
American Mineralogist, Volume 78, pages 187-189, 1993

Tolbachite, CuClr, the first example of Cu2. octahedrally coordinated by Cl-
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AssrRAcr

The crystal structure of synthetic tolbachite, CuClr, has been refined by the Rietveld
method using an X-ray powder diffractometer modified for atmospheric control. The
struclure is monoclinic, space group C2/m, a: 6.9038(9), b : 3.2995(4), c : 6.8240) L,
B  :  122 .197 (8 ) ' ,  V :  131 .54 (5 )  4 , ,  Z :  2 ,  w i t h  Cu2*  a r  (000 ) ,  and  C l -  a t
[0.5048(8),0,0.2294(9)1. Final R" : 2.4o/o, Ro : 3.50/0, R*" : 4.80/0, R*" (expected) : 3.2o/o.
The structure contains corrugated sheets of Jahn-Teller (4 + 2) distorted Cu2*Clu octahe-
dra, with Van der Waals forces providing the intrasheet bonding. Tolbachite is the only
mineral containing Cu2*Clu octahedra, and this study provides bond distances for a (4 +
2) distorted cu2rc16 octahedra: cu2* - cl"quu,o.iur $ 4):2.263(6) A, Cur* - CI"o,.., (x 2)
: 2.991(6) A. These bond distances are used to identify the distortion types of mixed
ligand Cu2t@u(6: O,-, OH , HrO, Cl ) octahedra observed in minerals.

INrnonucnoN

Tolbachite, CuClr, occurs in encrustations on basaltic
magma flows of the Tolbachin eruption of 1975-1976
and was described as a new mineral by Bergasova and
Filatov (1984). It is hygroscopic and hydrates to eriochal-
cite (CuClr.2HrO) on continued contact with air. This
feature, along with the general lack of good crystals, pre-
sents special problems for structure characteization. The
crystal structure of synthetic CuCl, was determined by
Wells (1947), but because of the aforementioned prob-
lems, was not refined. The unit-cell dimensions and space
group given by Wells (1947) and, Bergasova and Filatov
(1984) indicate that tolbachite is isostructural with syn-
thetic CuClr.

We are currently interested in bond-distance variations
in Cu2*@. (4 : unspecified ligand) octahedra in copper
oxysalt minerals (i.e., Burns and Hawthorne, unpublished
manuscript. 1992; Eby and Hawthorne, unpublished
manuscript, 1992). The Ct*6u octahedra observed in
copper oxysalt minerals are almost invariably distorted
into a (4 + 2) anangement because of the Jahn-Teller
effect (Jahn and Teller, 1937). In the case ofCu,*@u 16 :
6z-, OH-, HrO), the octahedral bond-distance distribu-
tions observed in minerals are quite well understood and
can be quantitatively rationalized by consideration ofthe
Jahn-Teller effect alone (Burns and Hawthorne, unpub-
lished manuscipt, 1992). However, a number of Cu min-
erals contain Cuttfle octahedra with d : Or-, OH-, HrO,
and (1, 2, or 4) Cl- ligands. Because of the mixture of
ligands forming these octahedra, the Cur* ion cannot
achieve a strictly holosymmetric environment, and the
Jahn-Teller argument is not directly applicable to such
polyhedra. However, a near-degenerate electronic state
may occur, and a distortion of the octahedron can then
lead to a significant net stabilization of the mixed-ligand
0003-004x/93/0 I 02-0 l 87$02.00

octahedra. This effect is usually referred to as the pseudo-
Jahn-Teller effect (Hathaway, 1984). In Cu2*@u octahedra
with mixed ligands, the bond-distance variations are less
straightforward to interpret than in the case ofO ligands
(4 : O, , OH-, HrO), particularly as we do not have a
good value for the ideal equatorial and apical bond dis-
tances for a Jahn-Teller-distorted Cu2*Clu octahedron.
Thus, the role of the pseudo-Jahn-Teller effect in con-
trolling the geometry of mixed-ligand Cu2"@u octahedra
is not clear.

We have refined the crystal structure of synthetic tol-
bachite using powder X-ray difraction data. Tolbachite
is the only mineral that contains Cu2*Clu octahedra and
gives the bond-distance information needed to evaluate
Jahn-Teller relaxation in Cu2*Clu and Cu2*@u mixed-li-
gand octahedra.

