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Ansrntcr

Computational energy minimization and free-energy minimization techniques have been
used to study the structures and crystal properties of muscovite, phlogopite, and several
octahedrally substituted phlogopite analogues. These simulations employ ionic potential
models that include three-body O-Si-O bond-bending terms. The calculated structures of
these micas are in acceptable agreement with experiment. Moreover, the elastic and di-
electric constants and the acoustic phonon properties of muscovite are in close agreement
with experiment, thereby demonstrating the applicability of the techniques and potential
models to this class of material. The effects of divalent octahedral cation substitution on
the structure of phlogopite are also studied.

IurnooucrroN

In this paper, we report a detailed study of the struc-
tures and properties of micas using computer modeling
methods. Our studies are motivated by an incomplete
understanding of the structural, physical, and chemical
properties of micas. Many micas have proved difficult to
study experimentally, often because of the lack of pure
well-ordered single crystals. However, owing to increased
sophistication of simulation techniques and growing
computer power, there has been considerable expansion
in modeling studies of silicates in recent years (Catlow
and Cormack, 1987), and it is now clear that a large num-
ber of silicate structures and properties can be modeled
accurately.

Previous theoretical studies of micas and other layered
silicates have often considered only electrostatic interac-
tions, neglecting contributions from short-range forces.
Such studies have included the modeling of OH orien-
tations in a number of 2:1 phyllosilicates (Giese, 1979)
and an estimation of the magnitude of interlayer bonding
in muscovite (Giese, 1974). Electrostatic calculations have
also been used to study the energetics of intercalation
processes in vermiculite (Jenkins, 1982). This work also
investigated energies of transition between dioctahedral
and trioctahedral layered silicates, as well as hydroxyl to
fluoro transitions, using lattice energy calculations, but
without minimization procedures. Recently, calculations
based purely on electrostatic interactions have been used
to investigate polytypism in micas by attempting to dis-
criminate energetically among alternative model struc-
tures (Abbott and Burnham, 1988).

erally concerned anhydrous close-packed high-tempera-
ture and high-pressure minerals such as olivine (Parker
and Price, 1985), garnets (Parker, 1982), and pyroxenes
(Catlow et al., 1982b). More recently the techniques have
been applied to the simulation of open-framework zeo-
lites (Sanders, 1984; Sanders et al-, 1984; Hope, 1985;
Jackson and Catlow, 1988), and feldspar structures (Pur-
ton and Catlow, 1990).

Free-energy minimization simulations are a recent de-
velopment. They require calculations of the properties of
lattice dynamics as well as lattice statics. To date, work
using these methods has focused on the stability of SiO,
polymorphs and forsterite (Parker and Price, 1989), the
prediction ofthe phase diagram ofthe latter being a no-
table achievement.

In this paper we report the results of simulations of
several micas whose structures and chernioal composition
are well known, which enabled us to make detailed com-
parisons with experimental data and thereby to assess the
extent to which the techniques and the potential models
are suitable for micas and silicates. We concentrate on
the micas muscovite and phlogopite and some octahe-
drally substituted analogues of the latter. We compare
experimental and calculated structures, referring to unit-
cell dimensions, bond lengths, and polyhedral distor-
tions, plus the experimental and calculated phonon dis-
persion curves and elastic constants of muscovite. Our
calculations reveal a generally good agreement between
simulated and experimental results, although detailed
discrepancies point to the need for some refinement of
the interatomic potentials used.

Early applications of energy minimization to inorganic
systems concerned simple oxides (see, e.g., Ca,Jow, 1977). SrNtur,,{1]roN TECHNTQUES
The technique has been applied successfully to a much The computer simulation techniques used is this work
wider range of materials, including silicates, over the last employ a classical description of the ;rysal structure based
5 yr. Earlier uses of energy minimization simulations gen- on the Born model (Born and Huang, 1954). The poten-
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tial model describing the effective forces acting between
the atoms in the structure has the following four com-
ponents:

1. There is an electrostatic term, which is evaluated
using the Ewald transformation (Ewald, l92l; Tosi, 1964).

2. A two-body short-range term describes repulsions
from electron cloud overlap and attractions due to dis-
persion and covalence. In this study we describe cation-O
and the O-O interactions using a Buckingham function:
U", : A exp(-r/p) - Cr u, where the exponential term
describes the repulsive energy and the r 6 term the longer
range attraction. The intramolecular OH interaction is
represented by a Morse function: U.,: D.Il - exp[-0(r
- r.)l|', where r and r. are the observed and equilibrium
interatomic distances, respectively. Coulomb forces are
not included between atoms coupled by a Morse poten-
tial, as it is assumed that this potential describes all com-
ponents of the interactions between the two atoms. As in
many previous simulation studies on silicates, the short-
range cation-cation interactions are not significant and
were therefore neglected.

3. A three-body short-range term describes angular de-
pendent covalent forces. A simple approach (see, e.g., Ca-
tlow and Cormack, 1987) is to include bond-bending
terms about the tetrahedral cation of the type U,no :
t/zK.no(0 - 0o)', where K*o is the harmonic three-body
force constant, and 0 and 0o are the observed and ideal
tetrahedral O-T-O bond angles, respectively.

