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Thermodynamic modeling of the C-H-O-S fluid system
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The pressure-volume-temperature (P-V-T) relations and fugacities of pure fluid phases
in the C-H-O-S system (HrO, COr, CH4, CO, O2,H2, 52, SO2, COS, HrS) are determined
from the equation of corresponding state and other empirical equations from low tem-
perature and pressure to moderate temperature and pressure. The intermolecular potential
theory is used to calculate the pressure-volume-temperature-composition (P-V-T-fi and,
pressure-volume-temperature-activity (P-V-T-a) relations in the C-H-O-S fluid mixture.
The model is useful in calculations of phase equilibria and fluid proportions over the
temperature-pressure range of the crust of the Earth.

INrnooucrroN Volkov, l97l; Ohmoto and Kerrick,1977;' Bumrss, 1981;
Ferry and Baumgartner, 1987; Poulson and Ohmoto,

Knowledge of the composition of a C-H-O-S multi- 1989; Hall et al., l99l).
component fluid in equilibrium with carbonate * silicate This study extends the work of Belonoshko and Saxena
* oxide + sulfide assemblages is important in under- (l99la, l99lb)andSaxenaandFei(1987a, 1987b, 1988a,
standing the origin and evolution of the heterogeneous 1988b)toincludealowerpressure-temperaturerangefrom
phase equilibria involving fluids in natural geological sys- critical points up to 2000 oC and 20 kbar and the S-bear-
tems and industrial processes. The main fluid species in ing species. We determined new equations for HrO and
this system are HrO, CO2, CHo, CO, 02, H2, 52, SO2, COS, the four S-bearing species and used new fits for H, com-
and HrS. pleting a C-H-O-S multicomponent fluid model that is

Thermodynamic properties for the C-H-O fluid system applicable over a sufficient range of geologically interest-
have been successfully modeled by several versions of ing temperatures and pressures. We used all available ex-
modified Redlich-Kwong (MRK) equation (e.g., Hollo- perimental P-V-T data on pure fluid species and P-V-
way, 1977,1982; Flowers, 1979; Delany and Helgeson, T-XandP-V-T-adataonfluidmixtures(Kennedy, 1954;
1978; Kerrick and Jacobs, l98l; Bottinga and Richet, TakenouchiandKennedy,l964;Jusaet a1.,1965;Tziklis
l98l;Halbach and Chatterjee, 1982; Flowers and Helge- and Koulikova, 19651, Babb et al., 1968; Burnham et al.,
son, 1983; Connolly and Bodnar, 1983; Rimbach and 1969; Greenwood, 1969, 1973; Presnall,1969; Robert-
Chatterjee, 1987), Ursell-Mayers virial equation (e.g., son and Babb, 1970; Ryzhenko and Malinin, 1971;
Haar et al., 1984), Levelt Sengers nonclassical equation Mel'nik, 1972, 1978a, 1978b; Shmonov and Shmulo-
(e.g., Levelt Sengers et al., 1983a, 1983b; Sengers and vich, 1974; Tziklis etal., l975; Anguset a1., 1976;Tan-
Levelt Sengers, 1984, 1986; Hill and White, 1985), Saul- ishita et al.,1976; Tziklis, 1977; Schmidt,1979; Hilbert,
Wagnerequation(e.g., SaulandWagner, 1987, 1989; Sato 1979; Shmulovich and Shmonov, 1978; Shmulovich et
et al., 1989), Schmidt-Wagner equation (e.g., Friend et al., 1980, 1982; Hanafusa et al., 1983 Z,akirov, 1984;
al., 1989),unifiedfundamentalequation(e.g.,Hil l, 1990; Frantz, 1990; SternerandBodnar, l99l).Todemonstrate
Johnson and Norton, I 99 I ), and some other polynomials the applicability of this complete model of multicompo-
(e.g., Grevel, 1990; Holland and Powell, l99l). The cor- nent C-H-O-S fluids, we also used the experimental data
responding-state formulation was used by Ross and Ree from several experiments on phase equilibria (e.9., Eug-
(1980)andSaxenaandFei(1987a, 1987b, 1988b)tostudy sterandWones, 1962; FrenchandEugster, 1965; French,
the P-V-T relationships, and a molecular-potential mix- 19661, Craig and Scott, 1974; Chou, 1978, 1986, 1987;
ing model was used to investigate the P-V-T-X and P-V- Chou and Cygan, 1990; Barton and Toulmin,1964;Bur1,
?"-a relations in the C-H-O fluid mixtures by Saxena and 197 l, 1972; Gamble, 1978, 1982; Burton, 1978; Hasel-
Fei (1988a). The theory of perturbation of liquid (e.g., ton et al., 1978; Burton et al., 1982; Myers and Eugster,
Weeks et al., l97l) and the method of molecular dynam- 1983; Whitney, 1984; Jakobsson and Oskarsson, 1990;
ics(e.g.,BrodholtandWood, 1990; BelonoshkoandSax- Kishima, 1986, 1989; UlmerandLuth, 199l,amongoth-
ena l99la, 199lb; Fraser and Refson, 1992) are also uti- ers).
lized in simulating the P-V-T relations of C-H-O fluids Applications of this model of C-H-O-S multicompo-
at high temperatures and pressures. However, few studies nent fluid to some geological systems, including calcula-
treat the complete C-H-O-S fluid system (Ryzhenko and tions of some important buffers of .fo* fn, fco, fcno, ?nd
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f",, the phase equilibria and fluid proportions in the Fe-
Si-O-H-S system, the stability of graphite under a num-
ber ofbufer conditions, and the stability ofhedenbergite
and andradite, will be presented in other papers.

