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On the formulation of simple mixing models for complex phases
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Ansrrucr

In activity-composition relationships for multisite phases, it often occurs that end-mem-
bers possess individual sites that contain more than one element. For example, in horn-

blende, trCarMg.[MgAl][AlSi3]Si4O,,(OH)r, the M2 site contains one Mg and one Al, and
the Tl site contains one Al and three Si. In such cases, normalization is required to ensure
that the ideal mixing activity and the activity coefficient of each end-member are each

unity for the pure end-member. Such normalization is well known for the former, but not

for the latter. A new formulation of normalization for activity coefficients is presented. In

the context of symmetric (regular and reciprocal) interactions, the formulation is used to

show that the thermodynamics can always be written in terms of lzn(n - l) interaction
parameters, where n is the minimum number of components needed to represent the
composition of the phase. These macroscopic interaction parameters are particular linear

combinations of the constituent regular and reciprocal model microscopic interaction pa-

rameters. With this, a further generalization leads to a dramatic simplification in the
writing of activity coefficients: for any end-member, a, of a complex phase, including all

symmetric microscopic interactions:

RZrn 7, : - 
? P,ro, 

- p,)(pl - p)w,i

in which pu is the proportion of end-member, k, in the phase, p? is the value of pu in pure

a, and W,, is the macroscopic interaction parameter for the 7 binary. The summations are

over an independent set of end-members chosen to represent the composition of the phase.

IntnonucrroN

The lack of knowledge of activity-composition (a-x)
relationships for minerals is still a major shortcoming in
the reliable calculation of the conditions of formation of
rocks and the calculation ofgeologically appropriate phase
diagrams (Powell and Holland, 1988, p. 187-190). This
lack of knowledge stems not only from the shortage of
experimental data that can be used to constrain a-x re-
lations, but also from the formulation of the a-x relations
themselves. The task is not straightforward. The com-
plexity of minerals, in terms of crystal structure and the
differences in size and charge among the atoms mixing
on the sites, means that a simple mixing model that can
be routinely applied to minerals is unlikely. In particular,
the presence ofsignificant long-range and short-range or-
der in minerals makes the task of formulating a-x rela-
tions in a physically and chemically realistic way daunt-
ing. The formulation of entropy of mixing, and thus of
thermodynamic mole fractions (or ideal mixing activi-
ties), for phases with even a small amount of nonideality
is quite approximate (Guggenheim,19661' Powell, 1983)
and is impossible for the degree of nonideality character-
istic of minerals. This is because the entropy of mixing

is directly related to the number of ways of organizing
the atoms or molecules in the structure of the phase, for
example, in terms of the numbers of nearest neighbors of
different types. In turn, these numbers must depend on
the interaction parameters (e.g., Guggenheim, 1966). Thus
nonunit activity coefficients require thermodynamic mole
fractions that depend on the interaction parameters.
However, counting the number of ways of organizing the
atoms or molecules turns out to be impossible unless very
restrictive approximations are made. Thus, for all the
models normally used (regular, subregular, reciprocal),
thermodynamic mole fractions are written in terms of
ideal mixing, with the activity coefrcient terms wdtten
separately, for simplicity, and in the absence ofa general
way of doing otherwise.

In this paper, thermodynamic mole fractions (ideal
mixing activities) are formulated with ideal mixing on all
sites, representing a disordered solution, and nonideality
is formulated involving enthalpic interactions involving
all sites, which may be taken to account at least partially
for any ordering in the structure. In this framework, it is
shown how a-x relationships may be simplified. More-
over, the logic developed can apply to other formulations,
including those in which order parameters are involved
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explicitly (e.g., Thompson, 1969). In this latter case, the
logic applies prior to determining the equilibrium values
of the order parameters, with or without the inclusion of
additional ways of representing the order-disorder (e.g.,
Ghiorso, 1990; Holland, 1990).