4. A term to describe electronic polarizability is re-
quired if dielectric and dynamic properties are to be mod-
eled accurately. In this study we used the shell model
(Dick and Overhauser, 1958), which provides a simple
mechanical model of electronic polarizability. The core-
shell self energy is given by U" : r/zK"r2,where K" is the
harmonic spring constant and r is the core-shell separa-
tion. The development of a dipole moment is described
in terms of the displacement of the shell relative to the
core. The free-ion electronic polarizability, o, is given by
a : Y/K- where I is the shell charge.

In order to predict the minimum energy configuration
of a crystal structure, the lattice energy calculations must
be coupled to a minimization procedure. We have used
the computer code THBREL (kslie, in preparation) which
employs a Newton-Raphson algorithm. Such calculations
can be performed either with fixed (constant-volume) or,
as in this study, variable (constant-pressure) unit-cell di-
mensions. Detailed discussions of the methods are avail-
able elsewhere (see, e.g., Norgett and Fletcher, 19701,Cat-
low and Mackrodt, 1982).

The elastic constant tensor C, is calculated analytically
using standard procedures, which require the prior cal-
culation ofthe second derivatives ofthe total lattice en-
ergy with respect to the six bulk strain components and
with respect to atomic coordinates. The formalisms em-
ployed are described in detail elsewhere (Catlow and Nor-
gett, 1976; and Catlow and Mackrodt, 1982; Parker and
Price, 1989, 1990) and summarized in Appendix l.

Following energy minimization, the vibrational prop-
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erties of the structure can be calculated using a lattice
dynamical approach. Such procedures have been de-
scribed in detail previously (Born and Huang, 1954 Zi-
man, 1964: Cochran, 1973) and discussed in the context
of atomistic simulations in a number of recent studies
(Parker and Price, 1989, 1990). The vibrational frequen-
cies of a lattice are related to the static energy by m<':'z(q)
: D(q)e(q), wherc m is the atomic mass, q is the recip-
rocal lattice wavevector of the lattice vibration, <.r(q) is
the frequency of the vibrational modes, and D(q) is the
dynamical matrix, given by D(q) : 2,' (02U/ltt ' lut)
exp(lq.R), where R is the interatomic separation, and u'
and u, are the atomic displacements from equilibrium
positions. For a unit cell containing N atoms, there are
3N solutions for a given value of q. We have used the
computer code THBPHON (kslie, in preparation) to
calculate within the harmonic approximation the eigen-
values [<o'(q)] from which the vibrational frequencies are
derived. In addition the program also calculates the ei-
genvectors [e"(q), e"(q), e,(q)], which describe the pattern

of atomic displacements for each vibrational mode.
From a knowledge ofthe phonon frequencies over the

entire Brillouin zone, the phonon density of states may
be determined, which in turn can be used to calculate a
number of thermodynamic properties. For example, the
vibrational free energy (F",0) is given by F"'o: kTZ{lv/2
+ ln(l - sx)1, where y: hw,/kT, in which o, is the fre-
quency of the ith mode, k is Boltzmann's constant, and
I is the absolute temperature. The summation is carried
out over the total number of phonon frequencies, M.

Recently free-energy minimization simulations have
been embodied in the computer code Parapocs (Parker
and Price, 1989, 1990), which simulates crystal structures
and hence dynamical properties at temperatures above 0
K. The effects of thermal expansion are included using
the quasi-harmonic approximation, which accounts for
thermal expansion by calculating the volume dependence
of vibrational frequencies and hence of thermodynamic
properties. The technique involves minimizing the
Helmholtz free energy (U + F"i), rather than simply the
internal energy (t4, as in energy minimization. During
the minimization both cell dimensions and atomic co-
ordinates are varied. Within the quasi-harmonic approx-
imation a nested minimization procedure is employed,
i.e., for each set of cell dimensions, the atomic coordi-
nates are adjusted to zero strain; the cell dimensions
themselves are varied until the value of d.F/de, is zero for
all six bulk strains er. The latter derivatives are calculated
numerically by applying small additional strains in each
ofthe six directions. Full details are given elsewhere (Par-
ker and Price, 1989, 1990).

PnuunrrnrzATloN oF INTERAToMTC POTENTTALS

Accurate interatomic potentials are an essential prereq-

uisite for reliable atomistic simulations. Parameterization
may be achieved by both empirical fitting and theoretical
procedures. The latter range from the electron gas meth-
ods (Gordon and Kim, 1972), which have been widely
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TABLE 1, Short range potential parameters

Two-body short-range interaction

COLLINS AND CATLOW: SIMULATION OF MICA PROPERTIES

Note: a: sanders et at. (1984), b : caflow et at. (1gg2b), c : caflow
et al. (1982a), d : Post and Burnham (1986), e : Sangster and Stoneham
(1981), f: Lewis and Catlow (1985),9 : Saut et at. (1985); a-d are fitted
to a Buckingham function, U: Aexp(-rlp) - Cr6i e is fitted to a Cou-
lombic-subtracted Morse function, U: D.\1 - exp[-p(r - r.),il - qqr,.
y: shell charge; K: interatomic force constant; Ke: bond-bending force
constant; do: equilibrium bond angle.

