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Diffusive reequilibration of melt and fluid inclusions
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Ansrnlcr

A mathematical model is presented that investigates the diffusive reequilibration of
chemical species in melt inclusions with external melt through the host crystal. Analytic
solution of the differential equations reveals that reequilibration is easier (l) for species
with higher diffusivities in the host crystal, (2) for species with higher partition coefficients
(k) between host crystal and melt Out reequilibration rates become insensitive to the
increase in k after k exceeds about 0. l), and (3) for smaller-sized host crystals and melt
inclusions. kss than 2 yr are required for HrO in a rhyolitic melt inclusion 25 pm in
radius located at the center of a quartz crystal I mm in radius to reach 950/o reequilibration
with external melt, if the diffusion coefficient of HrO in quartz : l0-'0 cm2/s at 800 'C

and the partition coefficient : l0 4. This cautions against the use of HrO content in a melt
inclusion to represent the HrO contents in the magma when the inclusion formed. The
HrO contents in melt inclusions in quartz will reflect their original values if the HrO
contents of the magma remain constant and if the materials are quickly erupted and
cooled. Rhyolitic melt inclusions from the late-erupted, crystal-rich Bishop Tu[ although
variable in their content of low-diffusivity trace elements, have relatively low and uniform
HrO contents, consistent with diffusive reequilibration of inclusions with the late-stage,
HrO-poor magmas shortly before eruption. Because diffusive exchange becomes more
sluggish as the partition coefficient decreases, melt inclusions in olivine and orthopyroxene
are expected to preserve better the original concentrations of many incompatible elements
(REEs, Rb, Cs, Ba, U, Th, etc.) than those in clinopyroxene. For the same melt inclusion,
highty incompatible elements are expected to exchange more slowly than less incompatible
or compatible elements.

The above model can also be applied to the diffusive leakage of HrO from fluid inclu-
sions in qvartz. Small fluid inclusions (- 10 pm in radius) trapped at the center of a quartz
crystal I mm in radius can effectively lose their HrO in less than 50000 yr during retrograde
decompression of metamorphic rocks at 500 "C, if the solubility and diffusivity of HrO in
qtartz arc I ppm/kbar and l0 13 cm2ls. The preferential loss of HrO can result in a
significant increase in the COrlHrO ratio in fluid inclusions.

INrnolucrroN certain elements by the crystal. In particular, highly in-
compatible elements are rejected by the growing crystal

Melt inclusions are tiny bodies ofglass (quenched melt) and hence may accumulate in a boundary layer of melt
that are encased in volcanic phenocrysts. They have been adjacent to the phenocryst (see also Albarede and Bottin-
used to study the differentiation (e.g., Roedder and Wei- ga, 1972). Many trace elements have low difiirsivities,
blen, 1970; Watson, 1976)andmixinganddegassing(e.g., and thus the compositional anomalies of the boundary
Anderson and Wright, 1972; Anderson, 1976; Skirius et layer cannot be ignored (Bacon, 1989); these elements
al., 1990) of magmas by many workers. Two important include P,Ti,Zr, Ba, Mn, etc., with diffusivities in rhyo-
assumptions about melt inclusions have been (l) any melt lite at 800 "C on the order of l0 '0 to l0-" cm2ls (see
initiallytrappedwithinagrowingcrystalisrepresentative compilation by Bacon, 1989). For components such as
of the melt from which the crystal grew (Anderson, 1974 H2O, with diffusivities in rhyolitic melt as high as l0-' to
Watson, 1976); and (2) after entrapment, the melt may 10-6 cm2ls at 800'C (Karsten eI al., 1982; Lapham et al.,
react with the host crystal, but diffusive exchange be- 1984), the accumulation effect in the boundary layer is
tween trapped and external melts through the crystal is probably negligible. In general, boundary layer accumu-
unimportant (Anderson, 1974; Watson,1976). lation is probably negligible for trace elements with dif-

The first assumption was challenged by Watson et al. fusivities significantly larger than those of major elements
(1982). They suggested that the composition in the melt (e.g., Si and Al) that may control the rate of crystal growth

adjacent to a growing crystal may be different from the (Lu, l99l).
average melt because of the selective incorporation of The second assumption may be questioned in view of
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external melt

Fig. 1. A melt inclusion ofradius a enclosed in the center of
a crystal of radius D. Initially, the concentrations of a certain
chemical species in the inclusion and the crystal are Co and kCo,
respectively, where k is the partition coefrcient of the species
between crystal and melt. The crystal is later brought into con-
tact with a new melt with a concentration of the species : C..
As C" + Co, exchange ofthis species occurs between the trapped
and the external melts by diffusion across the crystal.

work by Roedder (1981), Hall et al. (1991), and others
on fluid inclusions and by Roeder and Campbell (1985)
and Scowen et al. (1991) on mineral inclusions. For ex-
ample, Roedder (1981) suggested that COr-rich fluid in-
clusions in quartz from some granulites may be due to
the diffusive loss of HrO from the inclusions during ret-
rograde metamorphism, whereas Scowen et al. (1991)
showed that the compositions of chromite inclusions in
olivine phenocrysts from Kilauea Iki lava lake, Hawaii,
changed significantly during 22 yr of diffusive exchange
through host crystals with surrounding interstitial melt.

If diffusive reequilibration is important for fluid and
mineral inclusions, then it may be also important for melt
inclusions. In this paper, a mathematical model of the
diffusive reequilibration of melt inclusions with external
melt will be developed. Based on the model results, the
HrO content in melt inclusions in quartz in general is
discussed and is applied to Bishop Tuf rhyolites. The
model can also be applied to fluid inclusions after some
appropriate modifi cation.

Trrn prarHnMATrcAL MoDEL AND rrs soLUTroN

Formulating the problem

Consider a spherical crystal of radius b with a melt
inclusion ofradius a atthe center (Fig. l) and an arbitrary

chemical species l. The crystal and the melt inclusion
formed earlier in a magma with concentration Co of i.
The crystal is later brought into contact with a new melt
characterized by a concentration C" of i that is different
from Co. As C. + Co and as the external melt is far more
abundant, the concentration of this species in the inclu-
sion tends to approach the external concentration C" by
means of the diffusion of this species through the crystal.