ExprnrunNTAL METHoDS

Synthetic tolbachite was prepared by heating CuClr.
2HrO in air at 105 'C for a week. The resulting powder
was gently back-pressed into an Al holder, and the upper
surface was serrated with a razor blade to reduce pre-
ferred orientation effects during data measurement. After
sample preparation, the Al holder containing the powder
was heated at 105 'C for I h to dehydrate any CuClr.
2HrO that may have formed during sample preparation.

Tolbachite is extremely hygroscopic and quickly hy-
drates in air. N was used to provide an inert atmosphere
during data measurement. The diffractometer sample
chamber was modified to provide spaces for inlet and
outlet pipes. N was dried by pumping through a kco
rotometer, with the gas passing through concentrated sul-
phuric acid, ascarite, and magnesium perchlorate before
entering the sample chamber. Scans before and after data
measurement showed no detectable CuCl,.2H,O.
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TraLe 1, Final structure parameters, R-values, bond distances
(A) and bond angles (') in tolbachite, CuCl.

Space group

C2lm F-Values'

a (A)
b (A)
c (A)
B f )
v(A')
z

6.9038(9)
3 2995(4)
6.824(1)

122.197(8)
1 31 .54(5)

2

BB

F""
Rwp (exp)

2.4
2 E

4.8
3.2

Positional parameters
y z

0
0

Cu 0
0.s048(8)

Bond Distances

0 0.50
0.2294(9) 1.00

Bond Angles

Cu-Cl x 2
Cu-Cla x 4
(Cu-Cl)

2.ee1(6)
2.263(6)
2.506

Cl-Cu-Cla x 4 87.6(21
Clb-Cu-Clc x 4 92.4(2)
Gla-Cu-Cld x 2 86.4(2)
Clc-Cu-Cld x 2 93.6(2)
(Cl-Cu-Cl) 90.0

No te :  a :Vz  -  x ,  y  -  Vz ,  - z ; b :  - x ,  y ,  - z i  c=  x  -  y2 ,  y  +  V2 '  z , d
: V z -  x , y + V 2 , - 2 .

. Be : Rietveld-Bragg agreement index; F": Rietveld profile agreement
index; Rw" : Rietveld weighted profile agreement index.

" Fixed during refinement. The refined overall temperature factor was
- 0.44(1 3).

The diffraction data for Rietveld refinement were ob-
tained at 25'C on a Philips PW1710 X-ray powder dif-
fractometer with Bragg-Brentano geometry using CuKa
X-radiation. fixed Vz" slits and a diffracted-beam mono-

7 0  9 0  1 1 0  r l o
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Fig. l. Powder diffraction patterns for tolbachite. Top: pat-

tern calculated using the refined structure parameters (+5000);

middle: observed powder pattern; bottom: I*n - 1.0".

Fig. 2. The crystal structure of tolbachite projected onto (010);
smaller circles : Cu'?*; larger circles : Cl .

chromator. Data were obtained over the nnge (14 < 20
< 130) with a step interval of 0.05" 20 and a count time
o f 5 s p e r s t e p .

Srnucrunn REFINEMENT

The Rietveld stmcture refinement (Rietveld, 1967,
1969) was done using the program LHMPI (Howard and
Hill. 1986: a modified version of the progam by Wiles
and Young, 1981). Refinement was initiated in the space
gtoup C2/mwith the structure parameters of Wells (1947)

as the starting model. The refinement included all data
over the range (14' < 20 < 130'). Scattering factors for
neutral atoms were taken from the International Tables

for X-Ray Crystallography (1974). Peaks were modeled
using the pseudo-Voigt profile function, which was cor-
rected for peak asymmetry to 30' 20. The pattern back-
g,round was modeled using a refinable fourth-order poly-

nomial. Individual isotropic temperature parameters were
unstable during the final cycles of reflnement and were
fixed at accepted single-crystal values with an overall
temperature factor refined. The final R-values obtained
were RB : 2.4o/o, R" : 3.50/0, Rwp : 4.80/o with R*" (exp')
: 3.2o/o. The refined structure parameters are given in
Table 1, and data for the observed powder pattern are
compared to those of the pattern calculated using the re-
fined structure parameters in Figure l.

