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AssrRAcr

The applicability of least squares in the extraction of thermodynamic data from exper-
imentally bracketed mineral equilibria is considered primarily as a statistical (and logical)
problem concerning the nature of the experimental data and the nature of the information
to be extracted. The former relates particularly to the bracketed nature of the data, the
latter to the requirement that not only thermodynamic dala, but also the uncertainties in
and the correlations between the data, are to be extracted. By examining the probability
distributions, one can see that the majority of experimental brackets are approximately
Gaussian distributed, primarily because experimental brackets are not generally very wide
compared with experimental uncertainties on the bracket ends. Thus, using least squares
on all the experimental brackets would be apposite for the thermodynamic data extraction
problem. However, rather than fitting all the experimental brackets, we fit composite data
formed from the individual experimental brackets for each experimentally determined
reaction. It is shown that the use of composite data is equivalent to using all the brackets
as long as the composite data are determined appropriately. The main reason for wishing
to use composite data is that it allows the deleterious efect on the least squares caused by
inconsistent brackets to be minimized. The uncertainties in very few of the composite
data are large compared with the uncertainties in the ends of individual brackets. There-
fore, least squares on composite data is appropriate for data extraction. Moreover, much
of the uncertainty in the extracted thermodynamic data comes from uncertainty in the
position of the bracket ends rather than the width of the brackets themselves.

IxrnonucrroN

With the ever-increasing volume of experimental and
calorimetric data on minerals, a thermodynamic data set,
including data for most end-members of rock-forming
minerals, is becoming attainable. An important stage in
this development was the recognition that well-deter-
mined phase equilibria for reactions among mineral end-
members provide excellent constraints on thermody-
namic properties. So-called internally consistent data sets
involve thermodynamic data calculated from such ex-
perimental data. Two methodologies have been used to
do this, both involving processing all the experimental
data (in some chosen system) at once. One is a mathe-
matical programming (MAP) approach (Berman, 1988);
the other is a least-squares (LSQ) approach (Powell and
Holland, 1985; Holland and Powell, 1985, 1990-DS1,
DS2, and DS4, respectively, DS standing for data sets).
There have been some suggestions that various aspects
of the LSQ approach make it inappropriate for data ex-
traction: the aim of this paper is to show why the LSQ
approach is not only sound, but also the most appropriate
approach.
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The essence of the application of LSQ to data extrac-
tion as followed in DSI-4 is now outlined. It will be
assumed that entropy, volume, and heat-capacity data for
end-members of minerals are relatively well known;
therefore, the aim of data extraction is to calculate en-
thalpies of formation of end-members at I bar and 298
K (denoted AIl) from the experimentally bracketed equi-
libria. The extension ofthe logic to cover the case where
entropies and other parameters, in addition to enthalpies,
are determined is considered in the discussion section
below.

We will start by showing how reversal brackets for an
experimentally determined reaction may be converted into
an enthalpy of reaction representing all the reversal
brackets for the reaction. Such enthalpy ofreaction data
are the input in our LSQ analysis. A typical set ofreversal
brackets for a reaction are shown in Figure la. If only
enthalpies are to be found, the slope of the reaction is
fixed; the two light dashed lines represent the limits of
the range for the reaction ifthe ends ofthe brackets are
taken to have no uncertainty. (For this example the re-
action is taken to be one without curvature.) For each
bracket in temperature, an equivalent bracket for the en-
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Fig. l. The conversion of experimentally determined tem-

perature brackets (a) into AIf" brackets (b), and the definition of
cumulative brackets and composite AII* (see text). (The shaded
circles correspond to AHf* and AIlitch.)

thalpy change ofreaction, AII*, can be calculated, Figure
lb (DSl, p. 332). Clearly the two bracket ends (shaded
circles), which define the range ofposition ofthe reaction,
also define the limits of A.FI" if the ends of the brackets
are taken to have no uncertainty. The resulting A.EI^
bracket shown at the bottom of Figure lb is the cumu-
lative bracket (of DSI-4), representing all the ?"brackets
in Figure la. Alternatively, a composite A.F/* may be de-
fined in terms of, for example, a weighted average of the

midpoints of the A.Fl* brackets, marked by crosses, giving
the solid vertical line in Figure lb. Regardless of how the
information in the individual ArlR brackets is combined,
a representative AIl* value is generated, as well as some
estirnate ofthe uncertainty ofthis value.