Notation

Cot initial concentration in melt inclusion
C,i concentration in the exterior melt in contact with

the host crystal
C(r,t): concentration in the crystal, which is a function

of t ime and position
Cr(t): concentration in melt inclusion, which is a func-

tion of time
at radius of melt inclusion
b: radius of host crystal
ri radial coordinate variable
l: time variable

D: diffusion coefficient of the species in the crystal
k: partition coemcient of the species between crys-

tal and melt
p^: density of melt
p.i density of crystal

Assumptions

l. The concentration in the new magma C. is constant
in space and time.

2. The concentration ofthe species in the outer surface
of the host crystal at any moment C(b,t) is in equilibrium
with the magma; i.e., C(b,t): kC.. Similarly, the species
in the inner surface of the crystal at any moment is in
equilibrium with that of the melt inclusion: C(a,t) :

kc,(t).
3. Diffusive flux across the inner surface is the only

process that allows the concentration in the melt inclu-
sion to change.

4. The species in the melt inclusion is uniformly dis-
tributed at all times.

5. The melt inclusion is at the center of a spherical
crystal.

6. The effect ofchanging concentration on the density
of the enclosed melt is negligible.

Assumption I is probably not true in many circum-
stances but is appropriate so long as the time during which
C" changes is much longer than that required for effective
reequilibration. Assumption 2 is justified because the in-
ner and outer surfaces of the host crystal are in direct
contact with the respective melts. Assumption 3 limits
the discussion to diffusive modification. Assumption 4 is
consistent with the general knowledge that chemical dif-
fusivities are generally greater in melts than in solids.
Assumption 5 and 6 do not strictly fit the natural systems
but are necessary approximations for the sake oftheoret-
ical treatment.
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With assumption 3, we can write

!ll*o,o^c,ulf : c*o'ol+ t,=.. (r)
dr L3 

"' 
.l dr

This expresses the condition that the rate of change of
the total amount of a species in the melt inclusion is
determined by the diffirsive flux of the species across the
inner surface.

The concentration gradient at the inner surface of the
host crystal appearing in Equation I can be evaluated by
solving the following diffusion equation in the host crys-
tal:

This is a diffusion equation for an isotropic medium in a
spherical coordinate system (e.g., Carslaw and Jaeger,
l  959) .

The init ial condition is

C ( r ' } ) : k C o  Q ' < r ' < b  ( 3 )

i.e., the initial concentration of the species in the crystal
is uniformly at equilibrium with that in the melt inclu-
sron.

Two boundary conditions follow from assumption 2:

C(b,t): kC.

C(a,t): kC,(t) '

Combining Equations I and 5 gives

TABLE 1. The first six roots of tan(1 - alb)q: :P!9-(aclbY - 0

0.010.1 0.001 0.0001 0.00001

#:,(#.?#) a.<b (2)

(4)

(s)

(6)

(7)

4,
cl,
ch
q,
Qs
ck

Q.
ch
q3
4n
ck
ch

q,
cl"
qs
Qq
Qs
ck

Qt
Qz
q3

Qo
Qs
Qo

3.142 3.142
6.283 6.283
9.425 9.425

12.566 12.566
15.708 15.707
18.850 18.847

3.142 3.142
6.283 6.283
9.425 9.423

12.567 12,561
15.708 15.698
18.850 18.831

3.' t42 3.131
6.285 6.191
9.430 9.053

12.579 11.643
15.733 14.290
18.892 17.231

3.143 3.053
6.296 5.509
9.468 7.873

12.668 10.947
15.903 14.284
19.173 17.698

Note: 0 :3KpJil, where k, p,, and p^ are the partition coefficient and
the densities of crystal and melt, respectively. In the calculation, is it as-
sumed that p"lp^ : 1 .2.

where a : a/b, and q, (n : l, 2, 3 . . .) is the positive

root of

tan(l - * lq:4L.. (e)
d,q" _ p

There is an infinite number of roots for the transcenden-
tal equation (Eq. 9). The first six roots are compiled in
Table I for selected values of a and 0.

The concentration of the species in a melt inclusion is
obtained by evaluating Equation 8 at r: a and recalling
that C{t) : C (a, t)/ k. The resulting expression is

A A

c, ( / ) :c+a(c , -c . )

t sin(l - a)q"exp(- qlDt/ b2)

? ,12p (1- d)q, * 4aq,sin2(l - a)q"'
- 0 sin 2(r - a)q)

This can be further simplified (see Appendix l) to become

) R

c(/):c"+a(c"- c.)
ot

exp(-qtrDt/b2)

a/b: 0.005
3.141 3.140 3.1 08 1 .188
6.282 6.271 3.801 3.160
9.422 9.349 6.332 6.316

12.559 1 1 .638 9.481 9.473
15.692 12.557 12.636 12.630
18.819 15.887 15.792 15.787

alb: O,O1
3.'t41 3.130 1.872 0.596
6.275 5.702 3.190 3.174
9.394 6.615 6.353 6.347

12.471 9.580 9.524 9.520
15.419 12.729 12.696 12.694
17 .917 15.893 15.869 15.867

alb: O.Os
2.929 1.203 0.385 0.122
4.127 3.332 3.309 3.307
6.771 6.625 6.61 5 6.614

10.007 9.928 9.922 9.921
13.288 13.233 13.228 13.228
16.582 16.539 16.535 16.535

a lb :  O.1
1.859 0.622 0.198 0.063
3.637 3.502 3.492 3.491
7.041 6.987 6.982 6.981

10.510 10.476 10.472 10.472
13.991 13.965 13.963 13.963
17.476 17.456 17.454 17.453

where

dC(a,t) ^DdC ,
d t  

: P ; u t ' :

B : 3kp./ p^.