used by a number of workers (see, for example, Mackrodt
and Stewart, 1979; Post and Burnham, 1986), to ab initio
Hartree-Fock techniques, which have recently been ap-
plied to the study of silicate potentials (Lasaga and Gibbs,
1987; van Beest et al., 1990). Although a physical signif-
icance can be attached to theoretically derived potential
parameters, it is reduced when empirical fitting proce-
dures are used. Indeed if sufficient parameters are fitted,
then physical significance may be largely lost. In this study
we have used interatomic potentials that have been trans-
ferred from a number of previous studies (see Table l).
All the potentials employ full integral charges on all at-
oms, except for the OH species (qo: -1.426, qr:
+0.426) whose sum equals - I but whose component
atoms have partial charges chosen so as to reproduce the
dipole moment of the OH group (Saul et al., 1985).

The short-range potentials for all tetrahedral atoms (i.e.,
both Si and Al) in our model are taken to be those of the
Si atom. They include the three-body O-Si-O bond-bend-
ing potential (Sanders et al., 1984), which has been used
to model accurately structures and crystal properties of
almost every major group of rock-forming silicate min-
erals (see, e.g., Price et al., 1987; Wall and Price, 1988;
Dove, 1989; Purton and Catlow, 1990).

The other short-range interactions include an empirical
two-body Si-O potential (Catlow er ai., 1982b), for O

atoms that are part of the OH group; an empirical Al-O
potential (Catlow et al., 1982a} where Al is in the octa-
hedral sites; and an electron gas K-O potential (Post and
Burnham, 1986). The Mg-O potential used in most sim-
ulations of phlogopite was fitted empirically to the struc-
ture and dielectric properties of MgO (Sangster and
Stoneham, 198 l). In our study of octahedrally substituted
phlogopite analogues, we used potentials that were de-
rived as a consistent set (Lewis, 1984; kwis and Catlow,
1985). These were derived, using empirical fitting pro-
cedures, to a range of oxides including NiO, MgO, CoO,
FeO, and MnO. We note that the potential parameters
for MgO in this set differ from those employed by Sang-
ster and Stoneham (1981). A Cd-O interaction that had
been calculated from an extrapolation procedure (kwis
and Catlow, 1985) was also used in this study. We used
an O-O potential calculated ab initio (Catlow, 1977),buI
with a dispersion term and shell parameters that were
fitted empirically (Sanders et al., 1984). The O-H poten-
tial used to describe the intramolecular interaction of the
hydroxide was calculated ab initio (Saul et al., I 985). The
longer range H bonds (OH-O) interact purely by electro-
static forces.

The distribution of Al,Si in the tetrahedral sites in 2M,
muscovite and lM phlogopite generally shows no long-
range ordering (Bailey, 1975, 1984). The explicit inclu-
sion of I4lAl and I4rSi in simulations would therefore vi-
olate the accepted space group symmetry by incorrectly
imposing long-range ordering. Following a previous sim-
ulation study of muscovite (Collins and Catlow, 1990),
we continue to use a single hybrid species (AlorrSiorr) of
both charge (+3.75) and mass (27.81) to represent the
tetrahedral cations, with the short-range interactions of
Si. Although the atomic vibrations of this species are not
identical to the average of Al and Si in the whole crystal,
the difference is probably small, since Al and Si are ad-
jacent in the periodic table. The errors introduced by this
approximation would not be expected to be large for dis-
ordered materials.

Rrsur-rs
Muscovite

Structure. Simulated structural parameters of musco-
vite are compared with experimental data (Rothbauer,
l97l; Knurr and Bailey, 1986) in Table 2. Unit-cell di-
mensions, bond lengths, and distortions of simulated
structures at 0 and 300 K were all found to be in good
agreement with experimental values. Two experimental
structures are given to show that, although structural pa-
rameters of individual muscovite crystals can be mea-
sured very accurately, the variation of parameters be-
tween crystals is significant, that being a consequence of
differences in chemical composition. These differences
should be borne in mind when comparing simulated val-
ues with experiments.

The important features of Table 2 are summarized as
follows:

L The energy-minimized and free-energy-minimized

Alev
Refer-

pl l .  c /evAu ence

si4+-o,
,n._9, rx-(H)
Al3+-O'
K*-O'-
Mgz+-92
Nir+-o,-
Mgz*-gz
co2+_o2
Fe*-o2
zn2+_o2
Mnr+_o2-
cd,+-o2
o,--o2

1283.9
999.9

1460.3
65269.7
1275.2
683.5
821.6
696.3
694.1
499.6
715.8
868.3

22764.0

DJeY

0.3205
0.3012
0.2991
0.2130
0.3012
0.3332
o.3242
0.3362
0.3399
0.3595
0.3464
0.3500
0.1 49