EqulrroNs oF srATE FoR PURE rHASES

The law ofcorresponding states

z: ll_: r(p.,l:.\ (r)
R 7 l  

r  \  t , ' f ,

where Z is the compressibility factor, P. is the reduced
pressure (P/P.,), and I, is the reduced temperature (Z/
f,), has been used in modeling the C-H-O fluid phases
at moderate to high pressures and temperatures by Mel'nik
(1972,1978a), Ross and Ree (1980), and Saxena and Fei
(1987a, 1987b, 1988b). The equation ofSaxena and Fei
(1987a,1987b,1988b), in terms of compressibility factor
as a function of pressure and temperature, is

ze,r): A(r) + B(T)P, + cQ)P? + DQ)P? (2)

for the corresponding-state gases (COr, CO, CH4, and Or)
and Hr. The formulations of temperature-dependent co-
efficients A(T), B(T), CQ), DQ) can be generalized as
follows:

Q(T),r-,txta' ' : Qt I QtT, I Q.T;'

+ Q^T?-t Q,Ta, + QuT?

* Q,T; '  + QrlnT, (3a)

Q(T) r r . r t t ^ t :  Qr  - l  QrT ; '  *  QrT; "

+  QoT , '  *  Q rT ;o (3b)

where Q,-Q, are constants listed in Table l. This gen-
eralization is useful in organizing the coefrcients in Equa-
tion 2 in tabular form, avoiding the writing of several
equations. This is also computationally convenient.

Since the molar Gibbs free energy of a species requires
the JV dP term, we use the following relations for ex-
pressing the molar volume as a function of P and ?":

ve,D -RrzlP',r) ()' P

i.e., for CO2, CO, CH4, o2, and Hr,

Ve,r) : RTIA(T)P-' + B(T)P ;1 + C(T)P;,P
+ D(T)P;3P'z1. (5)

Table I gives the values for the temperature-dependent
coeftcients in Z(P,T) and V(P,T) (Eqs. 2, 3, 5) used or
determined in this study. Many of these values have been
adopted from previous studies. For individual pure HrO
phase, many equations are available in literature. As
pointed out by Saxena and Fei (1987a), the virial-type
formulations (Saxena and Fei, 1987a, 1987b; Holland and
Powell, l99l) are not useful at or near critical range be-

cause, first, the specific partial derivatives of the state
surface diverge to +o at critical point and V(P,T) changes
discontinuously across the saturation curve and, second,
there are substantial discrepancies between the theoreti-
cal and experimental P-V-T data. We therefore adopted
the Saul-Wagner equation (Saul and Wagner, 1987, 1989),
which covers the range from the melting line to 1000 'C

and 25 kbar as well as the critical range. For other C-H-O
phases (COr, CO, CH4, 02, and Hr), we chose the results
from Saxena and Fei (1987a, 1987b, 1988b), shown in
Table 1, parts a and b. Our calculated P-V-T relations
for HrO, CO2, CHo, and H, ars not significantly different
from those obtained from some of the other existing
models (e.g., Holloway, 1977, 1982; Halbach and Chat-
terjee, 1982; Haar et al., 1984; Rimbach and Chatterjee,
1987; Friend et al., 1989; Hill, 1990; Holland and Powell,
l99l; Johnson and Norton, l99l).