Solving the problem

Equation 2 coupled with its initial condition (Eq. 3)
and its boundary conditions (Eqs. 4 and 6) has to be
solved to give C(r,t). With this, the concentration of the
species in the melt inclusion can be calculated from Equa-
tion 5. The solution for k : I and C. : 0 was given by
Carslaw and Jaeger (l 959, p. 350, Eq. 24) for a heat con-
duction problem. The above, more general problem can
be solved by the Laplace transformation method (see Ap-
pendix l). The solution is

C(r,t)

: kC. + Y!,,r" - ,.1

) sin(l - r/ b)q"exp(- qZDt/ b'z)

?- l2\(l - oiq" + 4aq,sin2(l - d)q,

{rq,sin[(l - o,)S"l
- oih - 0/alcos[(l - ot)q,]]

- d)1.

x )
n : I

+ [a(l

w h e r e T : l 2 a + S (- 0 sin 2(l - a)q"l

(8)

(10)
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Fig. 2. The effects of partition coefrcients. As the value of k
decreases, the time it takes to achieve a given degree ofreequili-
bration increases. Note that this effect is amplified rapidly when
k becomes very small. On the other hand, it diminishes as k
increases, and all curves with ft > - I are essentially indistin-
guishable. Here, a/b: 0.01, where aand b are the radius of melt
inclusion and host crystal, respectively. Dimensionless time is
defined as r : Dt/b2. Values on the curves are partition coem-
cients (k).

It is more convenient to express the results in terms of
the extent ofapproach to reequilibration defined as

l l
d0) - t - i e^p(-q?r) - ; exp(-qir) (l3a)

( l l  ( l2

when 0.1 = r (: Dt/b') < 0.5;

6 Q ) = t - ! e x p ( - q ? , )  ( l 3 b )
d r

when r > 0.5 and where

d, : :  {2a + B( l  -  a) la ,s in( t  -  a)q,'  2 t J ' -

+ [a(l - d)4 -Bla]cos(l - a)q,] (l3c)

i: 1,2; and B is given in Equation 7.
With Equations l3a, l3b, and l3c and Table l, the

degree ofdiffusive reequilibration can be computed easily
using a calculator. To illustrate, consider the following
case:  4 :  l0pm, D :  I  mm ( . ' .  a  :  0 .01) ,  k :  0 .0001,  D
:  l0  '0  cm2/s,  t :  I  yr  ( . ' .  r  :0 .315) .  Then f rom Table
l, q, : 1.8715, qr: 3.1903. Substituting these values in
Equation l3a yields 6: 40.6617010, which is essentially
identical to the true degree of reequilibration of 40.66160/o
found by summing the series in Equation l2 to the tenth
term (the tenth term is on the order of tg-ao;. Ift : 2 yr
(. ' . r:0.630), then Equation l3b can be used, which
gives @ : 64.720/o, which is identical to the true value.
Given d, one can obtain the new concentrdtion of the
species in the melt inclusion from

C, :0C.  +  ( l  -  d )  C. . (14)

Results and discussion

It can be seen from Equation 12 that the degree of
reequilibration depends only on three parameters: the di-
mensionless time r (: Dt/b2), the ratio of the melt inclu-
sion size over the host crystal size a/b (: a), and the
partition coemcient k (contained in B). It follows that for
a given a, b, and k the time (l) needed to reach a given
degree ofreequilibration is inversely proportional to the
diffusion coefiicient. For example, if the diffusion coeffi-
cient decreases by a factor of 10, then the time it takes
to reach a certain degree ofreequilibration will increase
by a factor of 10.

Equation 12 reveals that the extent ofthe approach to
reequilibration is independent of the compositional dif-
ference between the original melt inclusion and the new
external melt (i.e., Co - C"). The absolute content of the
species in the melt inclusion during the exchange process
does depend on the original values, however (see Eq. l4).

Figures 2-4 show how the partition coefficient affects
the rate of exchange of the species between melt inclusion
and the melt outside the crystal. The smaller the value of
/<, the more sluggish is reequilibration. For example, for
a/b : 0.O1, 500/o reequilibration (d : 0.5) takes about
twice as long for k : l0 o as for k : l0-3. The effect
increases as a/b increases. Thus, for a/b: 0.05, the dif-

( l  l )

Thus, no exchange occurs when O:0, and reequilibra-
tion is fully achieved when O : l. Rearrangement of
Equation l0 and substitution ofEquation I I yield

' l a

o@: r - : !

x )
n : I

exp(-qlDt/b'z) (r2\
lrasin(l - d)q,

+ [a(l - u)q2, - B/afcos(l - a)a,]

The rate ofconvergence ofthe infinite series in Equa-
tion 12 depends on the value of the nondimensionalized
time Dt/b2. The larger this value is, the faster the series
converges. In general, this series converges very fast be-
cause of the factor of q] in the exponential. For example,
even with the dimensionless time r(: Dt/br) as small as
0.1, the second term in the series is on the order of l0-r
to l0-'z; the third term l0 a, the fourth term 10-6 to l0-7,
the fifth term l0 '0 to l0 rr, and so on. Thus, in using
Equation I 2 to calculate the reequilibration degree, a very
good approximation (error < lolo) can be achieved by re-
taining only the first two terms of the series, even when
z is as small as 0. l. It can be shown that when z > 0.5,
adequate accuracy (better than 990/o) can be obtained by
retaining only the leading term ofthe series in Equation
12.  i .e . .
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Fig. 3. (a) Same as Figure 2, but with a/b : 0.025. (h) En-
largement of a.

ference becomes 8 times as long. In the extreme case,
when k : 0, the host crystal acts as a perfect insulator,
protecting its inclusions from any diffirsive exchange with
the external melt. On the other hand, although it is gen-
erally true that the increase in k value reduces the time
needed to achieve a given degree of reequilibration, the
magnitude of this effect diminishes as k increases, until
it reaches a limit beyond which any further increase in k
results in no observable effect in the reduction of the
equilibration time. Thus, in these figures, the curves for
k > - | are essentially indistinguishable from one anoth-
er because diffusive reequilibration under such condi-
tions is primarily governed by diffusion in the crystal.
The work by Scowen et al. (1991), by ignoring k, implic-
itly corresponds to the case ofk: l

The effect of inclusion size is complex. On the one hand,
for a given crystal size, an increase in the inclusion size
results in an increase in the total amount of the species

569
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Fig. 4. (a) Same as Figure 2, but with a/b : 0.05. (b) En-
largement of a.