Given a AI1. value and its uncertainty for each reaction
in a set of reactions, the problem is to estimate the en-
thalpies of formation of the mineral end-members in-
volved in the reactions. If there are the same number of
reactions as enthalpies of formation being determined,
then enthalpies of formation can be found for any spec-
ified position in each AI1. bracket. However there are
normally more reactions than enthalpies of formation, so
the problem becomes one of finding a consistent set of
enthalpies of formation that agree with, or fit, the AF/"
values in some sense. If the probability distribution rep-
resenting each AI1" bracket is approximately Gaussian,
then the way to find a best fit is by LSQ, in which the
enthalpies of formation are found for which the sum of
the squares ofthe departures ofthe calculated AIl* from
the center of the Afl* bracket probability distribution,
weighted to a measure of the width of the distribution, is
minimized.

However, this development raises three questions: (l)
The first. and the one that has been the main criticism of
the LSQ methodology, is that the centers of the Af/.
brackets are to be fitted, and therefore there will be a
tendency to force reactions central to their brackets. This
is contrary to the idea that a reaction should be placed
anywhere within its bracket, and therefore it has been
argued that LSQ is inappropriate. (2) It has also been
suggested that even though LSQ and MAP give similar
results, the uncertainties on the thermodynamic data as
calculated bV LSQ are meaningless. (3) It might also be
argued that although an LSQ approach based on every
experimentally determined bracket might be appropriate,
in parallel to the MAP approach, which uses all brackets,
the use of composite Afl* data is inappropriate. Discus-
sion ofthese and related points is the focus ofthis paper.
It will be shown that all of these concerns are unwar-
ranted. We start with a consideration of the probability
distribution of AIl* brackets corresponding to individual
P-I brackets.

Pnoslrrr,rry DrsrRIBUTrou or A.EI" BRAcr(r'.TS

In LSQ, the probability distribution of each datum to
be fitted needs to be Gaussian for the method to be of
maximum likelihood and for various optimal properties
to apply. In fact, even if the distributions are unknown,
LSQ is still optimal in a certain looser sense as the best
linear unbiased estimator, e.g., Mood etal. (1974, p. 498-
502). For LSQ to be appropriate in the more stringent
case (Gaussian) for thermodynamic data extraction, the
probability distribution of A.FI* needs to be approximate-
ly Gaussian. We therefore start by deriving the probabil-
ity distribution of AIl* brackets corresponding to indi-
vidual P-7 brackets. This probability distribution is
directly related to the experimental uncertainty of the po-
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Fig. 2. The conversion of probability information for two

limiting half-brackets into a bracket probability distribution. Part
c is produced by multiplying the distributions shown in a and b
and normalizing the result so that the area under the curve is I .

sition of the ends of the half-brackets that define the
bracket, or, in other words, the probability distribution
of the ends of the half-brackets. Following the logic of
Demarest and Haselton (1981), we take the probability
distribution ofthe positions ofthe ends ofthe AfI. brack-
et to be Gaussian, with the mean and standard deviation
of the distribution being found by simple error propaga-
tion from the uncertainties of the corresponding experi-
mental brackets. The generation of the probability distri-
bution of a A-Fl* bracket is illustrated in Figure 2 for a
bracket centered on AFIR : 0, with half-brackets at -4
and +4, and with unit standard deviations in the posi-
tions ofthe half-brackets. For the left bracket, the prob-
ability of the reaction being located at a particular AIl*
is given by the area under the Gaussian distribution, cen-
tered on the position of the left bracket, from minus in-
finity to A,F1" (Fig. 2a). For the righr bracket, the proba-

Fig. 3. Bracket probability distributions calculated for q,:
- 1 , 0 ,  l , 2 , 3 , a n d 4 .

bility ofthe reaction being located at a particular A.F1* is
given by the area under the Gaussian distribution, cen-
tered on the position of the right bracket, from Afl* to
plus infinity, Figure 2b. The combined probability from
the contribution of both half-brackets, the so-called
bracket probability distribution, is the product of the two
distributions, normalized so that the area under the curye
is I (Fie.2c).

The shape of a bracket probability distribution de-
pends on the relative magnitude of the bracket width and
the uncertainty of the position of each half-bracket. De-
marest and Haselton (1981), following Bird and Ander-
son (1973), describe this in terms of the parameler, dl, irl
which dis half the bracket width, and s is the uncertainty
(i.e., standard deviation) on the position of the end of
each bracket. In Figure 2, the dl is 4. As df is decreased,
the flat top ofthe probability distribution gets narrower,
until it is not noticeably flat for dl < 3 (Fig. 3). As the
application of LSQ relies on the data being Gaussian dis-
tributed, it is necessary to see how well these bracket
probability distributions are approximated by Gaussian
distributions. First, though, it is apposite to inquire what
are the dl values for the individual experimental brackets
from which the composite data used in DS4 were calcu-
lated. Figure 4 shows that the majority of the experimen-
tal brackets have dl < 3, with only I l0lo having more than
this. In Figure 5, the bracket probability distribution for
a range of dl and equivalent Gaussian distributions are
compared (the equivalent distributions were calculated so
as to have the same probability at the center of the brack-
et). For o/, = 2, the distributions are essentially indistin-
guishable; even for o/, = 3, the agreement is good. The
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Fig.4. A histogram of{ values for all the individual AI1.

