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An improved method for algebraic analysis of metamorphic mineral assemblages
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Ansrntcr

Singular value decomposition (SVD) provides a simple and straightforward way of de-
tecting univariant reactions in multicomponent mineral assemblages. As originally devel-
oped by Fisher (1989), however, the method had the disadvantage that it created model
mineral compositions that were not strictly stoichiometric. Model assemblages of stoichi-
ometric minerals can be produced by rewriting the mineral composition matrix in terms
of additive and exchange components and then weighting the additive components more
heavily than exchange components during SVD analysis.

Prior to SVD analysis, it is generally necessary to use least-squares methods to fit mineral
analyses to stoichiometric models based on exchange and additive components; least-
squares fitting of this sort may be useful for evaluating mineral analyses even when SVD
analysis is not contemplated.

INrnonucrroN

Mapping in metamorphic terrain depends upon our
ability to identifo equilibrium mineral assemblages and
map isograds between metamorphic zones. Both proce-
dures require that we determine whether or not mineral
assemblages are related by univariant reactions. The most
common method of detecting reactions is to search for
intersections of mineral tie lines in assemblage diagrams
(e.g., Thompson, 1957). Although simple to use, graphi
cal methods cannot deal rigorously with complex multi-
component assemblages. Algebraic methods (e.g., Green-
wood, 1967) can handle assemblages with any number of
components but have been little used because of the com-
plexity of the regression techniques initially developed.
Fisher (1989) proposed a simpler method of algebraic
analysis based on singular value composition (SVD), and
that technique is now beginning to be more widely used
(e.g., Powell, 1990; Gordon et al., 1991; Lang, 1991).

The usefulness of the SVD method can be illustrated
by an example from metamorphosed pelitic rocks in
northern Idaho. Lang and Rice (1985) mapped a garnet
isograd separating chlorite + biotite + muscovite rocks
(locally containing Mn-rich garnet) from garnet * chlo-
rite + biotite + muscovite rocks. If the isograd actually
separates rocks of different metamorphic grade, at least
some of the assemblages on opposite sides of the isograd
should contain mineral assemblages that are related by
univariant reactions and therefore contain tie lines that
intersect in composition space. However, Lang and Rice
were unable to find reactions with acceptably low error
ratios using the regression techniques available at that
time, and so they could not eliminate the possibility that
the garnet isograd actually represents a change in bulk
rock composition rather than a change in metamorphic
grade. Using SVD methods, Fisher (1989) showed that

l,ang and Rice's samples TS29 and TS2 were in fact re-
lated by univariant reactions like

l .00bi  + 30.95ms + l .94pl

:  0 .04gt  + l .20bi  + 0.30ch + 30.97ms

+  0 . l l p l  ( l )

with TS29 (biotite zone) minerals on the left and TS2
(garnet zone) minerals on the right. Consequently their
garnet isograd does indeed separate rocks of different
metamorphic grade. Furthermore, the large size of the
muscovite coefficients in the model reactions shows that
the tie-line intersections represented by these reactions
are close to muscovite in composition space, suggesting
that the reactions responsible for the formation of garnet
in these rocks may depend critically upon a small change
in muscovite composition with metamorphic grade.

The ease with which these reactions were found illus-
trates one of the major advantages of SVD techniques
over regression methods. Regression techniques require
(l) that the user select one mineral as the dependent vari-
able while treating all others as independent variables,
and (2) that the number of components exceed the num-
ber of minerals. Consequently, complex assemblages can-
not generally be analyzed in a single operation; rather,
successive subsets of the full assemblages must be ana-
lyzed sequentially. These restrictions make regression
analysis a complex and time-consuming process and pre-
vent examination of the effects of simultaneous variation
in all components of all minerals. Because the SVD tech-
nique can model assemblages with any number of min-
erals in a single operation and can accommodate simul-
taneous variations in all components of all minerals, it is
much more likely to discover subtle, unsuspected reac-
tions like those between TS29 and TS2.
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TABLE 1. Hypothetical quartz + orthopyroxene + olivine compositions in conventional and BT components