to be exchanged, thus adding to the time needed to achieve
reequilibration. On the other hand, increase in the inclu-
sion size (for a fixed crystal size) both reduces the distance
for the species to travel and increases the inner surface
area across which diffirsive exchange occurs, thereby
making it easier for the exchange to proceed. Figure 5
shows that, for a k value of l0-3, as the ratio a/b increas-
es, the dimensionless time it takes to reach a given degree
of reequilibration also increases until this ratio reaches
-0.7, when the combined effect of the decreasing transfer
distance and the increasing exchange area becomes dom-
inant. If a/b exceeds 0.7, then ditrusive reequilibration
becomes more rapid, rather than slower, as the inclusion
size increases. For most of, if not all, the natural samples,
a/b is <<0.7. Thus, as melt inclusions become larger (i.e',
as the ratio a/b increases), the extent of reequilibration
typically becomes smaller. For example, for a species with
k: l0-3, it takes about 0.35 in the dimensionless time
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Fig. 5. The effect of inclusion size. (a) For a fixed crystal size,
increasing the inclusion size increases the time needed to reach
a given degree ofreequilibration, as long as a/D is less than -0.7.
Values on the curves are a/b. (b) When a/b > -0.7, increasing
the inclusion size will decrease the time needed to reach a given
degree ofreequilibration. See text for discussion. Values on the
ctrves are a/b.

(i.e., Dt/b2 : 0.35) to reach 900/o of reequlllbration if a/b
: 0.01, compared to 1.9 in the dimensionless time if a/D
:  0 .05.

The effect of crystal size is also twofold. It is expected
that, for a given melt inclusion, the larger its host crystal,
the more difficult it is for the inclusion to reach equilib-
rium with the external melt (this is one of the points
emphasized by Scowen et al., l99l). One might expect
that the time (when used alone, time means dimensional
time hereafter) it takes to reach a given extent ofreequi-
libration is proportional to the square ofthe radius ofthe
crystal. This is not so because the ratio a/b is decreasing
as b increases, and this helps to reduce the difficulty of
the exchange, as shown earlier. Ifboth aandb are chang-

Fig. 6. The effect of host crystal ,i"". po. a given melt inclu-
sion size, the larger the host crystal, the longer it takes to reach
a given degree of reequilibration. But the time is not propor-
tional to the square of the host crystal size, as might be expected.
See text for discussion. Here, z : Dt/ bo; vahtes on the curves are
the ratio of b/bo.

ing in such a way that a/b rernains constant, then the
time needed to reach a given degree of reequilibration is
truly proportional to the square of the radius of the crys-
tal. Relations for the case where a is constant and b is
increasing are shown in Figure 6. For example, if k :

l0-3 and if the grain size increases by a factor of 5 while
the inclusion size is the same, such that a/b decreases
from 0.05 to 0.01, then to reach 500/o of reequilibration
takes about 6.5 times as long for the larger crystal as for
the smaller crystal. This difference will generally decrease
as the degree of reequilibration increases or as ft decreas-
es. Thus, the time it takes to reach 900/o reequilibration
for a k value of l0-r will increase by a factor of 5 (com-
pared to 6.5 for 500/o reequilibration) if the crystal size
increases by a factor of 5. This effect of crystal size on
reequilibration time further reduces to a factor of - l.l
with 900/o reequilibration when k decreases to l0 a with
otherwise equal conditions.

In our treatment of the reequilibration problem, we
assume inclusions to be in the centers of their host crys-
tals. For an inclusion not in the center, the value of b is
probably smaller than the host crystal radius but larger
than the distance between the center ofthe inclusion and
the closest rim of the crystal. A better constraint requires
a numerical solution to the problem.

GnNnnc.L AppLIcATroNS

Reequilibration of HrO between melt inclusions in quartz
and external melt

Evaluation of reequilibration times requires knowledge
of the diffi.rsivity and partition coefficient of HrO in quartz.
Neither of these is certain.

(a )  k  =  o .oo1
0

b / b 0 = 0 .

a / b 0 = 0 . 0 5
k = 0.001

0



QIN ET AL.: MELT AND FLUID INCLUSION REEQUILIBRATION 571

Diffusivity of H,O in quartz

Numerous attempts have been made to determine the
diffusivity of HrO-associated species in quartz because of
its role in weakening quartz. The pioneer experimental
study by Kats et al. (1962), using an IRS technique on
the incorporation of OH in quartz, yielded the diffusivity
of HrO-associated species (OH-, H*, and HrO) in quartz
on the order of 10-ro to l0 7 cm2ls in the temperature
range of 700-900 "C and at low pressures (<30 bars).
This is supported by the studies of Blacic (198 l) and
Mackwell and Paterson (1985), who found the diffusivity
of HrO in quartz in the range of l0 'to l0 7 cm2ls under
the conditions of800-900'C and l5 kbar. On the other
hand, Shaffer etal. (1974) found the diffusion coefficient
of tritiated HrO in 0 quartz to be about l0-'3 cm2ls at
900 "C and low pressure. Kronenberg et al. (1986) and
Gerretsen et al. (1989) also suggested low diffusivity of
molecular HrO in quartz, probably lower than l0-'0 cm2l
s, according to their experiments at 900 "C and 4-15
kbar. The diffusivity of H (as H*) is much higher, on the
order of l0 7 cm2ls under the above conditions. Rovetta
et al. (1986, 1989) also obtained a diffirsivity of l0 7 cm2ls
for H species at 900 "C and 15 kbar in natural quartz
crystals. They suggested that the diffusive incorporation
ofH species into quartz defect sites is probably followed
by the reaction of these species with lattice O to form OH
and HrO molecules. It is our assessment from these stud-
ies that the diffusivity of bulk H,O in quartz probably
lies in the range of l0 '0 to 10 7 cm2ls. Diffusivity as low
as l0 13 cm2ls may also be possible.

