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LETTER

The fractal geometry of oscillatory zoning in crystals: Application to zircon
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ABSTRACT

Spectral analysis provides a quantitative method for describing oscillatory zoning pat-
terns (OZP) in crystals in terms of self-affine fractals. An OZP may be characterized by its
fractal dimension, a quantitative measure of the nonrandom nature of the pattern. Any
model of oscillatory crystallization must reproduce the quantitative characteristics (fractal
dimension, compositional variations) of the observed OZP.

INTRODUCTION

Oscillatory zoning patterns (OZP) are common in many
rock-forming and accessory minerals, and yet we under-
stand very little about the mechanisms by which such
zoning develops. Indeed, we cannot yet adequately de-
scribe oscillatory zoning in crystals; we can analyze the
chemical compositions of the various zones, but we have
no general method for describing the pattern of zones that
we observe. Various causes of oscillatory zoning have
been suggested: (1) temporal variations in the composi-
tion of melt and conditions of growth; (2) variations in
growth rate; (3) diffusion-controlled chemical feedback
between the mineral and its environment. However, we
cannot adequately test any specific model because we cur-
rently have no quantitative representation of the char-
acter of oscillatory zoning in crystals. This problem is
addressed here.

EXPERIMENTAL

Figure 1 shows a cathodoluminescence image of a zir-
con crystal from the Silinjarvi carbonatite, Finland
(Puustinen, 1971). There are extensive oscillatory varia-
tions in green and yellow luminescence; the crystal is op-
tically continuous in reflected, plane- and cross-polarized
light. The thickness of the zones varies between ~5 and
400 um, and contacts between zones are sharp. Prelimi-
nary spectroscopy on the yellow zones shows a broad
band of intrinsic cathodoluminescence centered at ~ 560
nm, but there are no bands that can be associated with
activator elements. Micro-PIXE (proton induced X-ray
emission) analyses show (1) the yellow and green bands
to have scandium contents of ~60 and ~100 ppm, re-
spectively, and (2) there is no correlation between the
scandium abundance and the Zr and Hf content of the
zircon, suggesting that spatial variation of the scandium
(and possibly other trace elements as well) is decoupled
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from any variation in the Zr and Hf content of the min-
eral (Halden et al., 1993).

Images of the zoning patterns were recorded using a
high-resolution black and white T.V. camera and were
processed with a Kontron IAS (image analysis system).
To provide maximum resolution of the patterns, the total
recorded variation in gray level (determined by the initial
color variation) was normalized to take advantage of the
full 256 gray levels available. The variation in gray level
as a function of position is then a quantitative represen-
tation of the zoning pattern. Figure 1 shows the variation
in gray level as a function of position along the traverse
indicated. The distance units are equal sampling units
along the traverse (measured in pixels, where 1 pixel =
1.6 um). It is possible to change either the magnification
or the number of pixels used in sampling the image.

DiscussioN

The OZP is complicated and might be described as
chaotic or random. However, in a technical sense, these
terms have different meanings, and it is not possible at
an intuitive level to distinguish between them. It becomes
necessary, therefore, to determine if there is any structure
to the pattern. At time ¢, a composition ¢ will have crys-
tallized at position x; at time ¢ + &¢, a composition ¢ +
5¢ will have crystallized at position x + éx. If we can
write an equation (or set of equations) relating ¢, ¢, and
X, the behavior of ¢ as a function of x should be related
to the behavior of ¢ as a function of ¢ (without, at this
time, specifying the Laplacian relating the two functions).

Description of OZP in fractal terms

We usually describe geometrical objects (e.g., patterns)
by their symmetry properties. Most familiar to us is the
example of morphological forms of crystals, whereby a
form is characterized by the distance- and angle-preserv-
ing spatial transformations that leave the form un-
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Fig. 1. Cathodoluminescence image of oscillatory zoning in
a zircon crystal from Silinjarvi, Finland; dark regions show green
luminescence, and light regions show pale yellow luminescence.
The field of view is 1000 pm, and the zones vary in width from
5 to 150 um. The overlay (white lines) shows (1) the traverse
over which the information was collected (from top left to bot-
tom right); (2) the gray-level variation with respect to position
over the length of the traverse. The irregular bright region in the
lower left of the picture is light scattered from a fracture outside
the field of view.

changed. However, other sorts of transformations are
possible, and these may be used to describe complex pat-
terns such as that shown in Figure 1. Tt is here that the
idea of fractal dimension is useful.

The term fractal is used to describe the power-law re-
lationship between the number of objects and their linear
size, where the fractal dimension is the value of the power
in the fractal relationship. There are two kinds of fractal
that are of interest: self-similar fractals and self-affine
fractals. Self-similar fractals are those whose geometrical
structure is isotropic and independent of scale; percola-
tion clusters and diffusion aggregates would be typical
examples. Self-affine fractals are nonisotropic, and differ-
ent coordinates are scaled differently; in this case distance
is something we can measure (e.g., zone width in pixels),
but the relationship between distance and either time or
crystal growth rate is unknown. Time and distance are
different quantities, and they need not be scaled by the
same factor (cf. Feder, 1988); rhythmic sediments and
igneous layers are other examples of temporally and spa-
tially variable geological layering (Fowler and Roach,
1993).