Mineral compositions Residuals

QuarE opx opx

1. Hypothetical analytical data, in conventional oxade components
1.010
o.251
o.748

2. Rank 2 model assemblage, in conventional oxide components"
1.0100
0.2492
0.7486

sio, 0.990
C MgO

FeO

sio, 0.9900
MgO 0.0009
FeO -0.0003

sig, 0.990
B MgO'

FeMg 1

2. (Rank 2 model) - (analytical data), in oxide componenb'
0.0000 0.0000 0.0000
0.0009 -0.0018 0.0009

-0.0003 0.0006 -0.0003

4. (Stoichiometric model) - (analytical data) in BT
components

3. Hypothetical analytical data, in BT components
1.010
0.999
0.748

4. Stoichiometric model of analytical data, in BT components

1.0000

0.0008
-0.0008

1.0000
1.0000
0.7485

1.0000
1.0000
0.7502

0.2498
o.7502

1.005
0.498
1.502

1.0050
0.4989
1.5017

1.005
2.000
1.502

1.0000
2.0000
1.5020

1.0000
2.0000
1 .5012

-0.0100
0.0010
0.0005

-0.0050
0.0000
0.(X)00

0.0000
0.0000

-0.0008

5. Rank 2 model assemblage, in BT components

sioi
8* Mgo'

FeMg ,

sic/,
B- MgO'

FeMg ,

4 - B
0.0100
0.0000
0.0000

0.0000
B- - Bo 0.0000

-0.0008

5. (Rank 2 BT model) - (sloichiometric model) in BT
components

1.0000
0.0000

-0.0008

0.0000
0.0000
0.0017

6. Rank 2 BT model assemblage, converted to oxide components
sio, 1.0000 1 .0000 1.0000

6. (Rank 2 BT mo&l) - (analnical data) in oxide componedt3
0.0100 -0.0100 -0.0050

A'.8- - C 0.0008 -0.0012 0.0008
-0.0008 0.0022 -0.0008

A'8.  MgO'
FeO

0.4988
1.5012

'From Fisher (1989, p. 72).

But, useful as it is, the SVD approach has one nagging
problem: it tends to produce model reactions involving
minerals that are not strictly stoichiometric. For example,
when Fisher (1989, p. 7l-72) analyzed a hypothetical
quartz + orthopyroxene + olivine assemblage in the sys-
tem MgO-FeO-SiO, (Table l, line l), he found that it was
analytically indistinguishable from a model assemblage
in which the orthopyroxene lay precisely on the qtrartz-
olivine tie line (Table l, line 2); consequently the assem-
blage could represent a frozen univariant reaction rather
than a divariant equilibrium assemblage. However, that
conclusion can be questioned because none of the min-
erals in the univariant model assemblage is truly stoichi-
ometric. For example, the ratio (Mg + Fe)/Si in the mod-
el pyroxene is 0.988, rather than 1.000. The real question
is whether we can find stoichiometric olivine, orthopy-
roxene, and quartz compositions that are related by a
univariant reaction and are also anall'tically indistin-
guishable from the original mineral compositions.

To answer that question, we must constrain the SVD
analysis so that all mineral compositions obey conven-
tional stoichiometric rules. We can easily do so by using
additive and exchange components, a concept first sug-
gested by Bragg (1937) and subsequently embellished by
J. B. Thompson and his colleagues (e.g., Thompson, 1982);
to reflect their legacy, I will refer to such components as
Bragg-Thompson (or BT) components.