Hall et al. (1991) suggested that postentrapment diffu-
sional exchange of molecular H between fluid inclusions
and the external fluid can significantly change the com-
position of the fluid inclusions. It is thus necessary to
know if H, diffusion is also an important process in mod-
ifying the HrO content of melt inclusions. Transport of
HrO by molecular H diffusion requires an fn, gradient,
the maintenance of which is possible only if a reducing
agent is available to reduce inclusion HrO to Hr. The
relatively large amount of HrO and the small amount of
FeO in natural rhyolitic melts thus relegates HrO removal
by H, loss to a negligible level. Consequently, mobility
of HrO through quartz in most natural rhyolitic environ-
ments probably will be determined by the diffirsivity of
HrO, OH-, and H*, not by Hr. It is interesting to note
that molecular HrO, not OH-, is believed to be the dom-
inant diffusing species in rhyolitic glass (Zhang et al.,
l99la). This is probably also the case for quartz (Zhang
et  a l . .  l99 lb) .

It is important to note that the driving force for HrO
to diffuse is not its concentration gradient, but its activity
gradient. Because the pressure within an inclusion can
differ from the external pressure, the actual equilibrium
concentration of HrO in the respective melts can likewise
differ. Computation based on Burnham (1979) shows that
such a difference is small. For example, if the external
pressure is 1500 bars and the internal pressure is 2000
bars, then the activity of HrO will be the same both with-

in and without if the HrO content of the enclosed melt is
about l0o/o higher than that of the external melt.

Partition coefficient of HrO between quartz and melt

The equilibrium partition coefficient of HrO between
quartz and rhyolitic melt is poorly known. Watson et al.
(1982) took the partition coefficient of HrO between melt
inclusion-bearing minerals and melt to be 0.001. This is
probably an upper limiting value for quartz. The solu-
bility of HrO in quartz is controversial and is probably
in the range ofless than 100 H atoms/106 Si (correspond-
ing to l5 ppm of HrO by weight) to a few hundred H/106
Si at 700-900 "C and 3-15 kbar hydrothermal pressures
(e.g., Mackwell and Paterson, 1985; Kronenberg et al.,
1986: Rovetta et al., 1986, 1989; Gerretsen et al., 1989).
The solubility of HrO in quartz phenocrysts from rhyo-
litic glasses is unknown but is very likely to be less than
that in hydrothermally annealing qvafiz. In other words,
probably only a few parts per million of HrO are present
in quartz phenocrysts from rhyolites. As most rhyolitic
melts contain a few wto/o of HrO, we thus tentatively take
the partition coefficient to be about 0.0001.

Estirnation of reequilibration time

The degree of reequilibration can be computed from

Equation 12 as a function of the dimensionless time r (:

Dt/b'),given the values of a (: a/b, the ratio of inclusion
radius over host crystal radius) and k. The results show
that, for a : 0.025 (see Fig. 3), reaching 950/o reequilibra-
tion takes about 5.5 in the dimensionless time if k : l0 o,

or about I I if t : 5 x l0-5. Thus if the host crystal
radius D : 0.1 cm and the melt inclusion radius a:25
pm (such that a/b : 0.025) and if D : l0 8 cm2/s, 64 d
suffice to achieve 950/o reequilibration when k : l0-0, or
about 130 d when k : 5 x l0 5. If D is 2 orders of
magnitude smaller, the time will increase by 2 orders of
magnitude, and this is still a geologically and volcanolog-
ically short interval of time. However, if D is as small as
l0-rr cm2ls, as suggested by Shafer etal. (1974), then the
time can be as long as l0o yr, which, although still geo-
logically short, is long in comparison to intervals between
most volcanic eruptions from a single volcanic center.
The preceding result is rather surprising. It implies that
for many volcanic rocks, the HrO concentration in a melt
inclusion probably reflects partially or totally the HrO
concentration of the last intratelluric melt with which the
crystal was in contact. The probable rapid reequilibration
of HrO between a melt inclusion and the external melt
suggests that only melt inclusions from quickly cooled
magmas such as air-fall materials can record the HrO
contents in a preerupted magma body. Melt inclusions in
quartz from thick lava flows and welded ash flows may
record HrO concentrations that are significantly less than
the original magmatic values because of posteruptive par-
tial reequilibration.

As larger melt inclusions or melt inclusions located far-
ther from the crystal surface reequilibrate more slowly
(for inclusions not at the center of their host crystals, the
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"radius" of the crystals may probably be approximated
by the distance of the inclusions to crystal surfaces), it is
expected that the HrO concentration in melt inclusions
will increase with increasing inclusion size and distance
to crystal rim. Thus, in principle, by measuring the HrO
contents in various melt inclusions, it is possible to infer
a cooling history for an ash or lava flow. Conversely, if
the cooling history is known, then the variation in the
H2O content of melt inclusions could be used to assess
the dimrsivity and solubility of HrO in quartz.

Chernical compositions of melt inclusions in minerals

The composition of melt inclusions in minerals have
been used to assess the compositions of melts from which
the crystals and their inclusions formed. Such inclusions
form both within the crust and the upper mantle (see the
review by Roedder, 1984) and in lunar rocks (Roedder
and Weiblen, 1970) and even meteorites (e.g., Johnson
et al., l99l). Commonly it is necessary to take into ac-
count the efect ofdissolution from and precipitation onto
the host crystals (Watson, 1976). Our results indicate that,
in addition to the dissolution and precipitation, diffusive
reequilibration with external melt may play an important
role.