B I A '

a
b

o
e

10.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

27.88

rJA
Refer-
ence

H0 426+_01 426 7.0525 2.1986 0.9485 s

Refer-
en@

Shell model interaction

Ylel  Klev A 2

o2 -2.8690 74.92

Three-body interaction

KJeY rad, 0J'
Refer-
ence

o,--si4+_o, 2.09724 109.47



unit-cell dimensions are all within 2o/o (andin most cases Tlaue 2. Comparison of simulated and experimental structural

l0lo) of experiment. 
parameters of 2M muscovite

2. The c-axis lattice parameter of the free-energy-min-
imized structure at 300 K shows an improved agreement
with experiment when compared to the energy-mini-
mized (0 K) structure; the experimental data refer to room
temperature. We note the contrasting response of the cell
dimensions to an increase in temperature; the a and b
lattice parameters increase by far less between 0 and 300
K than the c lattice parameter. This is a consequence of
the bonding between the layers being much weaker than
that within the layers. Indeed it is the increase in inter-
layer separation that is mainly responsible for the large
expansion along c, as the thickness ofboth the tetrahedral
and octahedral sheets varies little between 0 and 300 K.
The response of the different cation-O bond lengths to
temperature is, as expected, similar to that of the sheet
thickness and interlayer separation. The K-O bond length
increases significantly between 0 and 300 K, whereas both
the tetrahedral Siorr,Alorr-O and octahedral A1-O bond
lengths vary little over this temperature range. Free-en-
ergy simulations over a temperature range of 100-800 K
predict considerable anisotropy in the thermal expansion
of muscovite. However, we overestimate this effect: we
predict the expansion in the c lattice parameter to be
almost an order of magnitude greater than that in the a
and b lattice parameters, whereas experimental data over
a similar temperature range for muscovite (Guggenheim
et al., 1987) and phlogopite (Takeda and Morosin,1975)
reveal an anisotropy in the thermal expansion of 1.5 and
2, respectively.

3. The mean T-O bond length is modeled well (within

0.02 A), indicating the validity of using the Si-O short-
range potential to represent the interaction ofthe hybrid
species with O.

4. The Oou"ur-T-Ouoi."' bond angles, r, are calculated to
be slightly less than the ideal undisturbed value of 109.47"
whereas the experimental value is a little greater. The
K-O potential is probably slightly too repulsive, causing
the basal O atoms to be pushed back into the tetrahedral
sheet.

5. The tetrahedral rotation angle, a, is underestimated
and therefore the difference, A, between K-O"",", and
K-O-*,, is also underestimated.

6. The measure of departure from coplanarity of the
basal O atoms, LZ, (corntgation of the basal surfaces) is

correctly predicted to be appreciable.
7. The mean AI-O,OH bond length is modeled very

well, as is the octahedral flattening angle, ry'.
8. The calculated OH bond length is close to experi-

ment.
9. The modeling of the interlayer region, that is, the

K-O,n"", and K-O.",". bond lengths, and the difference be-
tween them, A, is dependent on not only the K-O inter-

actions but also the amount of tetrahedral rotation, a,
due to the sheet misfit. As a increases, so does A (i.e.'

K-O,-- becomes smaller, and K-O",,.. becomes larger).
Since the tetrahedral rotation arises from the misfit be-
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0-K 300-K
Expt.' Expt.'. sim. sim.

b

Cell dimensions
s.192 5.204 5.246
9.0153 9.018 9.179

20.046 20.073 19.783
95.73 95.82 96.53

Thickness
Tet sheet 2'245 2.243 2.234
Oct sheet 2.089 2.106 2.109
Interlayer separation 3.393 3.393 3.250

Tet sheet
Mean T-O 1 .644 1-644 1 .620
r  1 1 0 . 9  1 1 1 . 0  1 0 7 ' 5
a  11 .3  10 .8  7 ' 6
AZ 0.21 0.22 0.33

Oct sheet
1.930 1.934

57.2 57.0
0.920

Interlayer seParation

5.254
9.195

20.009
96.53

2.238
2.1  13
3.359

1.622
r 07.6

/ . 5

0.32

Mean M2-O,OH
v(M2l
o-H

K-O.,,.,
K-O,"*,
A

1-932 1 .934
56.9 56.9
0.975 0.975

3.353 3.331
2.872 2.980
0.481 0.351

Atomic coordinates (0-K sim.) in CZlc
x y z

3.354
3.020
0.334

OH
H

T1
T2
M2
K
01 core

shell
02corc

shell
03 core

shell
04 core

shell
05 core

shell

Nofe: All lengths in Angstr6ms and angles in degrees' Simulations:
KAt,AtSisolo(OH)'.

; Rotnoauer (i g71 ;: lKo.uNao,1Al1 o,,Fe614,Mgo lrxAlo rsio')oes(OH)r'
'* Knurr and Bailey (1986): Ko""Naoou(Al',r, Mn8i2,Fe8'fre)Aloss,Si3o5s-

o,o(oH),.

tween tetrahedral and octahedral sheets, its simulation
depends on the interactions ofspecies within these sheets'
Therefore, interactions within the tetrahedral and octa-
hedral sheets have a significant influence on the simulated
interlayer configuration. Indeed it has been proposed
(McCauley and Newnham , 197 l) that the interlayer con-
figuration, A, is controlled mainly by the sheet misfit and
not by the interlayer cation itself. The underestimation
of A, and the discrepancies in the K-O bond lengths can-
not therefore be solely attributed to the K-O short-range
potential but are also due to the underestimation of a.