Before this logic can be developed, a subsidiary but
central problem must be solved. It concerns normaliza-
tion, which ensures that both the thermodynamic mole
fraction and the activity coefficient of each end-member
goes to unity as the proportion of that end-member goes
to unity. Normalization is necessary for end-members in
multicomponent phases that do not involve sites filled
with just one element, as for example in diopside Ca-
Tschermak's, in which the two tetrahedral sites in Ca-
Tschermak's involve Al and Si. Although normalization
in ideal mixing activities is well known (e.g., Kerrick and
Darken, 1975; Powell, 1977), that is not true for activity
coefficients.

Simple symmetric formulations of nonideality will be
considered here. For contributions to activity coefficients
from interactions within any one site, the regular model
will be used, whereas for contributions from interactions
between sites, expressions of the Bragg-Williams (or re-
ciprocal) type will be used. These will be referred to as
the same-site and cross-site models, respectively. First,
normalization of activity coefficients is discussed, then it
is shown how the resulting activity coefrcient expressions
may be combined in a useful way.

Nonnn.Lr-rzlrroN oF Acrrvrry coEFFrcrENTS

In a multicomponent multisite phase, for a general end-
member, a, using a pure end-member standard state (so
p! refers to pure a), the activity coefficient of a, 7", is
given by

in which G' is the Gibbs energy of the phase without the
ideal mixing term, so llto't p.l" is the chemical potential of
a without the ideal mixing activity, and N, is the number
of moles of the end-member, a. Symbol usage is sum-
marized in Table l The activity coefficient can be de-
rived directly from Equation I by the methods of the next
two sections if the end-member, a, does not have more
than one element on any site. However, this is not pos-
sible otherwise, and this excluded case is the one for which
normalization is required. But Equation I can be trans-
formed so that the activity coefficient can be derived by
the methods below. By using the chain rule in Equation l,

2 x"rQt"r + R?" ln 7o). Q)

The summation is over an independent set of compo-
nents for which it is straightforward to derive activity
coefficients by means of Equation l. To write RZln 7,
in terms of the RZln 7u, it is not sufficient just to equate
terms between Equations I and 2; in order for RZ ln 7"

TABLE 1. Definitions of symbols used in text

Definition

chemical potential of end-member k without the ideal mixing
term (Eq. 1)

Gibbs energy without the ideal mixing term (Eq. 1)
no. of moles o{ end-member ,( (Eq. 1)
gas constant times the temperature (Eq. 1)
activity coefficient of i (Eq. 1)
activity coefficient ot i in a pure end-member (Eq. 3)
site fraction of , (Eq. 7)
site fraction of i in a pure end-member (Eq. 2)
no. of moles of nearest neighbor il pair (Eq. 5)
energy of nearest neighbor ,-/ pair (Eq. 5)
same-site interaction energy involving ii (Eq. 7l
cross-site interaction energy involving i on one site and k/ on

another (Eq. 14)
normalized -xk (Eq. 14)
proportion of end-member k in an independent set (Eq. 20)
normalized -pk (Eq. 20)
macroscopic interaction energy for the k ,binary (Eq. 20)

ivote; the equation numbers given are those in which the respective
symbols were first used. Additional superscripts may be involved to clarify
which sites are referred to, for example, in xr and wilrr; they are omitted, as
in this table, if there is no ambiguity.

to be appropriately normalized,

RI ln 7, :  2  x?Rrh4 (3)

and

,2: 
4 

xou(Pou t RZ ln r?) (4)

in which 7! is 7o in pure end-member a. The two'y! terms
cancel as required when Equations 3 and 4 are combined.
Equation 3 is a general expression for the normalized
activity coefficient, regardless of the model used for the
activity coemcient.

GnNnnar-rznD 4-r REr-ATroNSHIps FoR
SAME-SITE MIXING

The contribution to the Gibbs energy of a phase, G',
from same-site mixing on each of its sites can be modeled
by the pair-wise nearest-neighbor approximation of, for
example,

G' : >2 n,ir, i  (5)

(Guggenheim, 1966) in which nu is the number of nearest
neighbor i-7 pairs, eu is the energy of a nearest neighbor
i-j pair, and both sums are over the number of elements
on the site (e.g., Powell, 1977). Subsumed in the eu are
the factors coming from the duplicate counting of nearest
neighbors, in proportion to their coordination. Strictly,
Equation 5 is a virtual Gibbs energy (Powell, 1983) be-
cause the nij are r;.ot independent.