In this study, we determined the equation of state using
the corresponding-state equation for H, and pure S-bear-
ing species (S2, SO2, COS, and HrS). In order to use the
theory of corresponding state, the critical points (P.,,2".)
for each species must be known. These data are known
for Hr, SOr, COS, and HrS, shown in Table 2, but had to
be estimated for S, (see discussion below).

The values determined for the temperature-dependent
coefficients for H, are given in Table l, part b, which are
same as those in Saxena and Fei (1987a) at pressures
below I kbar. A reoptimization led to an improved fit of
the data above I kbar; therefore the data are slightly dif-
ferent from those shown in Saxena and Fei (1988b) at
pressures above I kbar. Figures la-lc show the P-V-T
relations for Hr. There is excellent agreement between
our theoretical curve and the data of Presnall (1969). The
precision of the fit with the experimental data for H from
this set of parameters, in terms of 6Z(P,T), is quite good:
the maximum of 6Z(P,T) is +0.0186, which is much
smaller than +0.0253 in Saxena and Fei (1988b). The
error in volume is generally smaller than +2.50/0. For a
discussion of fit of the experimerLtal P-V-T data on spe-
cies COr, CO, CHo, and Or, refer to Saxena and Fei (1987a,
1987b).

The P-V-T relationships of four S-bearing species in
the C-H-O-S system (S2, SO2, COS, and HrS) were as-
sessed by using the volume-explicit equation (Eqs. 5, 3a)
in this study. Some experimental P-V-T data are avail-
able for SO, (Mel'nik, 1978b) and HrS (Reamer et al.,
1950; Mel'nik, 1978b; Rau and Mathia, 1982). Because
the misfit of P-V-T data calculated directly from the cor-
responding-state equation derived in Saxena and Fei
(1987a) is substantial for both SO, and HrS, the param-
eters in the equation for them should be adjusted. The
optimized parameters for the equation of state are pre-
sented in Table l, parts c and d. Figure 2 shows the P-V-T
relationships for SO, at pressures from 5 bars to 10 kbar,
and Figure 3 shows the relationships for HrS from 100
bars to l0 kbar. The theoretical curves fit the experimen-
tal points very well. The precision of the fit with the ex-
perimental data for these two species from this set of
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TABLE 1. Modeling of P-y-f properties of C-H-O-S supercritical fluids

(1a) Corresponding-states fluid species (O,, CO", CO, CH., S, COS)
P (bar) A (r) B (r) c (r) D (I)

< 1 000'

1 000-5000.

>5000--

P (bar)

1.00
0
0
0
0
1.000E + 00
0
0
0

-5 .917E -  01
0
0
0
2.0614E + 0
0
0
0

-2.235E + 00
0
0

-3 .941E -  01

A (r)

0
0.9827E - 01
0

-0.2709E + 00
0
0
0
9j22E - 02
0
0
0
0
0
0
0
5.513E - 02
0
3.934E - 02
0
0
0

(1b)  H,
B (r)

0
0

-0.1030E - 02
0
0.1427E - 01
0
0
0
0

-1 .416E -  04
0
0

-2.835E - 06
0
0

-1.894E - 06
0

-1 .109E -  05
0

-2.189E - 05
0

c (r)

0
0
5.053E - 11
0
0

-6.303E - 21
0
0

D (r)

Qo

Q2

o"
QO

o.
o"

o.

< 1 000.

>1000

n

o.
n

Q"

o.
a,
o"

1.00
0
0
0
0
2.2615E + 00
0

-6.8712E + 01
0

-1.0573E + 04
0
0

-1.6936E - 01

A (r)

0
0.9827E - 01
0

-0.2709E + 00
0

-2.6707E - 04
0
2.0173E - 01
0
4.5759E + 00
0
0
3.1452E - 05

(1c) SO,
B (r)

0
0

-0.1030E - 02
0
0.1427E - 01

-2.3376E - 09
0
3.4091E - 07
0

-1 .4188E -  03
0
0
3.01  17E -  10

c (r)

-3.2606E - 15
0
2.4402E - 12
0

-2.4027E - 09
0
0
0

P (bar)