Overall, the reproduction of the properties of musco-
vite is most satisfactory although the small discrepancies
summarized above indicate the need for refinements in

the interatomic potential models.
Elastic properties. A very limited amount of data on

the elastic properties of micas is available, with individ-
ual moduli only reported for muscovite. Treating mus-

0.4662 0.9294 0.1374
0.4506 0.2567 0.1376
0.2711 0.0848 0.0000
0.0000 0.0988 0.2500
0.4766 0.9557 0.0538
0.4776 0.9566 0.0566
0.3523 0.2479 0.0539
0.3523 0.2484 0.0567
0.4330 0.0919 01723
0.4370 0.0918 0.1663
0.2493 0.81 12 0.1565
0.2421 0.8166 0.1532
0.2456 0.3624 0.1732
0.2400 0.3591 0.1672
0.4717 0.5440 0.0532
0.4032 0.6220 0.0794
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Treu 3. Experimental and calculated elastic moduli for mus_
covite

Elastic
stiffness

con- Alexandrov Vaughan
stants and and
101o Ryzhova Guggenheim

Nm-2 (1961) (1996) 0_K sim.

Bulk Modulus (Voigt) 10'o Nm ,
Shear Modulus (Voigt) 1010 Nm ,

c,, 17.80 18.43
c"" 17.90 17 .94
c"" 5.49 5.91
c* 1 .12 1.60
c$ 1 .12  1 .76
c"u 6.79 7.24
c4 1.45 2j7
c," 1.45 2.39
c,, 1.52 4.83
C.u -O-2O
C", 0.39
C.. 0.'12
Coa 0.05

22.87
23.27
6.56
1 .63
1.73
7.62
2.24
2.50
9.84

-  0 .19
0.69
0 .17
0.48

22.85
23.32
5.72
1.03
1.28
7.65
1.62
1.98
9.51

-o.17
0.44
0.07
0.28

covite in hexagonal symmetry, an incomplete set of elas_
tic moduli were measured using ultrasonic techniques
(Alexandrov and Ryzhova, 196l). More recently, the
complete set of l3 individual adiabatic stiffness moduli
of a natural sample of 2Mr muscovite has been measured
using Brillouin scattering techniques (Vaughan and Gug-
genheim, 1986). These experimental values, together with
calculated values at 0 and 300 K, are given in Table 3.
The orthonormal axes used to describe the elasticity sys-
tem are defined according to Vaughan a1d errggenheim's
alternative system, in which x is parallel to a and z is
parallel to c*. This allows comparisons to be made among
different polytypes.

A detailed qualitative explanation relating individual
moduli to the structure of muscovite is given by Vaughan
and Guggenheim (1986). Their approach is used in the
discussion which follows, in which we compare calculat_
ed and experimental values. (l) The simulated values agree
extremely well with experiment, with C,, correctly pre_
dicted to be negative, indicating that the methodology
and the potential model (including hybrid species to rep-
resent tetrahedral cations) are generally adequate. Only
the ofldiagonal element C,, differs significantly from iti
experimental value. (2) The relationship between struc_

T^

Expt.
(Vaughan

and Guggen-
heim, 0-K 300-K
1986) sim. sim.

1 .5

1 .0

0 .5

0 .0
0 .0  0 .2  0 .4  0 .6  0 .8  1 .0

ITAVEVECTOR/REDUCED UNITS
Fig. l. Calculated and experimentally measured longitudinal

acoustic mode along [00{] of muscovite. Calculated curves at 0
K (dashed line) and 300 K (solid line). Experimental measure_
ments from Collins et al., 1992 (open circles) and Cebula et al.,
1982 (closed circles).

whereas that perpendicular to the layers decreases signif-
icantly with increasing temperature, a consequence of the
weak interlayer bonding. (a) We correctly model the small
departures from hexagonal symmetry: C,, and Couare no|
zero, and the following pairs of moduli are unequal: C,,
and C.r, Coo and Crr, C' and Cr3, as they would be in
hexagonally symmetric structures.

Table 4 reports the calculated and experimental isotro-
pic averages of the bulk moduli. Again we observe sat-
isfactory agreement between experiment and simulation.

Phonon spectra. To investigate further the interlayer
forces present in muscovite, the phonon spectra perpen-
dicular to the layers have been calculated, thereby pro-
viding a stringent test of our potential model. Little data
are available for muscovite: the longitudinal acoustic
mode along the [00i] direction is the only branch to be
measured experimentally by using inelastic neutron scat-
tering techniques (Cebula et al., 1982; Collins et al., in
preparation).