For an element, k, on the site, substituting Equation 5
into Equation I and applying the chain rule give

sym-
bol

rl

R T
7,
t?
x,
x l
nl
ett

Y*
pr
Q*
wil

rt. :  p2+ RT ln  ̂ r.  :  (#) ( l)

r':4[fr)(**):

,' : (#*) : 4 4 WNk) : 4 4 G*),, (6,
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With the assumption of ideal mixing on sites, the nij are
specified in terms of the N& because the number of pairs
is equal to the probability ofan i being a nearest neighbor
to a / as a proportion of the total number of pairs. Each
probability is just the mole fraction, so nij : nxixj, wlth
x. the mole fraction of k, No/2,N,, on the site, and n the
total number of pairs on this site, )2 ro,. Substituting this
expression for n, into Equation 6, differentiating, and re-
arranging give

RZln 7o :Z,*rx , ( l  -  xr )w,o -  
Z\x ix jwi i  

Q)

with p? : eoo alnd w,, : 2e,, - Gii - er, reflecting whether
i-i andj-j are preferred over i-l nearest neighbors in the
structure. This, or an equivalent formulation, is well
known (e.g., Powell, 1977).

Substituting Equation 7 into Equation 3 and rearrang-
ing give the normalized contribution of same-site mixing
to the activity coefficient of an arbitrary end-member, a:

R?" ln .y,
i  I  > i

t  j  > i

in which xo is the mole fraction of atom k on the site
being considered and x! is the xo in pure a. In Equation
8, lp: xor - x* can be considered to be the normalized
value of -x*. This formulation is new; its generality may
be appreciated by considering two simple examples of its
use.

The mixing of Ca, Na, and K on the A site of feldspar
is a simple ternary example of same-site mixing. From
Equation 8, for a being the Na end-member, with y* :
-xcn, /N, : I - r*u, and /" : -Jr", then

RZln 7*" : -(l - x".)(-x..)w",."

- (l - x".)(-x*)w"." - (-x.X- x*)w*.u

: ,c."(l - x..)w*."" + x"(l - xNo)il/nur

- xyXqowssu (9)

which is recognizable as the well-known ternary regular
solution model expression (e.g., Wohl, 1946).

As an example of a binary mineral with an interme-
diate end-member, mixing in disordered epidote is con-
sidered, in the solid solution between clinozoisite {cz,
CaAl[Al,]Si.O,o(OH)] and pistacite {ps, CaAl[Fer]-
Si3Oro(OH)). The internal bracket notation indicates the
grouping of atoms on the sites, following Holland and
Powell (1990). These formulae have been written assum-
ing Al and Fe3+ mix (randomly) on two octahedral sites,
referred to here as Ml3; in nature Fe orders in the M3
site and Al in the Ml site at lower temperatures. Using
Equation 8, the same-site contribution from mixing in
Ml3 to the activity coemcient of the epidote end-mem-
ber, with lx : Yz - x^, and !e.: lz - JrF., is

RZ ln 'y.o -- - (V, - xo)(t/r - Jrio") il/o"o,

: (V, - xo,)'wr.n (10)

as xFe : I - xo,. This is just a special case of an inter-
mediate end-member, A^B,, in a binary phase between
A and B; Equation 8 gives

In addition, the system may be examined graphically (Fig.
l). In this, a tangent to the G'- loop, say at xB, gives Rf
ln 7 of the end-members, A and B, of a phase of this
composition, from the intercepts of the tangent at pure
A and pure B, respectively. Similarly, the activity coeffi-
cient of the intermediate end-member , A -8,, is given by
the distance between this tangent and the G". loop at the
composition of A-8* For same-site mixing, G* :
xAxBwAB, and, from the geometry of the graph, R?"
ln 7o_", is just

RZ ln 7o-",

lm  \ /  n: -V+m- ' " ) \ n+^

/ ^ ^  \  /  \
R?.ln 7o.u. : xAxBwAB . (kX"+, - 

",

- wes-:- T" " n + m n + m

" " ) '^" .  
( l  l )

(8)

Performing the differentiation in Equation 12 and rear-
ranging give the same result as in Equation ll, as ex-
pected.