1 -1 0000

P (bar)

q

o"
Q4

o,
o"
a,

0.92854E + 00
0.43269E - 01

-0.24671E + 00
0
0.24999E + 00
0

-0.53182E + 00
-0 .16461E -  01

A (r)

0.84866E - 03
-0.18379E - 02

0.66787E - 01
0

-o.29427E - 01
0
0.29003E - 01
0.54808E - 02

(1d) H,S
B (r)

-0.35456E - 03
0.23316E - 04
0.94159E - 03
0

-0.81653E - 03
0
0.23154E - 03
0.55542E - 04

c (r)
1-500

500-1 0000

0.14721E + 01
0 . 1 1 1 7 7 E  +  0 1
0.39657E + 01
0

-0.10028E + 02
0
0.45484E + 01

-0.38200E + 01
0.59941E + 00

-0.15570E - 02
0.45250E - 01
0
0.36687E + 00
0

-0.79248E + 00
0.26058E + 00

0.16066E + 00
0.10887E + 00
0.29014E + 00
0

-0.99593E + 00
0

-0.18627E + 00
-0.45515E + 00

0.22545E - 01
0.17473E - 02
0.48253E - 01
0

-0.19890E - 01
0
0.32794E - 01

-0.10985E - 01

-0.28933E + 00
-0.70522E - 01

0.39828E + 00
0

-0.50533E - 01
0
0.11760E + 00
0.33972E + 00
0.57375E - 03

-0.20944E - 05
-0.11894E - 02

0
0.14661E - 02
0

-0.75605E - 03
-0.27985E - 03

o.

a,
o.

o"
Q4

o"
o"
a,
o,

. Data from Saxena and Fei (1987a).
"* Data from Saxena and Fei (1987b).
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Note.'The critical data for H,O, CO., CH4, CO, 02, H,, SOr, COS, and
H2S are from Mills (1974), JANAF (1985), Prausnitz et at. (1986), Reid
(1986), Weast et al. (1988). For S,, the critical data are assumed in this
study.

parameters is 6Z(P,T): +0.080 and 6V(P,T) : +4.0o/o.
There are no experimental data on S, and COS.

In a recent study by Poulson and Ohmoto (1989), the
critical point of S, was assumed to be the same as that of
S (4. : I 3 l4 K, P., : 209 .7 4 bars, taken from Mathews,
1972). Based on such values, a number of calculations
for geochemical equilibria were perfbrmed. But this choice
resulted in unrealistic P-V-T relationship at moderate
temperature range (500-1200 K) and unreasonable R?"
ln /values over a large temperature and pressure range.
They also set the fugacity coefrcient for pure S, as 1.0
and calculated the nonideal mixing parameters a and b
(in Holloway-Flowers MRK equation) by using the crit-
ical point of S. Obviously, these assumptions would in-
troduce significant errors in the calculations. To express
lhe P-V-T relationship of S, as precisely as possible, we
estimated its critical point by searching for the relation-
ship between the molecular entropies and critical points.
Figure 4 shows such a relationship for nonpolar (Or, Hr,
CHo, 52, F2, Cl2,Ir, Nr, etc.) and polar species (H2O, HrS,
CO2, CO, SO2, SO, COS, CSr, HF, HCl, HBr, HI, etc.),
from which one notes the relation of physical and ther-
modynamic variables of certain molecules to their elec-
tronic structures. The S atom has an electronic structure
ns2np4, and S, has a d-overlapping covalence bonding
very similar to that of Or, CO, and SO, as well as of COr,
COS, and SOr. The statistical and thermodynamic basis
for this kind of choice may be supported by more precise
quantum mechanical calculation. Although the relation-
ships are vague, we demonstrate in the following sections
and further studies in heterogeneous phase equilibria (to
be published in succeeding papers) that the selected val-
ues of ?"". and P". are reasonable and useful in the calcu-
lations of various thermodynamic equil ibria in the
S-bearing systems over geological temperature and pres-
sure conditions. Our choice for S, is f. : 208.15 K, P-
: 72.95 bars (see Fig. a).