DrscussroN

Tolbachite contains Cu2tClu octahedra distorted such
that there are four Cu-Cl equatorial bond distances

12.263(6) Al anC two much longer Cu-Cl apical bond dis-
tances [2.991(6) A], a (4 + 2) distortion. This octahedral
environment is a result of the well-known Jahn-Teller
effect. Each CuClu octahedron shares two Cl-Cl"ouu,onu,
edges with adjacent octahedra, and its apical Cl- ions are
equatorial ligands for adjacent octahedra. This linkage
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Trele 2. Examples of Cu2*d6(d : O'?-, OH , HrO, and 1, 2, or 3 Cl-) octahedra in copper oxysalt minerals (distances in A)

cu'.ddd :2(o , oH , H,o) + 4cl l
Cu-OF, OH , H,O Cu-Cl

1 8 9

Ref.

1 9s7(5)
2.019(6)

1.957(5)
2.001(6)

2.290(41 2.290(4)
2.252(6) 2.237(2)

Cu'-dJC :4(O2-, OH , H,O) + 2cl-l
Cu-OF, OH , H,O

2.940(6) 1
3.047(21 2

Cu-Cl Ref.

2.940(6)
3.047(2)

Eriochalcite
Chlorothionite

Chloroxiphite
Botallackite, Cu(2)

Atacamite, Cu(2)
Botallackite, Cu(2)

1.98(3)
1.950(s)

1.e8(3)
1.e50(5)

1.99(3)
2.001(6)

1.99(3)
2.001(6)

2

4

Ref.

2.s7(21 2.s7(2)
2.789(2) 2.789(2)

Cu-Cl
cu'td"[o: 5(o' , oH-, H,o) + lcl ]

C u - O , , O H , H , O

1.se3(2)
1.995(6)

1.ss3(2)
1.995(6)

2.010(2)
1.se8(6)

2.010(2)
1.se8(6)

2.358(4)
2.367(9)

2.750(1)
2.732(3) 4

No te :1 :  Engbe rg (1970 ) ;  2 :G iacovazzoe ta l . ( 1976 ) ;  3 :F i nneye ta l  ( 1977 ) ;  4 :Haw tho rne (1985 ) ;  5 :Pa r i seandHyde (1986 ) .

results in corrugated octahedral sheets (Fig. 2) of com-
position CuCl, parallel to (001). Each sheet is electro-
statically neutral, and linkage between adjacent sheets is
by Van der Waals forces, explaining why tolbachite
quickly hydrates in air.

This study provides bond-distances for a (4 + 2)-dis-
torted Cu'z*Clu octahedron. Six examples of Cu2*@u octa-
hedral bond distances observed in mixedJigand copper
oxysalt minerals are given in Table 2. All such octahedra
are (4 + 2)-distorted, and the pseudo-Jahn-Teller effect
is a controlling factor in determining the bond-distance
distributions. All Cu'z*@u (A : O', OH' , HrO, Cl ) oc-
tahedra show the Cl ions to be preferentially located at
the apical positions of the (4 + 2)-distorted octahedra.
The only examples so far observed of Cu2*@u octahedra
with Cl in the equatorial positions in mixed-ligand oc-
tahedra occur when there are more than two Cl- ligands
involved: where there are four Cl- ligands, two occur in
the apical positions and two occur in equatorial positions
(Table 2). The observed (Cu2*-Cl"ou",on",) distances in er-
iochalcite and chlorothionite (2.29 and 2.25 A, respec-
Lively) are close to the analogous value in tolbachite (2.26
A), indicating that these are typical equatorial bonds in
the mixedJigand structures. The (Cur*-Cluoi""r) distances
i-n the mixed-ligand minerals lie in the range 2.75-3.05
A, as comDared with the value of 2.99 A in tolbachite.
The wider range of apical vs. equatorial distances is sim-
ilar to that observed in Cur+(O2-, OH-, HrO)6 octahedra,
suggesting that the anharmonicity in the Cu2*-Cl poten-
tial is similar to that found for the Cu2*-O potential (Burns
and Hawthorne, unpublished manuscript,1992). Note also
that the Cu-Cl apical distances are generally shorter in
the mixed-ligand structures than in tolbachite; it will be
interesting to see (by means of molecular-orbital calcu-
lations) if the presence of O equatorial ligands tends to
shorten the apical Cu2*-Cl distances.
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