and the 2p orbitals on O. The lowest energy structure occurs when the coordination
environment is such that all three p orbitals are involved in equal interactions with their
environment. Similar perturbation ideas are used to derive an expression analytically for
the A-O bond length in terms of the H,; elements of the Hamiltonian matrix and the energy
separations between the orbitals involved. A simple extension of this result shows how
the equilibrium bond length is dependent on the coordination number of the atom con-
cerned. Using these results with the bond-valence concept leads to the interesting result
that the sum of the bond valences at an atomic center is a constant and thus provides the
first analytical derivation of the bond-valence sum rule. The rule that the bond valences
at an atomic center will be as equal as possible (Brown, 1981) is a natural consequence of
this result, and one that is directly comparable with the conclusions concerning the elec-
tronic factors stabilizing regular octahedral and tetrahedral geometries. The relationship

of the results to Curie’s rule (1894) is discussed.

INTRODUCTION

Over the past 50 yr or so, Pauling’s second rule (Pau-
ling, 1929, 1960) has been used extensively to interpret
and aid in the solution of complex mineral and inorganic
crystal structures: In a stable ionic structure, the valence
of each anion, with changed sign, is exactly or nearly
equal to the sum of the strengths of the electrostatic bonds
to it from the adjacent cations. As noted by Burdett and
McLarnan (1984), Pauling’s rules were initially presented
as ad hoc generalizations, rationalized by qualitative ar-
guments based on an electrostatic model. This has led to
an association of these rules with the ionic model, and
there has been considerable criticism of the second rule
as an unrealistic model for bonding in most solids. De-
spite the apparent defects of the approach, it was too
useful to be discarded and, in various modifications, con-
tinues to be used to the present day.

Bragg (1930) considered Pauling’s second rule to be of
great importance and produced an interesting argument
to justify it. He considered the (nearest neighbor) forces
that bind together atoms in a coordination polyhedron,
modeling the interactions by lines of force. Bragg noted
that atoms that are closer together have more lines of
force between them, atoms that are farther apart have
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fewer lines of force, and next nearest neighbor atoms can
only interact through their nearest neighbors. Thus the
charge of the bond strength was associated with the bond
between the two atoms, and the amount of charge was
inversely related to the bond length. This sounds much
more like a covalent description than an ionic descrip-
tion, with allowances for the unconventional vocabulary
used in the argument. Nonetheless, the perception of this
rule as a part of the ionic model continued as the general
view.

The great improvements in crystallographic technique
that took place in the 1960s have produced a large amount
of accurate and precise information on interatomic dis-
tances in crystalline solids. These data have led to various
modifications of Pauling’s second rule (see summary by
Allmann, 1975), in which bond strengths are inversely
related to bond length; such bond strengths are hereafter
called bond valences (Brown, 1978) to distinguish them
from Pauling’s bond strengths. Of particular interest is
the scheme first produced by Brown and Shannon (1973)
and subsequently extensively developed by Brown (1981).
A single equation of the form

()

where s is the bond valence, r, and N are fitted parame-
ters, and r is the observed bond length, is sufficient to
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describe relations between bond valence and bond length
for an isoelectronic series of ions. Brown and Shannon
(1973) emphasized the difference between the ionic mod-
el and the bond-valence formalism. In the latter, a struc-
ture consists of a series of atom cores held together by
valence electrons that may be associated with chemical
bonds. The valence electrons may occupy a symmetric
(covalent) or asymmetric (1onic) position in the bond, but
a priori knowledge of this character is not a requirement
for the application of the above equation. Indeed, the
correlation between bond valence and the covalent char-
acter of a bond shown by Brown and Shannon (1973)
indicates that the asymmetry of charge in the chemical
bond may be qualitatively derived from this model.

In the last 15 yr, Gibbs and his coworkers (see sum-
mary in Gibbs, 1982) have approached the structure of
minerals from a molecular orbital viewpoint and have
made significant progress in both rationalizing and pre-
dicting geometrical and spectroscopic properties of min-
erals. Early in this work (Gibbs et al., 1972), it was shown
that bond-overlap populations derived from Mulliken
population analysis were strongly correlated with p,, a
measure of the deviation of an anion from exact agree-
ment with Pauling’s second rule (Baur, 1970, 1971). This
parallel aspect of the molecular-orbital and bond-valence
approaches was stressed by Brown and Shannon (1973),
who represented bond valence as the measure of the co-
valence of a bond. Approaching this question from the
other direction, Gibbs and Finger (1985) presented bond-
length bond-valence curves derived from molecular or-
bital theory that are very similar to those given by Brown
and Shannon (1973) for the isoelectronic series Li, Be, B
and Na, Mg, Al, Si, P, S.