Because experimental P-V-T data for both S, and COS
are not available, we assumed that S, and COS behave
similarly to Or, CO,, CO, and CHo and applied the prin-
ciple of corresponding state for S, and COS species, using
Equations 2, 3a, 3b, and 5. For S, and COS we simply

?73
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273
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30
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-2?B 
6?3 to?3 1473 1873 2??3 2673 3073

T (K)
Fig. l. P-V-T relation of H,: (a) l-100 bars; @) 200 bars-l

kbar; (c) l-10 kbar. The theoretical curves are compared with
experimental data from Presnall (1969).
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Fig. 3. P-V-T relation of H,S: (a) 100-500 bars, compared

with data from Rau and Mathia (1982); (b) 600 bars-l0 kbar,
compared with data from Mel'nik (1978b).

TTTNNTVTOOYNAMIC PROPERTIES OF PURE PHASES

The equation of state ofa substance defines the func-
tional relations among its intensive variables and physi-
cal surroundings. The thermodynamic status of the sub-
stance is constrained by the Gibbs-Duhem equation, from
which all thermodynamic properties, including the Gibbs
free energy, Helmholtz free energy, internal energy, fu-
gacity, enthalpy, entropy, isobaric heat capacity, isocho-
ric heat capacity, isothermal compressibility, and isobaric
expansivity, can be calculated.

The standard thermodynamic properties, including
Hl1,.zs,, Sf,,rnr,, and Cp(l,T), for all ten pure fluid phases
are listed in Table 3. Saul and Wagner (1989) calculated
the thermodynamic properties of HrO as functions of
temperature and pressure. For corresponding-state C-H-O
gases and S-bearing species, the Gibbs free energy and
fugacity, as functions of both temperature and pressure,
are calculated as follows.

The Gibbs free energy of formation of a pure phase at
a given temperature and pressure, referring to a standard
state of I bar and 298.15 K. can be calculated from

20L
273 6?3 1073 r4?3 1873 227X 2673 3073

T (K)
Fig.2. P-V-T relation of SO,: (a) 5-100 bars; (b) and (c) 200

bars-10 kbar, compared with data from Mel'nik (1978b).

adopted the same temperature-dependent coefficients as
those of Or, CO2, CO, and CHo (Table l, part a).

Tabulated data on volumes of C-H-O-S fluid species
from low temperatures and pressures to high tempera-
tures 4nd pressures may be obtained from the authors.



Gr(P,r): I:"(#),dr + [, (#).* (6a)

G,(P,D -- G,(t,D * f '  'g,r1o,

where

G{l,T): l lPr,,rnrr - ISf,.,sar

* f'"r,{r,r) o, - , ['"Ef o, (7)
and for fluid phase

[," ,1r,rrdP: RZln fe,D.

The fluid fugacity /and fugacity coefrcient ^y for pure
phase are given by

tn f(P,T'): I:t#dP + rn f(P",r) (e)

and

tn v@,7) : 
I:"t#dP 

- ln P + ln {Po,T) (ro)

with an assumption as follows: l(Po: I bar) : l; f(po:
I  bar) :  1 .

The integral in the above equations (Eqs. 6b, 8) can be
rewritten for convenience as shown below. Using Equa-
tion 2, we obtain

J^'-?*:A(n-a,

+ B(T)(P, - Po)

*fs7 - 4,1

*ofs _ 4s
where P. : P/P., and Po. : Ps/P*.

Taeu 3. Thermodynamic properties AGft,,n of pure C-H-O-S fluid phases
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(6b)
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Fig. 4. The relations between molecular entropies and criti-

cal data. (a) 7". plotted against molecular entropy. (b) P". plotted
against molecular entropy. Data points except for those of S,
and SO are from Mills (1974), JANAF (1985), Prausnitz et al.
(1986), Reid (1986), and Weast et al. (1988). Group symbols:

/r r \ open circle for the group Or, Nr, CO, SO, Sr, and Hr; solid circle
\ r U for the group COr, CHo, SOr, COS, and CSr; plus sign for the

group Fr, Clr, and Ir; diamond for the group HF, HCl, HBr, and
HI; star for HrO and HrS.
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+ So"
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CH.. - -o^ 
oS,

" a . O  
5 U  -

o P^-o"

o
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""i 0 iHr cl" soz

uss. - 
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HFO
-+ so cos

r q a  
l " ?