GnNnnar,rznD c-x RELATToNSHTpS FoR
CROSS-SITE MIXING

The contribution to the Gibbs energy of a phase, G',
from cross-site mixing involving two of its sites can be
modeled by the pair-wise nearest-neighbor approxima-
tion, analogous to Equation 5:

G', :  >2 ,u,, ( l  3)

with the i and j elements on the diferent sites. In this
case, with the logic above and with Ml denoting one site
and M2 the other,

(r2)

(14)FLt:rror,t + >> xftxf2w,,o,
i + k  j + l

in which p?: ert and w,,o,: e7 I e1,, - eij - e*,, reflecting
whether il and kj are preferred to y and k/ nearest neigh-
bors between the two sites. There is a complication con-
cerning the interaction parameters in the cross-site model
in that not all the w,,o,lhat can be written are independent
(Powell, 1977). For two sites, :udrth m, elements in the
first and ra, elements in the second, there are t/orftr(m, -

l)mr(m, - l) w parameters, but only (m, - l)(m, - l)
independent ones. However, an independent set ofinter-
action parameters can be formed if a pair of elements is
chosen to be involved in every one. Ifthis pair is rs, then,



from Equation 14,

RZln.yu, : 
ZV^(du, 

- x,,)(0,, - xp)w^i1 (15)

in which 0,, : I when a: b and equals 0 otherwise, and
the independent interaction parameters are w6u, with i +
r and j + s. This equation replaces the equivalent ex-
pression in Powell (1977), which, unfortunately, is in error.

Substituting Equation 15 into Equation 3 and rear-
ranging give the formulation of the normalized contri-
bution of cross-site mixing to the activity coefficient of
an arbitrary end-member, a:

RZln "y, : 
ZP^t(xi). 

- xilt(rci)' - xilwfp"

(16)

in which x! is the site fraction of k on site S, and (x?)0 is
the value ofthe site fraction in pure a. In Equation 16,
yi : (x?)o - xl can be considered to be the normalized
value of -xi . This is a new formulation.

In garnet in CaO-MgO-AlrOr-CrrOr-SiOr, an example
requiring no normalization, Ca and Mg mix on the cubic
site (M1), and Al and Cr on the octahedral site (M2), with
end-members grossularite (gr, Ca.AlrSirO,r), pyrope (py,
Mg.AlrSirO,r), uvarovite (uv, CarCrrSi.O,r), and knor-
ringite (kn, MgrCrrSi.O,r). Using Equation l6 and choos-
ing the interaction parameter to be w"*,.r.., we have

RZ ln 7* : (-xMjX-xy.2)vycaArMcc.

: xffjx$jw*o,,r.,

RI ln "yo, : (l - xffj)(-xf.,)w."o,*.".

: -xUxfwcaArMscr

RZ ln 7"" : (-:rMlXt - xY,')w".o,.,..

: -x$ix{r2wcaArMscr

RZln 7*: (l - xMlxl - x$.')il/."^,rr.,

: Jc$xfi2w""o,.r... ( l  7)

The results in Equation 17 are seen to be identical to the
familiar reciprocal expressions of Powell (1977) and Wood
and Nicholls (1978).