This progressive convergence of the bond-valence and
molecular-orbital models of chemical bonding is very
striking. If the two methods are more or less equivalent,
then one can use whichever one is of most use to the
problem at hand, without being overly concerned about
inconsistency of approach. To date, the parallels between
the schemes have been demonstrated by numerical cor-
relations. Here we attempt to establish an algebraic con-
nection between the two models.

PRELIMINARY CONSIDERATIONS

The geometry of a molecule or solid may be expressed
as a function of a distortion coordinate, g, which takes
the system from a reference geometry (¢ = 0) to a dis-
torted version of this geometry (¢ # 0). The energy of the
system may be written as a simple expansion

dE PE
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Within the harmonic oscillator model, the second deriv-
ative of the energy is equal to the vibrational force con-
stant. In principle, we can evaluate these terms from the
electronic wave functions of the ground (i) and excited ()
electronic states of the system at the reference geometry.
It may be readily shown that, for the ground state i, we
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Let us see how we can simplify this expression for the
typical minerals with which we are concerned. The first
term is simply an energy zero; for our purposes, it may
be discarded. The second term is only nonzero for degen-
erate electronic states, 7, and describes the energetics of
the first-order Jahn-Teller distortion; for the systems we
treat, it is zero. The term in brackets describes the vibra-
tional force constant associated with motion along g and
consists of two components: the classical force constant
(i]8*H/dq*|i) controls the energetics of the movement of
the nuclei within the electronic charge distribution of the
reference geometry, the second summation term allows
this charge distribution to relax. If there is a low-lying
electronic state () of the correct symmetry, such that the
denominator of the relaxation force constant is small,
then this term may be large enough to overwhelm the
classical contribution and lead to a negative force con-
stant. This implies an instability, and the configuration
will distort along the coordinate g. An example might be
that of an NH, molecule artificially held in a planar ge-
ometry. There is a low-lying state of the correct symmetry
to ensure a large relaxation contribution to the out-of-
plane bending force constant, and so the molecule be-
comes pyramidal. However, in most oxide and oxysalt
minerals, there is a large energy gap between the filled
oxide levels and the empty cation levels, so that such
distortions of the second-order Jahn-Teller type (as they
are labeled) are usually not important. Some exceptions
to this generalization are the perovskites and minerals
with ReQ, arrangements (e.g., wickmanite [MnSn(OH),]
is a derivative structure) in which O-M-O bond alterna-
tion probably arises through this mechanism (Wheeler et
al., 1986).

In the absence of first- and second-order Jahn-Teller
effects, we may concentrate on the behavior of the clas-
sical part of the force constant, the geometrical depen-
dence of the energy E. In this paper, we use molecular
orbital ideas to provide links between apparently differ-
ent ways of looking at these particular solids. Specifically,
we show how the workings of the bond-valence rule may
be derived analytically from an orbital picture.

MOLECULAR-ORBITAL STABILIZATION ENERGY

Within the framework of the simplest type of molec-
ular orbital theory, the one-electron model, the details of
the interaction between two orbitals located on two cen-
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Fig. 1. Interaction of two atomic orbitals ¢, and ¢, on 4 and
B to give two molecular orbitals ¢, and ,; the stabilization
energy of the lower (filled) orbital is €.

ters are handled by a secular determinant (e.g., Burdett,
1980). This is a useful way of extracting the eigenvalues
(molecular orbital energies) and eigenvectors (description
in terms of a simple approach using a linear combination
of orbitals) of the molecular Hamiltonian. It should be
stated that Madelung terms (i.e., on-site terms) are ex-
plicitly ignored in one-electron orbital models, such as
are used here, and in tight-binding theory. We emphasize
that the idea is to focus on the orbital part of the elec-
tronic problem.