Consider LREEs in melt inclusions of clinopyroxene as
an example. The partition coemcients of LREEs between
clinopyroxene and basaltic melt are -0.05 (Frey et al.,
1978), and their diftrsion coefficients in clinopyroxene
are probably on the order of l0-'2 to l0-'4 cm2/s at 1200-
1300 'C (Hofmann and Hart, 1978; Sneeringer et al.,
1984). Thus, for a clinopyroxene crystal I mm in radius
with a melt inclusion 25 pm in radius located in the cen-
ter of the crystal, it takes from 100 to 10000 yr (reflecting
the range in diffusion coefficients) for the LREEs in the
inclusion to reach 90o/o of reequilibration with external
melt. On the other hand, for LREEs in inclusions within
olivine, reequilibration time is longer, as LREEs are more
incompatible in olivine. With 0.0005 as their partition
coefficient, it takes from -300 to 30000 yr to reach 900/o
reequilibration, when the same range of diffusion coeffi-
cient as for cpx is assumed. It seems that olivine and,
probably, orthopyroxene as well better preserve the orig-
inal concentrations of highly incompatible elements (e.g.,
Ba, Cs, Rb, Th, U, LREEs, etc.) in melt inclusions than
does clinopyroxene. For a given melt inclusion, highly
incompatible elements (k < 0.001) are better preserved
than slightly incompatible elements (k > -0. l) and com-
patible elements. For example, with the partition coeffi-
cient of Ni between olivine and melt in the range of 5-
20 (Hart and Davis, 1978), it takes about 90 yr to reach
900/o reequilibration for a melt inclusion with a 25-pm
radius within a l-mm olivine if the diffusion coefrcient
of Ni in olivine is l0-r2 cm2ls (or about l0 yr if D : l0-1r
cm'?,/s). This is at least 3 times shorter than for a highly
incompatible element (= 300 yr). The difference increases
as the inclusion size increases. Thus, if the radii of an
inclusion and its host crystal are 50 pm and 1 mm, re-
spectively, then whereas it takes - 100 yr for a compati-
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ble element to reach 900/o reequilibration, it takes - 1000
yr for an incompatible element with k : 0.0005 to reach
the same degree of reequilibration, when a diffusivity of
l0-'2 cm2ls for both elements in the host crystal is as-
sumed. As a consequence, the concentration of a com-
patible element in a melt inclusion is expected to be mod-
ified to a higher degree by the external melt than for a
concentration of a highly incompatible element.

It is interesting to reconsider the results of Scowen et
al. (1991) in the light of our model (although our model
is developed specifically for melt inclusions, its results
can largely be applied to both fluid and mineral inclu-
sions). Scowen et al. (1991) observed the reequilibration
degree for different elements in chromite inclusions with-
in olivines in the following order: Mg = Fet* > Fe3t >
Al > Cr > Ti. They used the difference in diffusion co-
efficient to explain this trend, suggesting the following
diffusivity order in olivine: Mg * Fe't > Al t Fe3' )
Cr = Ti. We have shown that in addition to diffusivity,
the difference in the partition coemcients will also affect
the reequilibration rate. It is interesting to note that the
difference in partition coefficients of the above elements
in olivine are probably in the following order: Mg = Fe'*
> Fe3* ̂ : Cr >> Al = Ti. Note the similarity between the
reequilibration order observed by Scowen et al. (1991)
and the partition coefficient order.

Iprpr,rclrroNs oF H2O coNTENTS oF BrsHop MELT
INCLUSIONS

The Bishop Tuf is a voluminous rhyolitic tuff(-600
km3, Bailey et al., 1976', Izett et al., 1988) that erupted
about 0.7 Ma (Dalrymple et al., 1965). Detailed studies
indicate that the Bishop magma was zoned toward a less
differentiated composition and a higher temperature with
greater depth (Hildreth, 1977, 1979). Our recent work
(Lu et al., 1990; Lu and Anderson, 1991) reveals that
both the thermal and chemical gradients resulted from
magma mixing caused by the addition of hotter, less dif-
ferentiated magma to the deeper, late-erupted part of the
Bishop magma at a lale stage; before magma mixing, the
late-erupted magma was similar to the early-erupted
magma in major- and trace-element compositions and
tempefature.

Magma mixing changed the composition of the late-
erupted melt, which, in turn, generated chemical poten-
tial differences between early-formed inclusions and the
modified external melt. The difference in chemical poten-
tials drove diffusion through the crystalline container of
the inclusions. The amount of time available for diffusive
reequilibration may be roughly equated with the duration
of time from the beginning of magma mixing to the ex-
trusion of the late-erupted Bishop magma. This time has
been constrained to be at least several hundred years,
based on probable diffusive equilibration of the early-
formed titanomagnetite phenocrysts with the mixed mag-
ma (Lu,  l99 l ) .

Although many trace-element concentrations in late-
erupted inclusions overlap those of early-erupted inclu-



sions (Lu, l99l), the HrO concentrations in late-erupted
inclusions are both less than those in early-erupted inclu-
sions and remarkably constant: 20 inclusions range from
3.7 to 4.6 wto/o and average 4.0 wIo/o, with a standard
deviation of 0.2 wto/o, which is close to the analytical un-
certainty (Skirius, 1990; Skirius et al., 1990).

Uniform HrO concentration in melt inclusions may re-
flect reequilibration of HrO in the melt inclusions with
the external melt, given the long residence time of the
late-erupted magma after magma mixing. Therefore, the
melt inclusions that were trapped before or at an early
stage of magma mixing may have lost any indication of
their original HrO concentrations. Consequently, melt in-
clusions in the late-erupted Bishop Tufi regardless of their
time of formation, probably record only the HrO concen-
tration of the mixed magma shortly before eruption. As
a consequence, their HrO concentration may be decou-
pled from the trace-element concentrations that could not
diffusively reequilibrate with the new magma because of
smaller diffusivities or solubilities in quartz.

Appr,rclrroNs To FLUID INCLUsToNS

Diflusive reequilibration of fluid inclusions with exter-
nal fluid during metamorphism has been of interest to
many researchers (Roedder, l98l; Pasteris and Wana-
maker, 1988; Holl ister, 1988; Sterner et al., 1988; Hall
and Bodnar, 1989; Mackwell and Kohlstedt, 1990; Hall
et al., l99l). For example, COr-rich fluid inclusions in
quartz from granulites, as well as in olivine from mantle
xenoliths, may be explained by the preferential diffusive
loss of HrO out of the fluid inclusions (Roedder, l98l;
Mackwell and Kohlstedt, 1990); changes in the /o, and
fnrof rhe external fluids may result in a significant change
in the composition of the fluid inclusions because of the
diffusive exchange of O, and H, between the inclusions
and the external fluids (Pasteris and Wanamaker. 1988:
Hall et al., l99l).

Difihsive exchange of HrO between fluid inclusions and
external fluids is possible if the partial HrO pressure of
the fluid inclusions is different from that of the external
fluids and if HrO solubility in quartz varies with HrO
partial pressure. Consider a fluid inclusion trapped in a
quartz crystal. If the Prro of the external fluid is different
from the P"ro of the fluid inclusion, then the HrO con-
centration in the outer surface (in contact with the exter-
nal fluid) will be different from the HrO concentration in
the inner surface (in contact with the fluid inclusion). As
a consequence, a concentration gradient in HrO within
the crystal is formed, and HrO will ditruse across the crys-
tal, resulting in the modification of the composition of
the fluid inclusion.