O O
.- N" co
o

l s ,

C"(I) :  a + bT + cT 2 + dT2 + eT 3 + fT-ou + glT

LHlrp""t S10,,r..r a
Phase (J/mol) (J/mol.K) (101 (10*)

c c l
(10") (10 9 (109

s
(1 0')

HrO
Co.
CHo

H,
S,
SO,
cos
H.S

-241818.46
-393 509.38

-74809.92
-110524.s4

0.00
0.00

1 28 365.1 2
-296 829.70
-142088.64

-20627.12

188.715 0.46461
213.635 0.70728
186.155 1 .2901
197.564 0.38578
205.029 0.39450
130.574 0.23948
228.070 0.38408
248.11't 0.71828
231.459 0.42441
205.685 0.65459

6.320 0.0
3.464 0.0

22.21 0.0
1.781 0.0
0.9067 0.0
05279 0.0

-0.4635 0.0
2.354 0.0
0.70732 4.6064
9.326 0.0

-7.957
*2.492

-22.91
-0.9971

0.006 039
-1.525

0.6930
-2.083

- 52.166
10.54

0.0 - 1 .663
0.0 - 1 .876
0.0 -7.656
0.0 -0.7725
0.0 -0.6101
0.0 0.09536
0.0 -0.09936
0.0 -1.642
0.40721 -1 7432
0.0 -2.884

5.966
-0.8822
-0.4849

0.6513
0.5609
4.962

-0.0463
-2.672

-27 573
0.9168

Note; The AHl1.*.p Sff,*.y for all phases are selected from Weast et al. (1988); C" (D coetficients for C-H-O fluid phases are same as in Saxena and
Fei (1987b); Cp (D coefficients for S-bearing species are assessed in this study, based on the data given in JANAF (1985); fin K. The real Cp (f)
coefficients equal the listed values multiplied by the relative factors. For example, a: 0.46461 x 10, for HrO.
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TABLE 4, Interaction energy parameters of C-H-O-S fluid spe-
cies.

Species

SHI AND SAXENA: C.H-O.S FLUIDS

TABLE 5. The binary excess free energies of mixing for equimolar
compositions of binary mixtures at P: 1 kbar and I
:  500'C

1. HrO
2. CO" 0.615
3. CHo 0.283
4. CO
5. O. 0.308
6 . H ,
7. S, 0.3
8. SO, 0.3
9. COS 0.3

10.  H,S 0.3

1 84 1.59
z.b5
2.60

0.10 1 .95
1.60
0.79

0.0 2.0
1.61 3.72
0.0 2.0
0.0 2.0

2.650
3.760
3.565
3 760
3.109
2.960
3.0
3.0
3.0
3.0

380.00
424.16
227.13
100.20
194.30
36.70

200.0
200.0
200.0
200.0

Binary
mixture

q''
(J/mol) No

Binary q'
mixture (J/mol)

- The physicochemical meaning ol a', o, elx, tL, d rcler to Saxena and
Fei (1 988a), Prausnitz et al. (1 986). The values for C-H-O fluid species are
taken from Saxena and Fei (1988a); the values for S-bearing species are
selected from Prausnitz et al. (1986) or assumed in this study (italic num-
bers), all of which will be taken as zero if ideal mixing is considered.

Tabulated data and plots on RZln /of C-H-O-S fluid
species from low temperatures and pressures to high tem-
peratures and pressures may also be obtained from the
authors.

INrnnLcrroN rN FLUrD MrxruRES

For ideal mixing, the activity coefrcient of each com-
ponent in the fluid mixture is unity, i.e.,

(fr),.,: fPX,: ̂ r?PX, (r2)
where ff1)P, T and X, are the fugacity and mole fraction
of component i in the fluid mixture afi f? and 7P are,
respectively, the fugacity and fugacity coefficient of pure
nonideal component i. For nonideal mixing, the individ-
ual fluid fugacity U!)"., is calculated by

(fy),., : Jla,: {lyyPX, (13)

where a, and 7i are, respectively, the activity and activity
coefficient of component I in the fluid mixture.

At low temperatures and high pressures, the multicom-
ponent fluid may be nonideal in such a way that the in-
teractions among the components are the functions of
temperature, pressure, and fluid bulk composition. Sax-
ena and Fei (1988a) proposed a fluid mixture model for
high-temperature and high-pressure C-H-O fluid, based
on the intermolecular potential theory (Prausnitz et al.,
1986; Reid, 1986). The main ideas can be briefly outlined
as follows.