The simple two-orbital problem shown in Figure 1 is
characterized by two atomic orbitals, ¢, and ¢,, located on
different centers. We have shown ¢, with lower energy
than ¢, and lying on the atoms of higher electronegativity
than ¢,. Below we identify ¢, with an orbital of an O atom
and ¢, with an orbital of a cation. The energy of an elec-
tron in orbital j is given the label H,; numerically, it may
be identified with the ionization potential from that or-
bital. The secular determinant for the problem is simply

}IJ'J'-E :Hij
H, H-E

=0 @)

where H,; represents the interaction between the orbitals
i and j. Mulliken suggested that it was proportional to
the overlap integral, S, between the orbitals i/ and j, and
we shall use his relationship here. Slightly more sophis-
ticated treatments of the problem include overlap in the
off-diagonal elements of this determinant. The results
generated by such schemes are of the same form as we
derive here, but for clarity we use the simplest model in
our treatment.

In general, the secular determinant is constructed by
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Fig. 2. Interaction of three atomic orbitals for the 4B, case
to give three molecular orbitals; ¢, ¥,, and ¥, are bonding,
antibonding, and nonbonding orbitals, respectively.

placing along the diagonal entries of the form H,-E for
each orbital k of the problem and an interaction integral
H,, in each off-diagonal position to represent the inter-
action of each orbital pair k£ and /. The most basic model
suffices for our treatment here and includes nonzero H,,
elements only between orbitals located on adjacent at-
oms; thus interactions between nonbonded atoms are ex-
plicitly excluded.

For a simple two-orbital 4B problem (Fig. 1), the new
molecular orbital energies are given by the two values of
E obtained through expansion of the determinant of
Equation 4. Of course, this is an approximation, but one
well established in theories based on one electron. The
lower value of E represents a bonding orbital (labeled ¥,),
and the higher value of E represents an antibonding or-
bital (labeled ¥,). We are interested in the stabilization
energy of the system with two electrons in ¥,, namely
2¢,.,- In general, the cation-centered orbitals will be emp-
ty and the anion-centered orbitals will be full. Expansion
of Equation 4 and identification of the lower energy root
of E simply lead to an expression for €, of the form

e
es!ab = = 3
AE  (AE)

This expansion clearly fails in the case where AE = 0, but
we are generally concerned with oxide and oxysalt min-
erals, in which there is a large nonzero gap between the
interacting orbitals on anion and cation. Equation 5 forms
the basis for our estimation of the overlap forces that
provide the attractive force holding atoms together in
molecules and solids.
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Fig. 3. The bond of Fig. 1, in which we have specifically
identified 4 and B with a cation M and an O atom, respectively.

The orbital picture that describes a metal atom coor-
dinated by two oxide ions (4B,) is shown schematically
in Figure 2. In this case, the secular determinant is simply

H-E H, H,
H, HE 0 = 0. 6)
H, 0 H,-E
One of the roots occurs at E = H,, and so one orbital (a
linear combination of ¢; and ¢/) remains unchanged in
energy; this nonbonding orbital we label ¥,. The lowest
energy root is readily extracted and gives the following
expression for €,

. _my a ,
stab AE (AE)3 T ()

Notice that although the term in H? is linear with co-
ordination number in Equations 5 and 7, the quartic term
is not. Thus the molecular orbital stabilization energy per
linkage in the twofold-coordinated case (obtained by
multiplying the stabilization energy of Eq. 7 by 2, the
number of electrons in the filled orbital) is different
(smaller) than that of Equation 5. As a general result, the
reader may find that for an a-coordinated metal atom,
the total interaction energy summed over all occupied
anion orbitals is

THE  (ZTHA?
Eeslah = N

=R e e ®)

which, if all the interactions are equal, gives a stabiliza-
tion energy per linkage (A) of

_ 23 2a3H3

AE  (AE)?

®

For the more complex system in which the metal atom
is coordinated either by different atoms or by atoms with
different bond lengths, suitably different H,, and AE pa-
rameters are needed for Equation 9.