brackets for the equilibria used in DS4.

similarity between the bracket probability distributions
and Gaussian distributions for most of the data means
that concerns about the centralizing effect of using LSQ
are unwarranted, even if all the individual brackets are
used.

We determine values for the standard deviation of the
reaction enthalpy dMR by matching an approximating
Gaussian to the bracket probability distribution so that
it has the same peak at the center ofthe bracket defined
by d/, (Fig.5). A least-squares fit yields oor" in terms of d
and s as approximately:

Fig. 5. A comparison ofbracket probability distributions and
approximating Gaussian distributions for t1 : l,2,3, and 4,
with the Gaussian distribution formulated so that the approxi-
mating Gaussian has the same peak as the bracket probability
distribution.

deed, such outlying brackets are a general problem-in
the MAP analysis they are arbitrarily widened. Within
the context of a set of brackets for an equilibrium, it is
usually possible to identifu half-brackets that are not con-
sistent. In such a context, therefore, it is possible to de-
termine a robust composite A-Fl*-one that is not sensi-
tive to the position of any particular half-bracket in the
set from which the composite value is determined. Ad-
ditional advantages concern removing doubt about the
distorting effect on the LSQ analysis of the 100/o individ-
ual AfI. brackets, which are relatively wide (Fig. 4), given
that very few of the cumulative brackets have dl larger
than 3 (Fig. 6). Also individual half-brackets can be in-
corporated in a natural way.

It remains to be shown that the use of composite data
will give the same results as if all brackets were used.
Consider the LSQ description, which is written in terms
of all brackets (see also DSI):0 : (XrV r4-tXrVrty. In
this, d is the vector of AfI, values being solved for, y is
the vector ofAfl* values being fltted, Vy is the covariance
matrix of y [taken to be diagonal with diagonal elements
(ooo.)tl, and X is the coefficient matrix whose rows are
just the reaction coemcients ofthe reactions correspond-
ing to the A.F1* values. With this written for every bracket,
if, for example, the first experimental study involves n
brackets, the first 14 rows of Xwill be identical, each being,
say, x. However, the corresponding n values of !, I!r, !r,
. . . , y,l, and their uncertainties in Vu, with diagonal el-

oo ' "  :  0 .887 + (d/ . \0 .1g4
, s  - '

for dl > -l

o"t' : 0.790 for d/- <
s "

We use these equations to calculate o*" from I for the
individual brackets. Next we discuss whether the indi-
vidual AIl* brackets or composite data should be used.

Wrrnrrrnn ro usE coMPosrrE AIl* uu?

There are two sides to the question whether composite
AI1" data should be used. The first concerns the statistical
validity of using composite data; the second concerns the
advantages that accrue through using composite data. The
main problem, which can be largely circumvented by us-
ing composite data, is the deleterious effect on LSQ of
the AIl* brackets, which are inconsistent with the body
of the data [resulting in ol < 0 for the cumulative bracket
(Fig. 6)1. The analysis must be made statistically robust,
such that the presence of outliers does not prevent the
trend through the majority of the data being found. In-
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ements l6t, oz, ..., o,f, wil l vary, depending on the po-
sitions and widths of the brackets. With y as a central
measure of the first n y values, then y* may be written as
! I 60, with Do being the difference from y. If one denotes
the part of Xwith the first /? rows removed by X' and the
correspondingpart of y by y', then, after some algebra: d
: (X'rV'y tX' + rxx\-t(X'rv'"-tr' + ryx, + lx?) with r:
2i:, l/o'r and t : 2i=, 6r/o'z0. If the central measure used
to calculate y is the weighted mean, then I is identically
equal to zero, and 0: (X'rV/ tX' + rxxr) |(X'IV/ ty' +
rx). Now, this can be reassembled into its original form,
with the first n rows of X replaced by one row, x, and the
first n elements of y replaced by one element, y, if the
corresponding element of Z, is l/r, i.e., with o : l/\rt.
Thus, in a LSQ problem with r identical rows in X, the
/? rows can be replaced by one row, if the problem is
weighted properly, by means of 2". This is the statistical
justification for the use of composite data.