In feldspar in CaO-NarO-KrO-AlrO3-SiOr, an example
in which normalization is required, Na, K, and Ca mix
on the A site, and Al and Si mix on the four tetrahedral
sites, with end-members anorthite (an, Ca[AlrSir]Or), al-
bite (ab, Na[AlSir]Or), and orthoclase (or, K[AlSi3]O8).
The cross-site contribution to the activity coefficient of
albite can be written down directly using Equation 16.
There are two independent cross-site interaction param-
eters, which, if the fixed pair rs is CaAl, are wf|,*., and
wA.l^r*,. For albite, /fl : --xt, yt^: -xt^,./S. : I -

xft", /L : y^ - JrL, ./l : % - xg, and similarly for the

r 1 7 7

Gp'

wA}xsxA
wnsffmyz

A XE A'B" B

Fig. l. Graphical demonstration of the form of normaliza-
tion in a binary system with regular mixing between the end-
members A and B (see text).

other end-members, then, from Equation 16:

R?" ln 7"0 : w|L,"s,(-rftX% - x41

* wN|,",",(l - xfi")(% - xL)

+ wNlo,",.,(-xs")(% - x&)

RI ln 7." : lr6]o,*.,(-rc0(% - x$)

+ wNl^,",.,(--)rft")(% - x&). (18)

In amphibole in CaO-Na,O-MgO-AI,O3-SiO,-H,O,
Table 2 (but, for this example, excluding Na from the M4
site), there are cross-site contributions to the activity co-
efficients from interactions between Na and tr on the A
site, Mg and Al on the two M2 sites, and Si and Al on
four of the T sites. Using the independent set of interac-
tion parameters, wf;,flr*,, wft)fior' and wftlo,o., then, from
Equation 16, for example:

RI ln 7,, : wX,'J,o'(l - x$!)(l - x$)

* wfi|[2,o.,(l - tAXl - xM?)

+ wftI4,*,(l - xA)(l - xS)

RZ ln 7* : w$'J.o,(l - xY,)(% - x{')

* w$l[',or"(-xA)(l - xMi)

* wslo,o.,(-xaX% - xl)

RZ ln 7no : wXT,""",(/, - x$r/)(% - xT)

* wft|['z,o,,(l - xil(Y, - xY,?)

* wftlo,o.,(l - xil(% - x[')

RZ ln "y," : wX'J,o'(-xMiX% - xI')

+ wfi$1",,(l - xAX-xM3)

+ w*l;asi(l - xA)U, - x[,).

POWELL AND HOLLAND: SIMPLE MIXING MODELS
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TABLE 2. Amphibole formulae and site allocations

POWELL AND HOLLAND: SIMPLE MIXING MODELS

Tremolite
Edenite
Hornblende
Tschermakite
Pargasite
Glaucophane
Richterite

Mg. Si"
Mg, Alsig
MgAl AlSi3
Al, Al,si,
MgAl Al,Si,
AL Si,
Mg, Sin

M.c.cnoscoprc rHERMoDyNAMrcs

As can be seen above, when activity coemcient expres-
sions involving same-site and cross-site terms are written
out, there is a proliferation of interaction energy param-
eters. Even for a ternary phase there are already many
interaction parameters, if mixing occurs on several sites.
For example, in ternary anorthite albite orthoclase feld-
spar, with mixing on two sites, there are two cross-site
terms and four same-site terms (three for the A site and
one for the tetrahedral site). In ternary tremolite horn-
blende edenite amphibole, with mixing on three sites,
there are three cross-site terms and three same-site terms.
For larger systems there is a rapid increase in the number
of terms. However two lines of argument suggest that a
simplification is possible. The first is the similar forms of
the activity coefrcient contributions from Equations 8
and 16. The second is that there are many more / terms
than independent compositional terms. Thus for the ter-
nary feldspars above there are five y terms (-yft", /t, yt",
yL, y0 but only three compositional terms, of which two
are independent (as the phase is ternary). These compo-
sitional terms can be taken to be the proportions of a set
of independent end-members. An independent set of end-
members is just a minimum set of end-members from
which all other end-members of the phase can be con-
structed, and which can be used to represent any com-
position of the phase (e.g., Thompson, 1982). The pro-
portions of the end-members in an independent set will
be denotedpr. In the ternary feldspar case, the choice of
an independent set is straightforward-albite, anorthite,
and orthoclase-with p"r : xi,, p^": xU, and p". : xf.
In the ternary amphibole case, several choices of an in-
dependent set can be made. For the independent set
tremolite-hornblende-edenite, the proportions of the end-
members in terms of site fractions are ped : x$u, pnu :
2x{l,and, bydifference,po: | - Fw,- p"a.