What do the bonds look like in the two cases depicted
in Figures 1 and 2? It is easy to see that, in Figure 1, it
is no more than a conventional two-center, two-electron
bond formed from the overlap of ¢, and ¢;, as shown in
Figure 3, in which we have used two sp* hybrid orbitals
for illustration. The bonding picture for Figure 2 requires
an intermediate step, as our picture shows one bonding
orbital and one nonbonding orbital. The usual trick here
is to localize the delocalized orbitals that molecular or-
bital theory gives us by taking linear combinations of the

Fig. 4. Localization of the occupied molecular orbitals of Fig.
2 (Y, V¥.) to give two localized bonds.

occupied orbitals, as shown in Figure 4. The actual forms
of ¥, and ¥, are obtained in the standard manner from
the secular determinant. As can be seen, the result is to
generate two bonds between the atoms 4 and B.

These basic results may be amplified and applied to
the more realistic situation of a solid containing anions
(e.g., O) and cations (e.g., Si, Al). Each oxide ion has four
valence orbitals (three 2p and one 2s orbitals), and so the
stabilization energies of equations 5, 7, and 8 need to be
expanded by summing over all pairs of interactions be-
tween the orbitals on the anion and cation. We shall con-
tinue to describe solids in terms of these local coordina-
tion environments. To be more exact, we ought to use
the ideas of band theory that take into account the trans-
lational periodicity of the solid (see for example Burdett,
1984). However, we will always be able to extract a set
of localized bonds from such a picture in an exactly anal-
ogous route to that shown for the 4B, system above (this
is done, for example, in Burdett, 1992). Thus the molec-
ular orbital ideas described here for small units have their
exact analogies in the tight-binding theory for solids.

Let us assume initially that each ion is fourfold coor-
dinated. Following the technique of Figure 4, the result
will be a set of four bonding interactions of the type shown
in Figure 3, which link anions and cations together. Of
course, this is no different from the traditional way of
describing the bonding in typical tetrahedrally coordinat-
ed solids. However, whereas such a picture is usually only
used for covalent materials, we extend these ideas into
the realm of materials often considered as ionic (of course,
the work of G. V. Gibbs explicitly pursues the same idea).

For sixfold-coordinated ions, the bonding picture of
four directed hybrid orbitals is clearly not appropriate. In
the valence-bond scheme, one needs to involve d orbitals
to produce six directed hybrids. In molecular orbital terms,
this is not necessary; the sixfold coordinated system is
handled in exactly the same way as the fourfold-coordi-
nated one, except that as there are now only four filled
bonding orbitals at each O atom and six ligands, the bond
order is 4/6, i.e., 2/3 per bond. Obviously, what we can-
not do is localize our four pairs of bonding electrons as
in Figure 4, but the mathematical description by means
of Equation 7 is still applicable. In summary, the delo-
calized description of the orbital problem is always ap-
plicable, irrespective of coordination number or geome-
try; the localized description in terms of two-center,
two-electron bonds is only a valid description for fourfold
coordination or less (in the latter, unused pairs of elec-
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trons occur as lone pairs). Similar ideas are applicable to
molecules (e.g., Albright et al., 19853).

As the O 2s orbital lies deep in energy, the expressions
for the stabilization energy suggest that it will probably
be less important in influencing the total bond sirength
than interactions with the p orbitals. Indeed, in the Run-
dle-Pimentel model for viewing aspects of molecular
structure (Burdett, 1980), it is ignored altogether except
as a storage location for a pair of electrons. As an ap-
proximation, we will write for a system of stoichiome-
iry AB
Ale] = 2Hz, | AaHi,

AE, | QE.y (19)

where H ,, (negative) represents an average interaction in-
tegral and AFE,; (positive) represents an average electro-
negativity difference.

In this section, we have considered the situation of cat-
ion coordination by anions and have evaluated the sum
of the interactions between a single cation and «* anions,
where a* is the cation coordination number. The results
are just as easily derived if we look at the anion coordi-
nation environment, with coordination number «~. For
simplicity, taken an 4B, solid with Z formula units per
cell and no close 4-4 or B-B contacts. Then, by analogy
with Figures 1 and 2 and Equation 10, the energy per cell,
E,, 1s given by

2
Hig

o~ Hip
AEAE+ + ] 11

(AE )

Because a* and 7 are related by the network connec-
tivity as na~ = a*, we can very simply rewrite Equation
11 in terms of the cation coordination

— His arHi, T
AE,; nAE,) i

It is interesting to note that although mineralogists have
traditionally focused on the details of cation coordination
polyhedra, it is the environment at the anion, where the
valence electron density is largely located, that is impor-
tant in an orbital scheme. The two viewpoints are inti-
mately related, as we have just shown.