Following the treatment of melt inclusions, we define
the diffusive reequilibration degree (A) for fluid inclusion
as: O(/) -- IP,(t) - Pol/(P" - Po), where P,(l) is the P"ro
in the inclusion, Po is the Prro in the inclusion before
diffusive exchange, and P" is the Prro ofthe external fluid.
It can be formally shown that O(/) has the same expres-
sion as d(/), i.e., Equation 12, except that B is defined

differently:
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( 1 5 )0: 3p"rRT/M

where p" is the density of quartz, R the gas constant, f
the temperature, M the molecular weight of HrO, and x
the solubility coefficient of HrO in quartz defined as r :

C/PH2', in which C is the concentration of HrO in quartz
in equilibrium with a partial HrO pressure of P"ro. The
solubility coefficient r is not well constrained. Spear and
Selverstone (1983) inferred a r value ofabout 25 pprn/
kbar. This is probably too high because later studies have
revealed a significantly lower solubility of HrO in quartz
(e.g., Kronenberg et al., 1986; Rovetta et al., 1986, 1989;
Gerretsen et al., 1989). The solubility is probably only a
few parts per million at 3 kbar and 700-900 "C to over
10 ppm at 15 kbar and the same temperatures. This im-
plies a x value of about I ppm/kbar. Thus, at 500 "C, B
is equal to 2.9 x l0 5, based on Equation 15.

As an application ofthe diffusive reequilibration model
to fluid inclusions, consider the following case: three fluid
inclusions with radii of 10, 25, and 50 pm are trapped at
the centers ofquartz crystals I mm in radius from a meta-
morphic rock under the conditions of 8 kbar and 500 "C.
The compositions of the fluid inclusions are 800/o HrO
and 20o/o CO, (by mole) initially. Now suppose that this
metamorphic rock is uplifted virtually isothermally and
the pressure drops to 3 kbar, while the temperature re-
mains at 500 "C. Under this circumstance, the pressure
within the inclusions remains unchanged (: 8 kbar), and
the partial HrO pressure is 6.4 kbar; outside the crystals,
P.ro-- 2.4kbar, if the external fluid is still 800/o HrO and
20o/o COr. As the internal Pnro is higher than the external
PHro, H2O will diffuse out of the fluid inclusions. The
reequilibration degrees and the pressure and the compo-
sitional changes within these inclusions can be computed
from Equation 12, with P : 2.9 x l0-5. The results are
presented in Table 2. In calculating the COrl(CO, + HrO)
ratio, it is assumed that diffusive leakage of CO, is neg-
ligible. This is probably a reasonable assumption because
both the solubility and diffusivity of CO, in quartz are
expected to be much smaller than for HrO.

It can be seen from Table 2 that, because ofthe diffu-
sive loss of HrO out of the inclusions during retrograde
metamorphism, the COrl(HrO + COr) ratio increases sig-
nificantly for inclusions smaller than 25 pm in radius, if
the external pressure drops to and remains at 3 kbar for
100000 yr while the temperature remains at 500'C. In
fact, for inclusions l0 pm and smaller in radius trapped
in a l-mm quartz crystal, less than 50000 yr is needed to
reequilibrate the inclusions completely. On the other hand,
for larye fluid inclusions (>50 pm in radius), at least about
106 yr is required to reequilibrate the inclusions com-
pletely.

Host crystals may crack if the internal pressure is sig-
nificantly higher than the external pressure (Tait, 1992),
thus resulting in the rapid leakage of both HrO and CO,
along the cracks. However, crystals serving as hosts for
small inclusions (smaller than 25 pm) may not crack be-
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TrsLe 2. Diffusive leakage of HrO from fluid inclusions in quartz
during retrograde decompressional metamorphism

After 1 0000 yr After 100000 yr

CO,

co, + H,o

QIN ET AL.: MELT AND FLUID INCLUSION REEQUILIBRATION

iD P",o
(%)" (kbao'

o
("t")'a (pm)'

10 60 4.0 0.29 100 2.4
25 15 5.8 0.22 75 3.4
50 5 6.2 0.21 30 5.2

0.40
0.32
0.24

Note.'Host crystal radius : 1 mm. The initial total pressure within the
inclusions is I kbar. Initial partial H2O pressure : 6.4 kbar. The ditfusivity
of H,O in quartz at 500'C : 10 13 cm'zls, obtained by taking D : 10 e

cm,/s at 800'C and an activation energy of 200 kJ/mol.
'The letter a is the inclusion radius; o is the reequilibration degree; PHp

is the partial HrO pressure in the fluid inclusions; COr(H,O + CO, is the
molar ratio, which equals 0.2 prior to the diffusive loss of HrO.

cause the uplift and decompression of metamorphic rocks
generally proceed very slowly, in the time scale of 105 yr,
whereas diffusive loss of HrO from small fluid inclusions
to the point of equilibrium with external fluid can be
accomplished in less than 105 yr, thereby reducing the
difference between internal and external pressure. For
larger fluid inclusions, diffusive loss of HrO can be less
significant, with consequent cracking in the host crystals.
It follows that a study of the composition and size of fluid
inclusions may help constrain the uplift history.

SutlrNr,c.ny AND coNcLUSroNS

This study provides a theoretical treatment of the dif-
fusive reequilibration of both melt and fluid inclusions
at constant temperature. It allows a quantitative evalua-
tion of the roles of various parameters in controlling the
reequilibration rate. Reequilibration of a chemical spe-
cies in an inclusion with external melt or fluid depends
on (l) the diffusivity (D) of the species in the host crystal;
(2) inclusion size (a); (3) host crystal size (b); and (4)
partition coefficient (k) of the species between crystal and
melt or fluid. The reequilibration degree decreases as D
and k decrease and as d and D increase. Reequilibration
of HrO in a melt inclusion in quartz with external melt
is probably geologically rapid at temperatures relevant to
rhyolitic melts (700-800'C) because of the high diffusiv-
ity of HrO in quartz. As a consequence, the original HrO
content in a melt inclusion is unlikely to be preserved.
For fluid inclusions, even though the solubility of HrO in
quartz is quite low (- I ppm/kbar Prro), diffusive leakage
of HrO from small fluid inclusions (< l0 pm in radius) in
quartz from metamorphic rocks can be significant during
the slow uplifting of the metamorphic rocks, resulting in
an increase in the COrl(HrO + COr) ratio in the inclu-
srons.