For the activity coefficient of a general end-member
a, the y terms in Equations 8 and 16 can be written as a
linear combination of qo : pX - pu, in which p? is the
proportion of k in pure d. Multiplying out each y)/r term
with the appropriate linear combination substituted for
each y and then summing produce a result involving terms
in every q,g, combination, each involving a linear com-
bination of the same-site and cross-site interaction pa-
rameters. For an ,?-component system, there are ,C, :
n!/(n - 2)l2l : '/zn(n - l) different 404, combinations,
and so there are also this number of linear combinations

of interaction parameters, regardless of the number of
sites on which the mixing takes place. The linear com-
binations of (microscopic) interaction parameters may be
termed macroscopic interaction parameters and will be
denoted Wr,. Thus, in a general multisite phase, the ac-
tivity coefficient of any end-member, a, of the phase from
all symmetric interactions can be written as

RZ ln 7,

k  t > k

in which e* : p2 - po is the normalized value of -pp

The summation is over an independent set of end-mem-
bers. This new equation is general, allowing activity co-
efficients to be formulated for dependent end-members,
as well as members of the chosen independent set, taking
into account the same-site and cross-site interactions be-
ing considered here. The corresponding equation for G.
ofthe phase is

A M4  M13  M2 T1

!
Na
tr
U
Na
!
Na

Ca"
ca"
Ca"
Ca"
Ca"
Na.
NaCa

Sio
Sio
Sio
Dl l

D14

Sio
Si,

Mg"
Mg"
Mg"
Mg.
Mg.
M9.
Mg"

G^ : >2 Puz,wo,'
k  t > k

(20)

(2r)

Thus the formulation of activity coemcients in complex
phases arising from symmetric interactions can be writ-
ten down directly using Equation 20 once an independent
set of end-members is chosen, and the proportions of
these end-members are cast in terms of site fractions.

The logic leading to Equation 20 is illustrated using a
binary enstatite Mg-Tschermak's pyroxene, with enstatite
(en, MgMg[Sir]06) and Mg-Tschermak's (Mg-ts,
MgAl[AlSilOu) chosen as the independent set. The pro-
portions of these are just p"" : x$rl and prr-," : xX', in
terms of the mole fractions of the elements on sites. Writ-
ing the activity coemcients using Equations 8 and 16,
with same-site terms involving w$f, and 

"|si, 
and the

cross-site term involving w[.[r".,, we then have

RZ ln 7". : wMJ",(l - xMl)' * w[,r,(l - )rS),

+ nxlfMssi(l - xSj)(l - xg)

R7" ln ,yrr-," : wMj",(l - JrX'), + wL,",(% - xL),

* ws,I[,*,(-xMJX% - x&). (22)

Note that in Equation 22 multipliers to represent the
number of sites in the formula unit are not included; any
multipliers have been subsumed into the lt parameters,
which are bulk interaction parameters (also see Discus-
sion). Substituting x$j : I - pre-," and x$t : Pvr-o gtves

R?" ln 7".

: (l - p*)prr.,"(wy;, * lowlrr, + %wx$ro,)

R?" ln 7r*-,"

: p""(l - pr._"XwMJ", * Yow'n", + %wxHro,) Q3)

and
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Tral-e 3. The linear Gombinations of the macroscopic interaction parameters for amphibole, with tr-hb-ed-gl as the independent set

wgN" wl'o' wi$1""s wiK,""*. wXiYfln.. wi]^o' wK?rttn"' wHI."",wM6o,wA*"

Wn no
Wn..o

Wno-.o

Wi st
Wnnn,

wuo' 1 6

- 2

- 1 6 1 6

2

- 2
-4

- 4
-4

4

1 -
8 -

1 6  4

4 - 1
1

1 -
1 l

4 1 6  1
1 6  1 6  1

1 6
4

J4a
lte

1

lrc

Noter tr : tremolite, hb : hornblende, ed : edenite, gl : glaucophane. Each row of the table defines a linear combination, with the number in the
Muft column the multiplier; thus from the first row: wn*: %s(4w\fu^r + wlar + 2wXiLn"J. See Table 1 for formulae.