Elot o Zn|:

E x Z,.[ (12)

ANGULAR GEOMETRY

The orbital stabilization energy derived above provides
a useful way to explore the angular preferences for the
anion and cation coordination geometries. It is true that
the octahedral geometry for sixfold coordination and the
tetrahedral geometry for fourfold coordination minimize
steric repulsions between the ligands (irrespective of their
anionic or cationic nature), but is there an electronic driv-
ing force associated with anion-cation interaction that re-
inforces this? The answer is yes. Let us consider a collec-
tion of four cations surrounding an anion. For the reasons
described above, we ignore the anion valence s orbital
(except that we will store two electrons in it), and we
concentrate on the angular dependence of the interaction
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energy associated with the overlap of the group of cation
orbitals with the anion p orbitals. We use Equation § to
describe the total interaction energy.

As noted above, the Mulliken relationship emphasizes
the dependence of H on the overlap integral. Figure 5
shows that the angular dependence of S is described by a
simple geometric function; as an example, we show the
interaction of a hybrid orbital with a p orbital. In general
(Burdett, 1980), for two orbitals separated by a distance r,

Sy(r, 8, ¢) = S,(Nf8, ¢) (13)

where the f(6, ¢) are tabulated elsewhere, and 8, ¢ are the
polar coordinates that define the location of the two over-
lapping orbitals. One extremely useful property of the
(8, ¢) is that =f2(6, ¢) over all the pairs of interactions
between the ligands and the collection of three p orbitals
is simply equal to the coordination number (i.c., the
number of ligands). Thus in Equation 8, the first term is
independent of angular geometry. The minimum-energy
angular geometry is then determined by the minimization
of the second term in Equation 8. This is an easy prob-
lem; the Schwarz inequality tells us that if three numbers
add to a constant, then the minimum in the sum of their
squares occurs when the three numbers are equal. In the
present case, this implies that each of the three p orbitals
experience equal interactions with the ligands. For a four-
fold-coordinated atom, this occurs at the ideal tetrahedral
geometry, and for a sixfold-coordinated atom, this occurs
at the ideal octahedral geometry.

The bond lengths in molecules are determined by the
stabilization energy A of Equation 9 (vide infra), and, in
qualitative terms, the bond-length change with angular
geometry is simply approached by consideration of the
change in A. As we show elsewhere (Burdett, 1979) for
distortion from regular octahedral geometry, the varia-
tion in internuclear separation is well described by con-
sidering the variation in the weight of the first term (3H3)
in Equation 9, apportioned to a given linkage by the an-
gular dependence of the overlap integrals (Eq. 13).

To conclude this section, we stress that the tetrahedral
geometries adopted by most fourfold- and sixfold-coor-
dinated anions and cations are consistent with (1) mini-
mum electrostatic interactions between the cations and
anions, respectively; (2) minimum steric repulsions be-
tween the ligands; (3) (of importance in our viewpoint
here) maximum orbital stabilization between the central
atom and the ligand orbitals. Thus the predictions of both
covalent and ionic models are coincident for these coor-
dination geometries, a result which is not often recog-
nized.

DETERMINATION OF INTERNUCLEAR SEPARATION
(BOND LENGTH)

In general, a one-electron model of this type does not
allow for an accurate determination of the equilibrium
internuclear separation. However, changes in interatomic
distances as structures are distorted, and even the large
changes involved in bond breaking have been shown to
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be well described within such a model, keeping the sec-
ond moment of the energy density of states constant (Pet-
tifor and Podlucky, 1984; Hoistad and Lee, 1991; Lee,
1991; Burdett and Lee, 1985). This may be rephrased for
the present system by requiring that

2
J

for all of the interactions linking an atom 7 to its neigh-
bors, j, is kept constant from one system to another. For
the geometrical situation described earlier, where one O
atom has « neighbors,

> H2 = aHz, = k (constant). (14)
J

In general, the overlap integral and thus H,, varies with
distance in the region of chemical interest as 4r—™. Thus

aA*r;m =k (15)
or
1 k
=2 = —.—
r: TS (16)

Now Harrison (1983) has shown that the overlap de-
pendence on distance for two main-group elements is
roughly described by m = 2, and between a main-group
and a transition element by m =~ 7. For interactions be-
tween a main-group element and O (Al, Si, P, etc.), 2m
should be equal to 4, and for interactions between a tran-
sition metal and O, 2m will be somewhere between 4 and
7, depending on the relative importance of O orbital in-
teractions with the metal d and s,p orbitals. Note that a
prediction of the model is that the equilibrium bond length
increases with coordination number. This is in general
true, but this quantitative prediction can be tested; if a
typical ¥Si-O distance is 1.63 A, then a typical ©Si-O
distance should be 1.80 A, which indeed it is.