The regular solution energy parameter W,, for the in-
termolecular mixing reaction between the ith and 7th
molecules can be defined as

W,,: zllu - Ydf,j + I))l (14)

where f,r, lr, and I, represent the intermolecular poten-
tials and z denotes the coordination number. The inter-
molecular potential I consists of a Lennard-Jones poten-
tial, as given by Stockmayer (Tien and Lienhard, l97l):

where e, o, p, and r are characteristic energy, equilibrium
intermolecular distance, dipole moment, and lenglh scale,
respectively. Since the length scale r relates the volumet-
ric properties of interacting molecules, I and therefore
W,, are functions of temperature and pressure.

The excess free energy G". for binary intermolecular
mixing reaction is given by the van Laar equation

1 .

3.
4.
5.

L
q

1 0 .
1 1 .
12.
1 3
1 4 .
1 5 .
16 .
1 7 .
1 8 .
19 .
20.
21.
22.
23.

H,O-CO, 1087.98
H,O-CH. 1094.94
H,O-CO 1080.25
H,O-O, 1169.74
H,O-H, 1238.47
H,O-S, 1 189.31
H,O-SO, 429.46
H,O-COS 1123.84
H,O-H,S 1198.42
co,-cHo 0.95
co,-co -22.31
cor-o, 22.21
co2-H' 40 89
co,-s, 24.81
co,-so, 359.16
co,-cos 33.79
co,-H,s 23.34
cHo-co -7.68
cH4-o' 7.77
cHo-H, 23.64
cH4-s' 9.08
cH4-so' 34297
cH.-cos 15.33

24. CH4-H'S 8.16
25. CO-O, 2.72
26. CO-H, 32.30
27. CO-S, 3.97
28. CO-SO, 337.96
29. CO-COS 13.06
30. co-H,s 2.59
31. O,-H" 2.43
32. O.-S, 0.05
33. O,-SO, 335-30
34. O,-COS 1.22
35. O,-H,S -0.01

36. H,-S,  1.23
37. H,-SO, 336.68
38 H,-COS -0.55

39. H2-H'S 1.69
40. s,-so, 335.39
41. S,-COS 0.73
42. S2-H'S O.O2
43. SO,-COS 334.94
44. SO,-H,S 337.06
45. COS-H,S 0.99

Cr*: w,rX,x,Q,ei/(X,Q, + Xjqj).

Then the activity coemcients 7, can be expressed as

R?"ln "y, : W,S/Q + q,X,/q/,)'

( l  6)

( l  7)

( l  8)

( le)

where, in turn, 4, represents the effective volumes. The
activity coefficients in ternary or higher order solution are
calculated from the Kohler formulation.

The excess molar volume Z"*, excess entropy S"., and
excess enthalpy I1'. for binary mixtures are defined as

u,, = (ac'.\
\ dP l .

: X,X,q,q,/(X,s, * X,d(9hAp),

^ /ac*\r . - =  
\ d r / "

: X,X,q,q;/(X,n, * *,D(#),

Hex: Gex + ?",S* - PW

: X,X,q,q,/(X,Q, -t Xiei)

[ / - \  "  /_\6- l. :o. l( :) -(:) l-q
L\r/ \r/ I 13

(15) ,1,,, .,(#), -,(*;) (20)
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The formulations of derivativ es (6 W,, / 6 P) r. and (6 W,, / 6 7-1,
are, however, very complicated. One can calculate the
excess functions for each fluid mixture by using the free
energy minimization program Solgasmix (Eriksson, 1975;
Saxena and Eriksson, 1985). The mixing model is also
used for the C-H-O-S fluid system here, by assuming that
some of the interaction parameters for S-bearing species
may be comparable to those of similar species in the
C-H-O fluid. Table 3 lists the interaction energy param-
eters chosen for the nonideal C-H-O-S fluid in this study.
Since the uncertainty in W,, comes mainly from volu-
metric property, the applicable temperature-pressure range
of intermolecular potential formulation is the same as of
the pure fluid equation.

This study demonstrates the following:
l. Within the geological temperature-pressure envi-

ronments, the most significant interaction energies are
those in binary mixtures involving HrO, and the next
important are those in binary mixtures involving SOr.
This is because both HrO and SO, have large dipole mo-
ments (1.84 and 1.61, respectively; see Table 4). The
polynomial coefficients for excess energies and activities
as functions of temperature, pressure, and composition
regressed from intermolecular potential calculations for
these nonideal (polar-polar, polar-nonpolar) binary sub-
systems may be obtained from the authors. As an ex-
ample of the binary-excess free energy of mixing, we list
such energies for equimolar compositions at a pressure
of I kbar and temperature of 500 "C in Table 5. Table 5
also shows that the interaction energies in the binary sys-
tem involving two low-polarizability molecules are neg-
ligible.