G"- : p",RZ ln "y." * prr-oRl ln 7rr-,"

: Pue-,"P",(wvtl1 * Vawrtrs, + %wxf,Trot). (24)

Therefore, although there are three interaction parame-
ters in Equations 23 and 24,lhey only occur in one linear
combination, wMJ",+ '/owro,s; * %vuXf,-|.o,, which can be re-
ferred to as ltl.,.Ms.t,, which is a macroscopic interaction
parameter. These equations correspond to those obtained
through Equations 20 and 21. In addition, the activity
coemcient of the fictive garnet end-member, orthopyrox-
ene (opy), in this binary may be obtained using Equation
20. This end-member is MglAlaSiy; it can be repre-
sented by opy : (en + Mg-ts)/2. Thus, for orthopyroxene,
5.": Y, - P." and 4ug'" : Yz - Pu"-,", &ftd

Rl" ln 7"o, : (V, - p.)(% - p*"-o)W,n--r_r.. (25)

Considering macroscopic interaction parameters, for
example, Wet.ug_rs in Equation 25,we find it useful to be
able to write down the linear combinations of interaction
parameters directly, without having to resort to Equa-
tions 8 and 16. In the enstatite Mg-Tschermak's case
above, there is just one macroscopic interaction param-
eter, but in large systems there are many. However, each
linear combination of same-site and cross-site interaction
parameters involves only those in the corresponding bi-
nary. With the enstatite Mg-Tschermak's binary, with p
= Pug,t. and therefore p.,: | - p, then xX, : p, xMj : I
- p, xT,: 0f, and x!,: (2 - p)/2.To find the multipliers
on the constituent l? parameters, the denominators in
these expressions are examined, noting that two such de-
nominators are involved in each activity coefficient con-
tribution. Thus, for w$r{r it is I . I : l, for w[,., it is lr.Y,
: t/o, and for wf;,{fr*, it is I ./, : yr, giving, as expected,

Wen-us-ts: wMj", * ,/owTrs, * t/rw$?[r-"s,, as given by Equa-
tion 22.

A simple example showing the application of Equation
20 and the procedure ofthe last paragraph involves the
ternary feldspar syst€m. As a consequenae W^b-^": wft.cr
+ tf6ltlrsi + %rt6]o,*..,, Wo,-^n : wt"" * t/rrwf,r", +

%w6L'*.,, W^t.*: wtN", and

RIln 7"o: -(l - p"")(-p"")W""". - (-p".)(-p^")W",""

- (1 - P^)(-P)w"o.-

RZln 7.,: -(-p"bx-pu)Wuu- - (1 - p",)(-p^")W",.^

- (-p.oxl - P)w^o--

RZln ^y"": -(-p"rXl - F^)W^o^,

- (-p.,Xl - P^")wo,.^,

- (-p^)(-p.,)w^o-*- (26)

In relation to the description of the thermodynamics of
plagioclase of Holland and Powell (1992), ltci for exam-
ple, was considered to relate only to mixing of Ca and
Na in the CT structure. In fact, the interaction parame-
ters estimated actually refer to wft"c" * lruw'n", i

%1r4k,"..,, not just to w$.o; othenvise the logic used there
is entirely consistent with this study.