In our calculations, as we have noted, our potential
model includes a hybrid tetrahedral species ofboth charge
and mass. The atomic vibrations of this species are not
identical to the average of Al and Si in the whole crystal,
but the difference is probably small, as discussed earlier.
The calculated longitudinal acoustic branches along the
[00{] wavevector and the experimental longitudinal
acoustic modes are shown in Figure l. We note the ex-
cellent agreement between the calculated and experimen-
tal results. This further supports the validity oi o.rr po-
tential model and provides confidence for future predictive
studies on muscovite. The calculated longitudinal and
transverse modes propagating along [00{] are shown in
Figure 2. The shape ofthese dispersion curves is approx-

COLLINS AND CATLOW: SIMULATION OF MICA PROPERTIES

N

F

O
z
F1
Fr

@
Frl
tr
h

300-K sim.

6.77 9.20 8.68
4.31 4.83 4.58

-6

a

I
.4
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TABLE 5. Experimental and calculated dielectric constants of
muscovite

N

F.

>''
CJz
F]

@
fEl
tV

h

1 .5

1 .0

0 .5

0 .0
0 .0  0 .2  0 .4  0 .6  0 .8  1 .0

WAVEVECTOR/REDUCED UNITS
Fig. 2. Calculated longitudinal and transverse modes along

(00{) ofmuscovite, at 0 K (dashed lines) and 300 K (solid lines).

imately sinusoidal, thereby suggesting that the associated
atomic displacements are subject to restoring forces that
act between nearest neighbor atoms only.

Dielectric properties. Although individual elements of
the dielectric constant tensors have not been measured
experimentally for muscovite or any other mica, bulk
constants have been reported. These include a static di-
electric constant (Golop et al., 1968) and a high-frequen-
cy dielectric constant derived from the values of the re-
fractive index (Vaughan and Guggenheim, 1986). Our
calculated values at both 0 and 300 K correspond to in-
finitely high and zero frequencies and are given in Table
5. The reasonable agreement of our calculated values with
experiment supports the validity of our description of
polarization in these materials.

Phlogopite

Structure. As with 2M, muscovite, our modelingof IM
phlogopite shows general agreement with experimental
data, although there are significant discrepancies. The
simulated structures of phlogopite are in close agreement
with experimental data (Hazen and Burnham, 1973;
Knurr and Bailey, 1986), as shown in Table 6. As ex-
pected, the thermal expansion is anisotropic. The mean
T-O distance is modeled well, although the O**,-T-O"o,"n,
bond angles, z, are predicted to be too small, again in-
dicating a slightly over-repulsive K-O potential. The tet-
rahedral rotation angle, a, is underestimated, although it
increases in the free-energy simulation.

As noted above, the departure from coplanarity ofthe
basal O atoms, L,Z, was correctly predicted to be signifi-
cant for 2M, muscovite. For 1M phlogopite, we correctly
predict AZtobe neligible. The mean Ml-O,OH and M2-
O,OH bond lengths are slightly over estimated (by -0.05

A), although the octahedral flattening angles r/(Ml) and

€ t t

czz

'Golop et  a l . ,  1968.
.- Vaughan and Guggenheim, 1986.
t From refractive indices-muscovite measured at 488 nm.

TABLE 6. Comparison of simulated and experimental structural
parameters of tM Phlogopite

Expt.' Expt.'.

Static Expt.-
dielectric (orientationally
constant averaged value) 0-K sim. 300-K sim.

er

czz

€g

High-
frequency
dielectric
constant

5.71

Expt..'
(orientationally
averaged value)

5.84
5.50
s.53

5.62
5.30
5.47

0-K sim. 300-K sim.

2.43-2.541 1.77
1.82
1.79

1.78
1.83
1.81

0-K 300-K
stm. stm.

a
b

Cell dimension
5.308 5.316 5.387 5.395
9.190 9.221 9.324 9.334

10.1ss 10.282 10.054 10.134
100.08 99.9 97.03 96.47

Thickness
2.261 2.266 2.216 2.219
2.125 2.143 2.192 2.193
3.352 3.454 3.354 3.439

Tet she€t
1.649 1.663 1.6208 1.622

1 10.5 1 10.3 107 .7 107 .7
7.5 9.9 4.8 5.2
0.0 0.01 0.02 0.o2

Tet sheet
Oct sheet
Interlayer separation

Mean T-O
7

d

AZ

Mean M1-O-OH
M2-O, OH
t(M1)
uMzl

o-H

Oct sheet
2.063 2.073
2.064 2.072

59.0 58.9
59.0 58.9

0.76
Interlayer separation

2.137 2.140
2.135 2.137

59.2 59.2
59.1 59.1
0.97 0.97

3.508
3.022
0.485

K O
K O

OH
H

3.31 15 3.401 3.355
2.969 2.950 2.998
0.343 0.451 0.357

Atomic coordinates (0-K sim.) an C2lm
x y z

T1
M1
M2
K
01 core

shell
o2cnre

shell
03 core

shell

0.0634 0.3338 0.2274
0.0000 0.s000 0.5000
0.0000 0.1745 0.5000
0.0000 0.0000 0.0000
0.3064 0.2661 0.1682
0.3076 0.2635 0.1780
0.0061 0.5000 0.1666
0.0150 0.5000 0.1765
0.1277 0.3352 0.3940
0.1239 0.3348 0.3850
0.1158 0.0000 0.3818
0.0690 0.0000 0.2844

Note; All lengths in angstroms, angles in degrees. Simulations:
KMg"AlSi.O,o(OH),.