The remaining subject to consider is how composite
data should be calculated, particularly so that they are
robust with respect to outlying brackets.

Cl.Lcur,lrroN oF coMposrrr A,E[* olu

In the absence of outlying brackets, following directly
from the logic in the last section, a composite AfI" value
should be calculated as the weighted mean of the centers
ofthe constituent AI1R brackets (Fig. lb), with the uncer-
tainty on this value being l/{r, calculated by (Eq. l).
One way of recognizing the presence of outlying brackets
is to consider the dl of the cumulative bracket, Figure 6.
Clearly, if Af/i"* > Aflp'en then dl is less than zero, and
the brackets are not consistent with each other. It is then
necessary to identify the outlying brackets before calcu-
lating the composite A.F1* value. As can be seen in Figure
6, this is a relatively common situation. We currently
identify the outlying brackets using the median of the low
AfI* brackets ends and the median ofthe high Afl* brack-
ets ends. Further, the uncertainty on the composite A,FI*
value must be made larger, for example, by the exclusion
of the terms from s corresponding to the outlying brack-
ets. Although this approach is somewhat different from
that employed in DS4, the results are essentially the same,
not only in the values of AfI, of mineral end-members,
but also in their uncertainties. The former is easy to un-
derstand, as there can be little argument about the choice
of composite Afl^ values. For the latter, any change in
the algorithm for calculating uncertainties on composite
AfI. values will tend to affect all the data in a similar
way, so that uncertainties on A-FI. will also be affected
similarly. With the current weighting scheme, oo, is sim-
ilar to that found in DS4 (about 1.6), and as oo, is the
multiplier in the formula for the A.FI, covariance matrix,
the uncertainties are very similar. Such a value of ont seems
appropriate, given that there is some scatter in the experimen-
tal data being fitted, so that a value slightly larger than
that predictedby x'for consistency would be expected.

d/s
Fig. 6. A histogram of{ values for the cumulative brackets

of the equilibria used in DS4, excluding reactions in which only
a particular end-member occurs (in which case the reaction would
be fitted centrally regardless of the probability function used).
The { values are calculated using dl : (Affl''" - A,F{"*)/(ooo';*
f oo"'o), in which AIff* is the highest low A11* bracket end,
darr-- is its uncertainty, A.F/pi"t is the lowest high A/1^ bracket
end, and ooo** is its uncertainty. The value { < 0 corresponds
to AFIF" > AIftiet, and there is no consistent region.

Drscussrou AND cONCLUSToNS

Having established that LSQ is an appropriate meth-
odology for extracting thermodynamic data from exper-
imentally bracketed equilibria, the power of LSQ in al-
lowing the calculation ofuncertainties in and correlations
between the thermodynamic data can be reiterated. An
important observation concerning these uncertainties
comes from the distribution of dl for the experimental
equilibria (Fig. a) and the shapes of the bracket distri-
bution functions (Fig. 5). For dl = I , i.e., for much of the
data, the major component of the distributions relates to
the possibility ofthe equilibria being outside the brackets.
As a consequence, the main contribution to the calculated
uncertainties is likely to come from the uncertainties on
the ends of the brackets, not the width of the brackets
themselves. It is for this reason that Engi and Lieberman
(1990), using Monte Carlo simulation in conjunction with
MAP to estimate uncertainties on extracted thermody-
namic data, reached the erroneous conclusion that un-
certainties must be essentially nonexistent.

The formally correct way to proceed in the data ex-
traction problem, treating the LSQ methodology as just
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a special case of maximum likelihood with the data being
Gaussian distributed, would be to derive a method of
maximum likelihood using the bracket probability dis-
tribution. This is straightforward, but applying it would
be tedious because there is no closed form for the solu-
tion. Moreover, as the greatest majority of the data are
essentially Gaussian distributed and the few remaining
equilibria with large d/, are nol critical to the analysis, little
would be gained for the considerable amount of extra
effort expended. If entropies, for example, in addition to
enthalpies, are also to be constrained in the data extrac-
tion, the LSQ logic is still appropriate, ifthe overall anal-
ysis is considered to be iterative, with the focus on en-
thalpies of formation but with entropies changing between
iterations.

We conclude with a quote from DS4: "Both LSQ and
MAP are capable of providing reliable and similar anal-
yses of the experimental data, each with its advantages
and disadvantages. However, we believe that the ability
of the least squares method to provide the uncertainties,
and their mutual correlations, of the calculated thermo-
dynamic data makes this [the LSQ method] the prefera-
ble method of analysis."
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