A more complex example showing the application of
Equation 20 involves amphibole (Table 2), with Na-tr
mixing on one A site, Mg-Al mixing on two M2 sites,
Na-Ca mixing on two M4 sites, and Al-Si mixing on four
T sites, and choosing tremolite (tr), hornblende (hb),
edenite (ed), and glaucophane (gl) as the independent set
of end-members. With this choice, pa : ,rS- p" : x$,o,

Trele 4. The formulation of activity coefficients for amphibole, with tr-hb-ed-gl as the independent set

Wn-no wn^ wn wr4 wnoo, Waa

Rrln7,, -(1 -A,X-p*)
RIlnT* -(-p"X1 -p*)
RrlnT* -(-n.X-p*)
Rfln"yd -(-p")(-p*)
Rlln"y," -(-1-p,,X2 p*)
R f lnTn -Vz- p,,)(-1 - p*)
Rrln"yo" -(-1-4,X1 p*)

-(1-pJ( p*)
-(-a,X-p*)
-(-p',X1 -p*)
-(-A.X p*)
-(-1-p,,)(-p*)
-(V2- p,,)(1 - p^)
-(-1-p'X1 -p..)

-(-p*X-p*)
(1 -p*X-p*)

-(-p*X1 -p*)
-(-p*X-p*)
-(2- Pno? P*)-( 1-p*X1-p*)
-(1 -p*X1 -p*)

-(1 -A,X-pr,)
-(-p"X-p",)
-(-a,X-p",)
-(-A,X1 -p.,)
-(-1-p,X-p.,)
-(V2- p*XV2- pd)
-(-1-&X-pr')

-(-p*X-p,,)
-(1 -p*X-pn,)
-(-PnoX-Pn')
_1-p*X1 _psr)
-(2-p*X-p.,)
-(-1 - P*)Uz- Pol

(1 -p66X-psr)

-(-P*X-Ps')
-(-p*X-pn')
-(1 -p_X-pn,)
-(-p*X1 -pn,)
-(-p*X-pn')
-(1- pd(2- pst)
-(1 -p*X-p,')

Note.'ts : tschermakite, ri : richterite, pa : pargasite. Each row defines the activity coefficient given in the first column. The first four columns are
for the end-members in the independent set; the last three columns are for dependent end-members. The proportions of the end-members in the
independent set in terms of site fractions are pd: xi", ps, : xH, pno : 2(xxi - xuo), and p,. is found by ditference. See Table 1 for formulae.
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pno : 2(xX' - xS"), and pt, is found by difference. The
dependent end-members in Table I are related to the
end-members in the independent set by tschermakite (ts
:2hb - tr), pargasite (pa : ed + hb - tr), and richterite
In: /,Gl + tr) + ed - hbl. Thus, for example, for rich-
terite, p$ : lr, p|o: - l, pg. : 1, and p$ : fi.The resulting
activity coefficients are given in Tables 3 and 4.

DrscussroN

The logic developed above shows how the number of
interaction parameters required to represent a-x relation-
ships in multisite multicomponent phases can be mini-
mized when cross-site and same-site interaction param-
eters are considered in linear combination. This symmetric
formalism dramatically simplifies the writing of a-x re-
lationships and brings out the underlying form of the
thermodynamics. It also has the merit of appearing to be
a macroscopic phenomenological description of the phase,
even though it is derived from a microscopic description.

In the formulations it is important to note that the
same-site and cross-site interaction parameters used are
bulk ones for the stated size of the formula unit. Although
it would have been straightforward to have included a
multiplicity in the same-site activity coefficient expres-
sions, as commonly done in the literature, simply equal
to the number of sites on which mixing occurs in the
formula unit, it is not easily done for the cross-site activ-
ity coefrcients. Thus, if one considers same-site mixing
in garnet, with an A3BrSi3O,, formula, the interaction
parameters to be used in, for example, Equation 3, may
be considered to represent, for example,

wcoue: 3(2e.^-" - €c"c" - €rr.r) (27)

and in cross-site mixing,

Wc"etuec.: eca2c4 + €vg2,+t3 - evs23o - €c"z.qt:. (28)

No difficulty arises in this, although, if for some reason a
larger or smaller formula unit is chosen for a mineral, the
interaction parameters must be varied in proportion.
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