To constrain the SVD analvsis. we first define end-

member compositions for each phase (e.g., MgSiO. for
orthopyroxene or MgrSiOo for olivine) and then express
deviations from those end-member compositions in terms
of exchange components describing known substitution
schemes (e.g., replacement of Mg by Fe, represented by
FeMg ,, or replacement of Mg + Si by 2Al, represented
by AlrMg-,Si-,). The mineral compositions are then
weighted during SVD analysis so that deviations from the
analyzed mineral compositions are expressed solely in
terms of variations in the exchange components, and the
amounts of the additive components are held fixed. Pro-
vided that the exchange components chosen are realistic,
this procedure will automatically produce stoichiometric
model mineral compositions; each will be specified by
the addition of one or more exchange components to a
stoichiometric end-member composition. In the example
considered here, deviations from the analyzed composi-
tions would be limited to changes in Fe/Mg, and the model
orthopyroxene and olivine would have (Mg + Fe)/Si ra-
tios of 1.000 and 2.000, respectively.

This paper first illustrates this procedure by applying
it to Fisher's (1989) qtartz + orthopyroxene * olivine
assemblage, then outlines general procedures for applying
the procedure to any assemblage, and then lists algo-
rithms for performing the necessary calculations using the
MATLAB software package. MATLAB is a trademark of
the MathWorks, Inc., 24 Prime Park Way, Natick, Mas-
sachusetts 01760, U.S.A.



Exlttpln: AN,q.Lvsls oF euARTz +
oRTHopyRoxENE + oLrvrNE

Conversion of mineral compositions to BT cornponents

Compositions expressed in terms of conventional ox-
ide components can be converted to BT components us-
ing the procedures described by Thompson (1982). The
first step is to write a matrix, A, which expresses the
composition of the BT components in terms of the orig-
inal oxide components. In the present example,

1 0 0
A : 0  I  0  ( 2 )

0  - l  l

where the rows give the compositions of the BT compo-
nents SiO!, MgO', and FeMg_, in terms of the oxide com-
ponents SiOr, MgO, and FeO, represented by the col-
umns.

The matrix A,relates the matrix of phase compositions
expressed in BT components @) to the matrix of phase
compositions in oxide components (C) given in Table l,
l ine l:

A ' ' B :  C .

Solving for B,

8 :1 ,1 ,1  r . g  (4 )

we obtain the mineral compositions in BT components
(Table l, line 3).

To generate a model assemblage of stoichiometric min-
erals, we must begin with stoichiometric mineral com-
positions; unfortunately, most mineral analyses are not
strictly stoichiometric, owing to small analytical errors.
For example, none of the mineral compositions in B (Ta-
ble l, line 3) is strictly stoichiometric; SiOi should equal
1.000 for all phases shown, and MgO' should equal I .000
for orthopyroxene and 2.000 for olivine.

We can avoid this difficulty by using least-squares
methods to fit mineral analyses to stoichiometric models
expressed in terms of BT components prior to conducting
SVD analysis. To do so, we simply add to A'and C ad-
ditional rows that specify the stoichiometry of the phases
involved and then solve Equation 4 while weighting the
rows representing the constraints so as to preserve exact
stoichiometry. For the present example, the composite
matrix A'becomes

l 0  0
0  I  - l

A , : 0  0  I  ( 5 )

l 0  0
0 l  0 .

The first three rows represent the original N matrix,
whereas the last two flag the columns (SiO! and MgO')
whose values we wish to constrain. The composite matrix
C becomes

r259

0.990 1.010 1.005

0 0.251 0.498

c :  0  0.748 r .502 (6)

1.000 1.000 1.000

0.000 1.000 2.000.

The first three rows represent the original C matrix, and
the last two represent the values of SiO! and MgO' that
we wish to impose on the compositions of the phases in
each column (here quartz, orthopyroxene, and olivine).

Because A'so augmented contains more rows than col-
umns, we have an overdetermined set of equations, which
must be solved by least-squares methods. To ensure that
the stoichiometric constraints are imposed rigorously, we
pre-multiply both A'and C by a diagonal weighting ma-
trix, in which the rows corresponding to the stoichio-
metric constraints are on the order of 100 times the
weights for the oxide components (which may be adjust-
ed to reflect variations in analytical uncertainty). In the
present case, we assume that Si, Mg, and Fe are all equal-
ly well known and use the weighting matrix

1 0 0
0 1 0

D :  0  0  I
0 0 0
0 0 0
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(3)
0 0
0 0
0 0 ( 7 )

100 0
0 100.