THE CONCEPT OF BOND VALENCE

Following the recent work of Brown (1981), we show
how this idea may be phrased within an orbital frame-
work, based upon the ideas of the previous sections.

If the ratio k/A42, the product of two constants of the
system from Equation 16, is set equal to v (whose mean-
ing will become clear below), then we may write

—2m
7 _ l
(r—0> == v (17)
Summing over all linkages leads to
—2m
re
2 (;-B) =y (18)
The bond valence s is defined as
-N
rC
s = (7‘_0> (19)

where r, and N are dependent upon the identity of the
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Fig. 5.

Angular dependence of the overlap integrals on ge-
ometry; here we show the specific case of the overlap between a
p. orbital and an sp hybrid orbital.

atoms of the bond. If v is the valence of the atom con-
cerned, the sum rule is just

s =v. (20)

The orbital and phenomenological descriptions of the
picture are thus identical, if the exponent N of Equation
19 is identified with 2m of Equations 15-18.

We remarked above on predictions made for the mag-
nitude of the exponent 2 based on the form of the dis-
tance dependence of the overlap integral. The values of
Nin Equation 19 are found experimentally (Brown, 1981)
to be between 5 and 7 for bonds between transition metal
and O and around 4 for bonds between O and Al, Si, or
P, as expected from Equations 18 and 19. [Of course, the
exponential form of the bond-valence expression (Brown
and Altermatt, 1985) is simply approachable by writing
an overlap integral (and hence H,;) with a similar de-
pendence on distance.] This then is the first orbital ex-
planation for the bond-valence sum rules, which are tra-
ditionally phrased in ionic terms.

Brown and Shannon (1973) also gave an alternative
expression for bond valence:

21

where s, is the Pauling bond strength, and 7, and »’ are
refined parameters derived from a large number of struc-
tures. This is a useful expression, as it allows us to de-
velop some simple intuitive arguments concerning the
relationship of the bond-valence formalism to simple ideas
of bond length and charge delocalization. In Equation 21,
ro is formally a refined parameter but is obviously equal
to the grand mean bond length for the particular bond
pair and cation coordination number under considera-
tion. Thus (r/r,) = 1, and s, is actually a scaling factor
that ensures that the sum of the bond valences around an
atom is approximately equal to the magnitude of its va-
lence. Let us suppose that there is a delocalization of
charge into the bonds, together with a reduction in the
charge of each atom. For an 4-B bond, let the residual
charges change by zp, and zp;, respectively. The Pauling
bond strength (= scaling parameter s, in Eq. 21) is given
by zp./a=, in which g~ is the coordination number of atom
A. Inserting these values into Equation 21 and summing
over the bonds around B gives

Esz2S0<L> = pplzs|.
B Yo

(22)
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If p, = p,, these terms cancel and the bond-valence equa-
tion works, provided the relative delocalization from each
formally ionized atom is not radically different. Thus the
equation should apply from very ionic to very covalent
situations.

Note that Equation 21 works no matter what values of
roand r are used, provided that the value of r/r, is correct.
However, it is only when we use Brown and Shannon’s
(1973) values of r,, derived from a large number of well-
refined structures, that the equation is scaled correctly
(i.e., to the actual bond lengths observed in solids).

Brown (1977) has shown the analogies between sums
of bond valences around circuits in structures and Kir-
choff’s laws for electrical circuits. A result of such a study
is the conclusion that the bond valences around any given
center should be as equal as possible. We saw above a
result concerning the angular geometry at an anion or
cation that was derived from an equality associated with
the interactions of the ligands with the central atom p
orbitals by the term in H%,. We can show that the obser-
vation of Brown (1977) drops out of our model in a
straightforward way by a study of the unsymmetrical 4B,
system.