There are many natural examples of self-affine fractals
(Turcotte, 1992; Stanley, 1991). Self-affine fractals may
be described in the context of a random walk. If NV, is the
number of boxes with dimensions (x,, y,) and N, is the
number of boxes with dimensions (x, = rx,, ¥, = r’y,)
that are needed to cover the walk, the walk is a fractal if
N,/N, = r=2, where D is the fractal dimension, and 7 is a
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scaling factor. Mandelbrot and van Ness (1968) intro-
duced H as an exponent term, varying between 0 and 1,
to characterize fractional Brownian motion (when H =
0.5, we have the unique case of Brownian motion); D =
2 — H for self-affine fractals (Feder, 1988; Turcotte, 1992).
A self-affine fractal in two-D space satisfies the condition
that f(rx, #'"y) is statistically similar to f(x, y) (Turcotte,
1992). Our interest here is the scaling relationship be-
tween distance and gray level, and we now deal with the
problem of determining the fractal dimension by means
of spectral analysis.

Spectral analysis of the pattern

The gray-level variation with respect to distance is
amenable to spectral analysis (cf. Turcotte, 1992, chapter
7), a method of analyzing a single-variable function with
respect to time; in this particular case, we are analyzing
a single variable (gray level) with respect to distance, but
the basic mathematics is the same. The problem is to
determine if there is a relationship between the gray level
at position x and the gray level at position x + éx. Thus,
as 8x increases, we have to assess the relationship (or
serial correlation) between the gray levels of successive
zones. A power dependence between gray level and dis-
tance would allow us to describe the pattern as fractal.
Where the width, gray level, and recurrence of zones are
totally unrelated, we would expect to see a Gaussian dis-
tribution of gray levels about the mean value; such a pat-
tern could then be described as white noise.

A histogram of gray levels from Figure 1 shows that
the distribution is bimodal (Fig. 2a). The next step in the
spectral analysis is to take the Fourier transform of the
original data. The resulting power spectrum (Fig. 2b) is
not flat, indicating that the pattern is not Gaussian white
noise. On the faxis, peaks occur at approximately 2, 8,
12, and 24, with other possible peaks at 17, 33, and 40;
the quantity fis the length scale at specific values for
which there is information in the spectrum. The log of
spectral density (log S,) for each value of f is plotted
against log fin Figure 2c. A characteristic of self-affine
fractals is a decreasing linear dependence between the log
of the length scale used to measure the pattern and the
log of the statistical average of a property of interest (in
this case, gray level). The slope (—p) of a linear regression
for this data is —1.68, and the fractal dimension (D, where
8 =5 — 2D)is 1.66; thus H = 0.34. This process was
repeated for a number of patterns, some at different mag-
nifications, some from different areas on the crystal, and
others where two images were combined to give a longer
pattern; the resulting fractal dimensions ranged from 1.58
to 1.66. This value of D falls within the range character-
istic of fractional Brownian motion (1 < D < 2; Turcotte,
1992); this value shows that the zoning pattern is non-
random.

Minerals as dynamic systems

The diffusion of elements to a growing crystal results
in a relationship between f{c, t) and f(c, x); neither needs
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to be linear functions, and, as such, the mineral and its
environment may be viewed as a dynamic system (e.g.,
Ortoleva, 1990). The limiting cases for such a system are
(1) where 6c/8t and éc/éx are constants, and (2) where they
are nonlinear functions. Where element diffusion and
crystal growth can be linked to coupled chemical reac-
tions or metastable reaction products, the character of a
zoning pattern is a function of d¢/6¢t and ¢/éx; if f(c, t) is
nonrandom, f{c, x) is likely to be nonrandom.

Feder (1988) and Mandelbrot and van Ness (1968) de-
scribe Brownian processes as having H = 0.5. Fractional
Brownian process may have values of H in the range 0
to 1 where H = 0.5. Where values of H are in the range
0.5 to 1, a system is said to show persistent behavior.
Feder (1988) described persistence in the context of ocean
wave height, where if the wave height has been increasing
for a period of time ¢, it will have a tendency to increase
for a similar period. Antipersistent behavior (where 0 <
H < 0.5) may be characterized as a tendency to show
decreasing values following previously increasing values.
With reference to the zoning pattern, H =2 — Dso H =
0.34, this is indicative of antipersistent behavior. There-
fore the zoning pattern has a tendency to show bright
luminescent zones occurring after zones of darker lumi-
nescence on similar length scales. A consequence of de-
scribing this particular zoning pattern as being antiper-
sistent is that during crystal growth, after the surface has
incorporated the trace elements connected with the bright
luminescence, there is a tendency for the surface to reject
the elements responsible for the bright luminescence; the
tendency to accept a particular element followed by a
tendency to reject it is occurring over similar length scales
or perhaps growth increments.

The fractal dimension of the pattern is a quantitative
measure of the nonrandomness of the zoning pattern and
emphasizes the need to develop a model for crystal growth
with the requirement that the model predict an oscilla-
tory zoning pattern with the same fractal characteristics
as the observed pattern. A component of such a model,
for a case like the one described here, is that it should
incorporate antipersistent behavior or a tendency to re-
ject certain elements at the crystal surface after having
accepted them.

CONCLUSIONS

The fractal dimension of an oscillatory zoning pattern
(OZP) provides a quantitative description of oscillatory
zoning in a crystal. Any quantitative (or mechanistic)
model of crystallization for an oscillatory-zoned mineral
must produce a zoning pattern with the same fractal di-
mension as that of the observed pattern.
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Fig. 2. (a) Histogram of gray levels showing bimodal distri-
bution; (b) power spectrum of gray-level variation; on the f(length
scale) axis, peaks occur at approximately 2, 8, 12, and 24, with
other possible peaks at 17, 33, and 40; (c) log spectral density
(S) vs. log f: a regression line through the data has a slope (8)
of 1.68.
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