2. The interaction parameter I4/,; decreases swiftly with
increasing temperature or decreasing pressure (see Fig. 5).

3. The independently calculated P-V-T-X ar;.d P-V-T-a
relations for HrO-COr, H2O-H2, H2O-CH,, and CH.-CO
binary fluid mixtures are consistent with available exper-
imental data for HrO-CO, (Takenouchi and Kennedy,
1964; Greenwood, 1969, 1973; Eggler and Burnham,
1978; Egeler and Kadik, 1979; Chou and Williams, 1979;
Shmulovich et al., I 980, I 982; Kerrick and Jacobs, 1 98 1 ;
Zak\rov, 1984; Sterner and Bodnar, l99l), for HrO-H,
(Shaw, 1963; Seward and Franck, 198 l; Smith et al., 1983;
Wormald and Colling, 1985; Rimbach and Chatterjee,
1987), and for HrO-CHo (Welsch, 1973; Jacobs and Ker-
rick, 198la, l98lb; Smith et al., 1983). No experimental
data are available for comparison for the system involv-
ing S-bearing species. The only way to check the S-bear-
ing species is to calculate the phase equilibria in the sys-
tem involving these species and compare the results with
experiments.

As an example of the applicability of our mixing mod-
el, we show the comparison of calculated P-V-T-X rela-
tions of an HrO-CO, binary mixture with the most recent
experimental data from Sterner and Bodnar (1991) in
Figure 6. Note that the experimental errors of Zrro-"o, or
2". in experiments are about 0.5 to 1.0 cm3lmol; these
come mainly from uncertainties in pressure (ono), tem-

6000

i  +ooo

\ sooo
t-

pi zooo

400 500 600

T
1 000

7000

6000

^ 5000

fi +ooo

3000

2000

1 000

5oo 4oo 5oo 600 7oo Boo 9oo looo

T ( 'c)
Fig. 5. The temperature and pressure dependence ofthe bi-

nary interaction parameter Wufor the (a) HrO-CHo and (b) HrO-
HrS binary mixtures.

perature (orr), and fluid composition (o). Therefore, the
fit is very good, especially at high pressures and high tem-
peratures. The mixing data from Shmulovich et al' (1982)

were discussed before by Saxena and Fei (1988a).

CoNcr,usroNs

The corresponding-state equation for COr, CHo, CO,
Or, Hr, 32, SO2, COS, and HrS, the Saul-Wagner equation
for HrO, and the intermolecular-potential formulation for
the fluid mixtures (in the calculation of low to medium
temperature-pressure fluid fugacities and activities of the
species in the C-H-O-S system) are recommended as a
practical solution to a study of the multicomponent be-
havior of magmatic, metamorphic, and hydrothermal

( a )  H 2 O - C H a

700 800 900

( 'c)

(b) H,o-HrS

700 800 900

( 'c )
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fluids. All the available experimental data on P-V-T, P-V-
T-X, and P-Y-Z-a relations for C-H-O-S pure species and
mixtures are reproduced well over the temperature-pres-
sure range ofgeological interest.

As discussed here and in Saxena and Fei (1987 a, I 987b,
1988b), this set ofcorresponding-state equations may be
effectively and reliably applied with precision in the crustal
temperature-pressure range from critical points up to 2500
K and 20 kbar. To calculate equilibria involving carbon-
ate * silicate * oxide + sulfide + fluid. a valid C-H-O-S
fluid model must be applied. This multicomponent C-H-
O-S fluid model will be used in calculating bufers of f,,
.f.r, .f*r, fcuo, a\dfs, and phase equilibria involving car-
bonates (including graphite), silicates, oxides, sulfides, and

20

1 . 0 0
1 0 L
0 .00 o .20  0 .40  0 .60  0 .80  1 .00

Xn.o

fluids. The pressure-temperature range from moderate to
high for fluids is covered by the molecular-dynamics sim-
ulated data of Belonoshko and Saxena rl991a. l99lb).
With this work, we have extended the range to low pres-
sures and temperatures. A computer program to calculate
the compound properties of the pure fluid (P-Z-?" and
fugacities) in the pressure range from I bar to I Mbar
and in the temperature range from 400 to 2500 K is avail-
able from the authors.
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