A little algebra shows that the electronic part of the
energy for this system in the symmetrical arrangement is
given by

H, + Hy v, (3, + H)® | 4L, 23)
AE (AEy (AE)?

where (in the B,-A,-B, unit) H,, and H,; (equal if r, = r,)
are the interaction integrals for the two linkages. In terms
of Equation 14, which demands that H?, + H?, is a con-
stant, the energy on asymmetrization is controlled by the
third term in Equation 23. Given the constraint on this
sum, the minimum value of the energy will occur when
H,, = H,; (i.e., when the two A-B distances are equal).
Algebraically and electronically, this result has come about
for the same reason described above for the electronic
stability of the tetrahedral and octahedral geometries.
Brown’s rule drops out of this approach, as the energy is
minimized when the two distances are equal and hence
have equal bond valences.

This fourth-order term is thus an extremely important
one, controlling aspects of both the angular geometry
around an anion or cation and the relative variation of
interatomic distances around that ion. Note that these
results are obtained by considering nearest-neighbor in-
teractions only; we shall see how this conclusion needs to
be modified a little when more distant interactions are
included.

In most systems, the distances around a central atom
are not equal; they are constrained to be different by the
coordination environment. Equation 24 shows that the
dependence of #,, on the value of r, is given by

r® + ry™ = constant. (24)

Many plots of r, vs. r, for a variety of systems (Burgi,
1975) show a hyperbolic relationship between the two;
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the curvature of such plots is controlled in our model by
the value of N = 2m.

BOND-OVERLAP POPULATION

A useful parameter from a molecular orbital calcula-
tion, which measures the bond strength or bond order, is
the bond-overlap population. Consider the example shown
in Figure 1. If the bonding orbital is written as ¥ = a¢,
+ b¢,, where a and b are the orbital coefficients, then the
contributions to the 4B bond overlap population is
2N.abS,, where N, (= 2) is the number of electrons in the
orbital. Expressions like this may be summed over all
occupied orbitals to give a total bond-overlap population.
If we write an approximation for ¥, as

Y, = ¢; + A, 25)
then a little bit of algebra gives
3
H. H.
| ) (e
G- e
from which the overlap population P, is
3
= Hy) _(Hy
el () o

Knowing that S, and H, have the same functional depen-
dence on geometry and taking the lead term in Equation
27, we may write

By 1=

28)

an equation with a very similar appearance to Equation
15. Summing over the nearest-neighbor bonds just leads
1o a constant with Equations 16—18. Thus the sum of the
bond-overlap populations is independent of coordination
number. However, it is important to stress that the in-
teratomic separations are different (larger) in the unit with
the higher coordination number. There is another ex-
pression for the definition of bond valence (Brown and
Altermatt, 1985), which has an additional advantage:

)
s =exp{—p— |-

B may be regarded as a constant (0.37), and there is just
one parameter for each atom pair. Comparing the lead
terms in a series expansion for the two definitions of s
leads to the following relationship between the parameters:

29

o
~— 30
N=~2 (30)
or, a little more accurately,
2r,
N+ [NMN + 1] = 3" 3D

Use of Equation 29 in our mathematical discussion above
is not as straightforward, but the connection between the
two forms is quite easy to see. The overlap-population
sum depends only on the difference in energy between the
interacting orbitals of adjacent atoms. This is what one
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Fig. 6. Orbital parameters of a four-atom A-B-A4-B chain.

would intuitively expect if bond-valence and bond-over-
lap population are analogous parameters.

Although we have shown that an orbital model is quite
consistent with the operation of the bond-valence rules,
one feature we have not discussed is the identification of
Zs with an actual valency or atomic charge. In many sit-
uations, v is just an adjustable constant (as shown in the
derivation of Eq. 17), but sometimes it may really be
identified with an atomic charge, as in the discussion of
McCarley et al. (1985) on the stoichiometry of
Cas 45M018032-