* Hazen and Burnham (1 973) lG ss,Nao,5(Mg3 o)Si2 esAlr o5O1o[(OH)o 7Fr 3].
*' Knurr and Bailey (1 986) Ko s5,Nao,(Mg2 5,Fe6;Mn613,A131,)Si,6Al, r-

o,o[(oH), 
"Fo,].
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tlt(M2) are in good agreement with experiment. The cal-
culated O-H bond length has a more realistic value than
that reported by Knurr and Bailey (1986). The discrep-
ancies in the values of K-O,",", and K-O.",",, and their
difference, A, can be attributed to the inaccuracy in the
modeling of the tetrahedral rotation angle, a. However,
it is encouraging to note that the K-O bond lengths are
significantly lengthened with the inclusion of temperature
in the free-energy simulation, whereas the T-O, Ml,M2-
O, and O-H bond lengths are not.

Structure of octahedratly substituted phlogopite. A
number of divalent cations (Ni, Mg, Cu, Co, Fe, Zn, Mn,
Cd) can substitute into the octahedral sheet ofthe phlog-
opite structure. Energy minimization calculations were
performed to investigate the effect ofdivalent octahedral
cation substitutions on the structures ofphlogopite ana-
logues (KRl*AlSi3)r0(OH),. We continue to use hybrid
specres to represent tetrahedal cations, as the compo-
sition and Al-Si distribution of the tetrahedral sheet
remains unchanged, with only the octahedral cation
varying.

To allow reliable comparisons to be made among dif-
ferent octahedrally substituted phlogopite analogues, we
required R2*-O short-range potentials that were derived
consistently, as discussed previously, where we noted our
use of an earlier compilation of potentials (Lewis , l9g4;
kwis and Catlow, 1985) (see Table l). We recall that this
set includes an alternative Mg-O potential to that used in
all other simulations of phlogopite. However, a Cu2*-O
potential that is satisfactorily consistent with the other
members of the set was not available, and the simulation
ofcopper phlogopite has therefore not been performed.
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In a study of cation substitution in phlogopite (Hazen
and Wones, 1972), the effect of octahedral cation radii
on unit-cell dimensions was examined. In addition, Ha-
zen and Wones estimated values of tetrahedral rotation
and octahedral flattening angles for various composi-
tions. They found that it was possible for cations with
ionic radii up to 0.76 A to substitute with concentrations
up to l00o/o into the octahedral sheet. Above this critical
cation size the lateral dimensions of the octahedral sheet
become larger than those ofthe tetrahedral sheet, result-
ing in instability, because distortions of the two sheets
cannot overcome the sheet misfit. Cations with an ionic
radius greater than 0.76 A were found to fill the octahe-
dral cation sites partially, with smaller cations occupying
the remaining sites, ensuring that the overall average ra-
dius was below that ofthe critical value. Indeed, the ex-
istence of annite with Fe2t (0.7S A) in octahedral sites is
attributed to the presence of small amounts of Fe3* (0.63
A; in ttre octahedral sites. Alrhough Zn (0.75 A) could
enter into the octahedral sheet, the absence ofnatural and
synthetic zinc phlogopite can be rationalized by the strong
preference of Zn for tetrahedral coordination.

The calculated lattice energies predict the stability of

To test the ability of our simulation to model the be-
havior ofdifferent divalent octahedral cations on the unit-
cell dimensions, we have made a detailed comparison of
the results of our simulations with experimental data.
Previous work has shown that the b axis of micas is sen-
sitive to the size of the octahedral cation (Hazen and
Wones, 1972; and Radoslovich and Norrish, 1962). The
D axes of phlogopite with octahedral Ni, Mg, Co, and Fe
for our simulated structures are in good agreement (with-
in 2o/o) with those of experimental structures (Hazen and
Wones, 1972) as shown in Figure 3. There is a slight
overestimation of the magnitude of this axis, but we pre-
dict a linear increase with cation radius, in line with ex-
perimental results. A plot of the unit-cell volume as a
function ofthe octahedral cation radius again shows ex-
cellent agreement between calculated structures and ex-
perimental data (see Fig. 4).

We now consider the relationship between the octa-
hedral cation size and the tetrahedral rotation and octa-
hedral flattening angles. The crystal structure of magne-
sium phlogopite is known accurately; hence values ofa
and ry' can be determined exactly using Equations I and
2 below:

a : vz 
| 

1120" - mean Oo-Oo-Oo angles,l (l)

{/ : cos-t(t"/2d") Q)

where Oo-Oo-Oo are individual angles between basal O
atoms, /. is the octahedral sheet thickness, and d. is the
average octahedral bond length. The detailed structures
of the other octahedrally substituted phlogopite ana-

0.78

phlogopite to be in the order Ni, Mg, Co, and Fe of oc-
Fig. 3. I-attice parameter b vs. ionic radii for octahedrally tahedral cations and to be the same as that determined

substituted phlogopite' experimentally from thermal expansion and compression
data (Hazen and Wones, 1978).



fo sto

0.32 0.36 0.4 0.44
ionic radii'/ A'

KEY
..o.. This llork
+Hazen & IYones

Fig. 4. Unit-cell volume vs. ionic radii cubed for octahe-
drally substituted phlogopite.

logues are not known, therefore a and tlt must be esti-
mated. From a knowledge of b and the average bond
lengths, estimates of a and {have been made (Hazen and
Wones, 1972) using Equations 3 and 4:

a: cos-'(b/4'2hd,) (3)

,1': sj1-r([/3.3hd") (4)

where d, and d"are the average tetrahedral and octahedral
bond lengths, respectively.