Because diffusive reequilibration also depends on the
partition coemcient, the original concentrations of highly
incompatible elements in inclusions are probably better
preserved than those of moderately incompatible ele-
ments and compatible elements. This has two direct con-
sequences: different elements in the same inclusion ex-

change with external melt to different degrees; the same
elements in melt inclusions trapped in diferent host min-
erals (e.g., cpx vs. olivine) may reequilibrate differently.
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ApprNorx 1. Sor,urrox oF THE DIFFUSTvE
REEQUILIBRATION PROBI,EM

The two variables t and r can be made nondimensionalized
by letting r : Dt/b2 and x : r/b.With these, Equation 2 coupled
with its initial condition (Eq. 3) and boundary conditions (Eqs.
4 and 6) takes the following dimensionless forms:

dC A 'C 2AC
= : - + : ^ : ,  a < x < l  ( A l )
0r 6x2 x Ax'

where a: a/b.

The initial condition is

C ( x , O ) : k C o ,  a = x = I .  ( A 2 )

The two boundary conditions are

(A3)

(A4)

C(l , r ) :  kC.

d C ( a . r )  . . . d C .: \P/d) ^ l,-".
Or ctx

The Laplace transformation method can be used to solve this
problem. Denote the Laplace transformation of C(x,t) and e@,p);
r.e.,

eeA -- J"- c{r,i"*vGpi dt. (A5)

(A7)

where A ar'd B are constants to be determined from the two
boundary conditions and I : \,6.

The Laplace transformation of Equation ,A3 ls i(t,p) : kC,/p,
which, when considering Equation A7, becomes

QIN ET AL.: MELT AND FLUID INCLUSION REEQUILIBRATION

The Laplace transformation of Equation Al is

A  , -  d ' c . 2 d c
p C - k c o : * r - ; *  d < x <  l .  ( A 6 )

The general solution ofEquation ,{6 is

^  I  , k C oC ( x , p ) : ; ( A e * + B e - u ) + f

Ad + Be-\:6/p (A8)
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where

6: k(c.  -  cJ. (Ae)

Applying the Laplace transformation to Equation .{4 gives

pC@,p) - kCo: tB,qi'{l-..' d x  ' "  -

Substituting this into Equation A7 yields

A(p+a2p- aBtr)eM* B(P+d2p+ aBtr)e M:Q. (A10)

Equations A8 and Al0 can be solved simultaneously to give A
and B:

QIN ET AL.: MELT AND FLUID INCLUSION REEQUILIBRATION

A
A : : @ - r a 2 p * a B t r ) s - r

zap

15
B:  _  (0  +a ,p -aB t r )e^ "

zap

where

Q:@+ a!)sinh(l  -a)tr+aB),cosh(l -a)), .  (Al lc)

Therefore,

t . - 1 6
a$.p't :::s + :*l(B + a?)sinh(x - a)trp xup

+ oPtr cosh(x - a)tr1. (Al2)

C(x,r'1 can now be obtained by applying the inverse Laplace
transformation to e@,p); i.e.,

c(x,r): 
* I:e(x,p)exp(p) d,p.

Ro: kCs * !.ffi _ffi: rr".

This transcendental equation can be solved numerically. The
first six roots for selected values ofa and 0 have been compiled
in Table l.

The residue at p : -q?" and tr : i4, is

_  6 m .
R, :  :  

* - : ,exp( -q fu ) ,  
n  :  l ,  2 ,3 , . . .  (A l8 )

where

do
M,: p-j at p : _nz and tr : 14,' d p

: -iqT{olcr + P(l - q)/2lsin(l - a)q"

I
+ ^ [a':(l - d)sl - p]cos(l - a)q"] (Al9)

zq"

m": i[(p - azq])sin(x - a)q"

+ aBq"cos(x - a)q,l

sin(l - x)4,: id?s.-::. (A20)'  ' "sin(l  -  a)4,

where Equation Al7 has been used. And, finally,
'r RL

C(x,r): kC.+:-(C" - C.)^

x )

(Al la)

(Al lb)

(Ar3)

This integral on the complex plane can be evaluated by the res-
idue theory. Note that e @,p) is a single-valued function of p,
even though I (: \,/f) takes two values, one positive, the other
n€gative, for any given p on the p complex plane. This is because
C(x,p) is an even function of ),. Therefore, there is no branch
point for the integral.

There is a pole at p: 0, with a residue of

sin(l - x)q"exp(-ql,r) (A21)
l1q"sin'z(l - a)q.

+ (t/z)la(l - d)sl - B/alsin 2(l - a)q"l

whereT : 2a t 00 - o); a : a/b; x : r/b;r : Dt/b2.
The denominator in the summation in Equation A2l can be

further manipulated by using Equation A17 so that it takes a
form similar to that used by Carslaw and Jaeger (1959, p. 350,
Eq. 24) for their special case. This is

48k
C(xl): kC" + :-(C" - C')

sin(l - x)q"exp(-q|r) (422)
7,a2p(l - d)q"+ 4aq"sin2(l - a)q"

- B sin 2(I - a)q,l

It is more convenient to use Equation A2l when the compo-
sition of the melt inclusion is evaluated. The comoosition of the
melt inclusion is

C,e): C. +2i(co - c.)
d

" )
exp(-q?r) (423)

{rq"sin[(l - d)s,l
+ [a(l - a)q] - P/alcosl(l - 

")q.l]

(A l4 )

Other poles occur at Q: O, or

(B + a!)sinh(l - a)), + aBtr cosh(l - a)I:0. (Al5)

There is an infinite number of negative roots of p (and thus
imaginary roots of ), : \.ap) lhat satisfy Equation A15:

p  :  - s ?  ( n :  1 , 2 , 3 ,  .  .  . ) (Ar6)

where the 4's are the positive roots of

{S - a2q2)sin(l - d)q + aBqcos(l - d)S:0. (Al7)