THE INDUCTIVE EFFECT

The transmission of electronic effects along a chain of
atoms, whether in a molecule or a solid, is not a feature
that readily drops out of an ionic model. However, using
our orbital approach, we may readily examine the effect
on a linkage induced by a change in the nature of an atom
two bonds away. Again, the result will be achieved by
considering the algebra that describes the energy levels of
a suitable orbital picture. The simplest model we could
choose would be an 4-B-4-B chain (Fig. 6), which could
have interesting changes in the stabilization energy as-
sociated with the linkage between atoms 3 and 4, as a
result of a change in the nature of atom 1 by its §,, in-
teraction parameter. Figure 7 shows the energy diagram
for such a unit. We are interested in the sum of the sta-
bilization energy of the two lowest orbitals: €_,, + €
The secular determinant for this problem is

stab=

a~E H, 0 0

H, ap-E Hy 0 _
0 Hy arE H,y, =1 (32)
0 0 H,, az-E

Correct to fourth order in H,, the sum of the two stabi-
lization energies is readily evaluated as

estal:n + e,slab
_(HL+ 3+ H,
AE

_ [P+ T+ T+ 29898, + 20808,
(AEY

]. (33)

This is an interesting result in that the fourth-order term
contains elements that connect adjacent linkages (e.g.,
H$,H2,) but contains no contribution from Hz,Hz,, which
would connect the two terminal linkages of the unit. This
is actually quite an understandable result. As shown else-
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B A;B; A

Fig. 7. Energy level diagram for the four-atom chain of Fig-
ure 6.

where (Burdett, 1987), for an atom to interact with an-
other atom y linkages away, we need to expand the in-
teraction energy up to order 2y, the number of steps it
takes to go from one atom to the other and back. For our
case, these two linkages should be coupled in sixth order
in H,;, and indeed we find that this term contains a con-
tribution proportional to

2 2 2
j—1129{237_{34

o (34)

Energetically, this is a less important term than one ap-
pearing in fourth order, and in general, the effects of sub-
stitution at a given center drop off as we move away from
this site. Perhaps this statement is quite obvious, but it
is supported by the mathematical underpinnings of mo-
lecular orbital theory, as we have shown here.

CURIE’S RULE

An idea developed in this paper is that bonds around
a given center will tend to be as symmetrically distributed
as possible. Such a result is reminiscent of Curie’s rule
(Curie, 1894), which presented a similar idea. In classical
terms, it is easy to see the origin of this rule. We assume
that the total energy of a system described by a set of
displacement coordinates {q} can be written as a diagonal
quadratic expansion about its equilibrium position:

2y = Eft‘lq (qe - Aq)z (35)

In this case, g will be associated with the stretching and
contraction of bonds and the opening and closing of bond
angles. If we impose the restriction that an increase in g
for one coordinate is matched by a decrease in g for an-
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other related coordinate and that the displacements are
of similar magnitude, then the energy is minimized for
Ag = 0. For the present discussion, we note our angular
results, which lead to stabilization of the regular tetra-
hedral and octahedral coordinations, and the discussion
of bond lengths, which leads to an understanding of
Brown’s valence-sum rule. In our approach, it has been
the form of the fourth-order perturbation expression that
has led to the mimicking of this state of affairs. This is
not proof of the orbital control of structure; a similar
result would come from an electrostatic scheme. Under
the constraints outlined above, movement about an equi-
librium position is always energetically penalizing for a
cation surrounded by anions (or the converse) in this
model.

SuMMARY

The purpose of this paper has been to show that simple
molecular orbital ideas may be used to probe the origin
of some of the most powerful rules of crystal chemistry.
The simplicity of the approach highlights the major thrust
of the electronic picture. In principle, other orbital inter-
actions involving metal d orbitals or O s orbitals may be
added by extending the perturbation theory sums. The
picture will be more complex, but the general idea is the
same. Perhaps one unanswered question is the role of the
valency, v, which appears in formulations of the scheme.
As we have shown, its inclusion is somewhat arbitrary,
but in combination with r32 it leads to a system-depen-
dent parameter. Its dramatic use in the Ca, ,sMo,,0;, case
described above encourages us to think further about its
meaning. Overall, however, the result is an algebraic der-
ivation of bond-valence theory from a molecular orbital
basis. This complements the earlier findings of Burdett
and McLarman (1984) concerning the molecular orbital
underpinnings of Pauling’s rules. There, it was shown that
the traditional ionic viewpoint often has an orbital ana-
logue. Here we go further, and show that bond-valence
theory may be considered as a very simple form of mo-
lecular orbital theory, parameterized by means of inter-
atomic distance.
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