Our weighted equation relating the matrix B to C (com-
parable with the unweighted Eq. 3) now becomes

(D .A ) .B :  D .C .  (8 )

The matrix products D.A'and D'C are both 5 x 3 ma-
trices, and B is a 3 x 3 matrix, which defines the amount
of the three BT components SiO!, MgO', and FeMg-, in
each ofthe three phases. The least-squares solution B'" is
given by

B,"  :  [ (D.At) . (D.A)]  ' . (D.Ar . (D.C) (9)

(see Van Huffel and Vandewalle, l99l, p. 29) and is listed
in Table l, line 4; stoichiometric constraints are indeed
achieved, albeit at the expense of small perturbations in
FeMg-,.

SVD analysis of assemblages in BT components

Our next task is to determine whether or not the set of
stoichiometric mineral compositions (B,", in Table 1, line
4), contains a univariant reaction. To ensure that stoi-
chiometry is retained, we first weight the matrix by pre-
multiplying B* with a diagonal matrix E, designed to
weight the rows containing the additive components 100
times or so more heavily than that containing the ex-
change component:

1 0 0  0 0
E :  0  1 0 0  0

0 0 1 .
(10)
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Taking the SVD of the product E.B,. gives three matrices
defined by the relation

E ' B ' " :  U ' W ' V ' ( l  l )

0 .5847  -0 .81 l3  0 .0000
u :  0.8112 0.5847 -0.0075 ( r2, )

0.0061 0.0044 1.0000

267.6239 0 0
w :  0  9 1 . 5 2 8 0  0  ( 1 3 )

0 0 0.0020

0.2185 -0.8863 0.4082
v :0 .5126  -0 .2475  -0 .8165  (14 )

0.8247 0.3913 0.4082.

A fundamental theorem of matrix algebra states that the
diagonal elements of W give the singular values of E .B,",
the columns of U corresponding to nonzero singular val-
ues give an orthonormal basis for the composition space
of B,., and the columns of V corresponding to zero sin-
gular values give the coefficients ofany linear dependen-
cies contained in B* (Fisher, 1989, p. 7l).

In this case, W contains three nonzero singular values,
indicating that E.B," (and hence B*) has a rank of 3. But
the third singular value is nearly zero, showing that
E.B,. (and hence B*) is close to some matrix of rank 2,
which we will call E.B.. Being of rank 2, E.B- must
contain a linear dependency, given by the third column
of V, which defines the reaction

1.0000 olivine + 1.0000 qlrartz
: 2.0002 orthopyroxene. (15)

To find E.B-, we need only define a new diagonal matrix
W- in which the third singular value is exactly zero, and
use Equation l l to form the matrix product

E'B-  :  U .W*.V, . ( l  6)

To recover the matrix of unweighted compositions B^,
comparable with the original mineral compositions, we
simply pre-multiply E.B- by the inverse of E; the result,
B-, is the model matrix that we seek (Table l, line 5).

One disadvantage of BT components is that judging
the effects of analytical uncertainty can be tricky; it may
be easier to convert B- back into conventional oxide
components by pre-multiplying it by A, for comparison
with original mineral compositions; the result is given in
Table l, line 6. Although generally larger than those as-
sociated with the unconstrained model (Table I, line 2),
the residuals are smaller than the analytical uncertainties
of the original compositions. This confirms that the orig-
inal assemblage is analltically indistinguishable from a
stoichiometric univariant assemblage and cannot be in-
ferred to represent a divariant equilibrium state.

GnNnnc,LrznD RourrNES FoR SVD ANALysrs

Converting mineral compositions to stoichiometric
BT cornponents

Begin by selecting an appropriate set of BT components
for all minerals in an assemblage (or composite assem-
blage) containing the oxides needed to form one additive
end-member composition for each phase present, along
with all necessary exchange components; assume that there
are a additive oxide components, c conventional oxide
components, e exchange components, andp phases in the
assemblage. Write out the (a + e)by (a * e) matrix, M,
relating the BT components to conventional oxide com-
ponents, and take its transpose, M'. Now form the com-
posite matrix A', analogous to A' in Equation 5, parti-
tioned as

(r7)

where I is an a by a identity matrix, Z is an a by e zero
matrix, and M'is defined as above.