Experimental and simulated values of a and rlt as a
function ofoctahedral cation radius are shown in Figures
5 and 6, respectively. The plots include the estimated
values of Hazen and Wones (1972), three precise exper-
imental values for magnesium phlogopite (Hazen and
Burnham, 1973; Joswig,1972; Knurr and Bailey, 1986),
and values from our simulated structures.

The estimate of a by Hazen and Wones (1972) for mag-
nesium phlogopite is in good agreement with the values
determined precisely from detailed structural data, sug-
gesting that Equation 3 can be used to predict accurately
the values ofa for other octahedrally substituted phlog-
opite. Our calculations reproduce the trend ofdecreasing
a with increasing octahedral cation radius, although we
underestimate this effect (see Fig. 5). The values of a
given by Hazen and Wones range from -9' for nickel
phlogopite to 0o for iron phlogopite, whereas we predict
-7o for the former and -5' for the latter.

The estimate of I by Hazen and Wones for magnesium
phlogopite is, however, considerably smaller than the
values determined precisely from detailed structural data,
indicating that Equation 4 is inaccurate in predicting ry'

tr't9

KEY
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+Hazen &

Fig. 6. Octahedral flattening angle (r/) ionic radii for octa-
hedrally substituted phlogopite;a: Hazen, and Burnham (1973)'

b : Joswig (1972), and c : Knurr and Bailey (1986).
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Fig. 5. Tetrahedral rotation angle (a) vs. ionic radii for oc-

tahedrally substituted phlogopite; a : Hazen and Burnham
(1973), b : Joswig (1972), and c : Knurr and Bailey (1986).
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values for other octahedrally substituted phlogopite. The
value of ry' for magnesium phlogopite, determined from
our relaxed simulated structure, is in excellent agree-
ment with the precise experimental values. Moreover, we
predict the expected trend ofdecreasing ry' with increasing
octahedral cation radius varying from -59.3" for nickel
phlogopite to - 58.5" for iron phlogopite (see Fig. 6). Thus,
to summarize, we model the correct order of stability for
octahedrally substituted phlogopite and, at least qualita-
tively, the effects of the octahedral cations on various
structural parameters.

CoNcr,usroNs
The results presented in this paper demonstrate clearly

that energy minimization and free-energy minimization
techniques can be used to investigate the properties of
micas. We have shown the applicability of Born model
potentials (which include three-body O-Si-O bond-bend-
ing terms) to this class of silicate. Moreover, all the short-
range parameters used in this work were derived from
studies of other materials, thus demonstrating that in this
context the potentials used are transferable. Our calcu-
lations do, however, suggest that refinements of the po-
tential models are needed to give accurate simulation of
all structural details of micas.

Our study has also demonstrated the value of free-en-
ergy minimization techniques, which can model the ther-
mal expansion of these materials and improve agreement
between calculated and observed properties. Future chal-
lenges will include the modeling of hydration and phase
stabilities within layer structured silicates.
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AppnNnrx 1: Car,cur,LrroN oF ELASTTc
CONSTANT TENSOR

Elastic constants Cu are defined as the second derivatives (nor-

malized to the unit-cell volume 4) of the lattice energy with

respect to the six independent strain components (e, . . . eu) used

in the Voigt notation, i.e., C,,: (l/V) (6zU/0e'0e,). They are de-

termined by first expanding the lattice energy ((, to the second

order and assuming the equilibrium condition.

UF): U(r) + %6rr 'W., '6r * 6rr 'W.. '& t t / f ie7'W.'6e (Al)

where 6r and 6c are vectors of change in atomic positions and

strains respectively. W,,, W.., and W.. are matrices whose ele-

ments are, respectively, the second derivatives ofthe lattice en-

ergy with respect to atomic coordinates, atomic coordinates and

strain, and strains alone, i.e.,

d2IJ d2U d2U
w , . t : ? :  w ' . t : ? ;  w : : :  * .  ( A 2 )

" 0r,0r, dr,d<, dcidcl

The derivativer -u, O" calculated analytically if analytic forms
of the interatomic potentials are employed.

Applying the equilibrium condition

A U
a r : u

to Equation Al gives

6r :  -W;' W.. '6e.

Substituting Equation ,A4 for 6r for Equation A1 gives

U(:r'): U(t) + t/z&r'(W.. - W..'W;r'W..) 6e' (A5)

The elastic constant matrix is then defined as

C: (w.. - W..'W;' 'W..)//.. (A6)

COLLINS AND CATLOW: SIMULATION OF MICA PROPERTIES

(A3)

(A4)