Next form the composite matrix C, comparable with
C in Equation 6, partitioned as

': l+:l (  l8 )

where C. is the c by p matrix containing the compositions
of the minerals in the assemblage expressed in conven-
tional oxide components (components in rows, phases in
columns), and C. is the a by p matrix giving the amount
of each additive oxide in the end-member chosen to rep-
resent the phase described by the columns of C..

Now pre-multiply A'and C by a diagonal (c + a)by (c
+ a) weighting matrix, D, analogous to that in Equation
7; the first c terms can be used to weight the conventional
components for differing analytical uncertainty, whereas
the last 4 terms should be larger by a factor of approxi-
mately 100, to constrain the stoichiometry.

The matrix B," of stoichiometric approximations to the
original mineral analyses is the least-squares solution to
the system ofequations

( D . A ) . ( D . B ) :  C . ( le)

In MATLAB this can all be done in a single operation
using the notation

Bb: (D.A)/(D.C) (20)

once the matrices A, C, and D have been defined.

Analysis of assemblages in BT components

Once the (a+e)by p matrix, B* of stoichiometric min-
eral compositions is available, we first weight it by pre-
multiplying 8* by the diagonal matrix E with (a + e)
terms; the last e terms can be used to weight the exchange
components for varying analytical uncertainty, whereas
the first 4 terms should be on the order of 100 times
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B- :  U.W-.V'

which is equivalent to the MATLAB expression

B-:  U.W- 'V ' .  (23)

In its raw form, B- is a weighted model matrix of rank
r, expressed in terms of BT coefrcients. To recover the
matrix of mineral compositions in unweighted form, B",
pre-multiply B- by the inverse of the weight matrix,

laryer, to constrain the additive oxide components to their
stoichiometric values.

We then take the SVD of the product E'Br,, obtaining
the matrices U. W. and V. which satisfv the relation

E ' B r . :  U ' W ' V ' . (2r)

In MATLAB this is accomplished by simply using the
expression [U, W, V] : svd(E.B*). As before, the diag-
onal elements of W are the singular values of the weight-
ed matrix B,", and the number of nonzero singular values
gives the rank of 8* (Van Huffel and Vandewalle, 1991,
p.22). Any univariant reactions contained in B* will be
given by the columns of V corresponding to zero singular
values.

To determine whether or not 8,. is close to a model
matrix B- of some lower rank, say r, form a new matrix
W- by setting to zero all but the largest r singular values
in W and find B- from the relation

CoNcr,usroNs

This paper has shown that by expressing the compo-
sitions of minerals in metamorphic assemblages in BT
components and weighting the additive components of
each mineral 100 or so times as heavily as the exchange
components, SVD methods of analysis can be forced to
yield stoichiometric mineral assemblages and reactions.
In most cases, it will be necessary to fit mineral analyses
to stoichiometric model mineral compositions prior to
SVD analysis, in order to avoid deviations from strict
stoichiometry resulting from analytical error. Least-
squares techniques for doing this fitting may be useful
even when SVD analysis is not contemplated, inasmuch
as they offer a sensitive way of detecting faulty mineral
analyses.
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(24)

(2s)

(26)

(27)

(28)

in MATLAB notation.
In order to compare B, directly with mineral analyses,

it is convenient to use Equation I to convert the model
back to conventional oxide components,

B ,  :  E - 1 ' B -

B,: inv(E).B-

C - :  M ' ' B '

which is equivalent to the MATLAB expression

c - :  M , -B , .

The matrix of residuals

R : C - C -

can then be compared directly with analytical uncertain-
ties to determine whether or not B" provides an adequate
fit to the observed assemblage.


