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Bonding and elasticity of stishovite SiO, at high pressure:
Linearized augmented plane wave calculations
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ABSTRACT

The crystal structure, equation-of-state, elasticity, A,, Raman mode, and electronic
structure of stishovite (rutile-structured SiOr) are studied at high pressure from first prin-
ciples using the linearized augmented plane wave (LAPW) method. Excellent agreement
is found with the experimentally known properties. The pressure dependence of three
elastic constants is predicted. The charge density and band structure indicate a mixture of
ionic and covalent bonding in stishovite, and the ionicity is quantitatively estimated. No
major changes in bonding are found between zero pressure and 150 GPa.

INrnonucrroN are complementary to experimental studies. The purpose
of these calculations is not merely to compare results with

Stishovite is the simplest silicate with octahedrally co- experimental data but to make predictions and to in-
ordinated Si and thus is of great interest, both theoreti- crease understanding ofthe origin ofthe behavior ofsol-
cally and experimentally, as a prototype for high-pressure ids. Only recently has it become possible to study the
silicate phases that are important in Earth's lower mantle. elastic, optical, and electronic properties of complex crys-
Furthermore, it is of crystal chemical interest to under- tals such as stishovite, making no approximations except
stand the bonding and electronic structure and, in partic- for a local approximation for the exchange and correla-
ular, the ionicity and covalency of the Si-O bond, in a tion interactions between electrons. Although this local
dense octahedrally coordinated phase. A theoretical study density approximation (LDA) is a rather severe approx-
of stishovite is particularly suited for this honorary vol- imation, in general it gives excellent results for ground
ume, because the existence of a rutile-structured form of state properties, with errors of up to a few percent in
SiO, was predicted by James B. Thompson, Jr. in the latticeparametersandusuallybetterthan l5o/ointhebulk
early 1950s (Birch, p. 234 and 274, 1952). Such a phase modulus. The occupied electronic bands are usually in
was not synthesized until 196l (Stishov and Popova, very good agreement with experiment. The main prob-
196l), shortlyafterwhichthemineralwasdiscoveredat lems with the LDA occur in systems such as FeO and
Meteor Crater, Arizona (Chao et al., 1962). La"CvOo, where the LDA incorrectly predicts metallic

Numerous experimental data are available for stisho- rather than insulating behavior because antiferromagnet-
vite at various pressures, including Raman frequencies ic susceptibility is underestimated.
(Hemley et al., 1986; Hemley, 1987), X-ray difraction Incontrasttomodelcalculations,noassumptionsabout
data (Liu et al., 1974; Sato, 1977; Endo et al., 1986), such characteristics as ionicity and covalency are made,
precise electron density maps derived from X-ray dif- and the only inputs are the nuclear charges and masses.
fraction (Spackman et al., 1987), and single-crystal elastic With only these inputs, the total static cryslal energy can
constants determined from Brillouin scattering (Weidner be calculated as a function of the nuclear positions. If one
et al., 1982); all ofthese can be compared with results of is interested in the properties of a given (either experi-
first-principle calculations. Theoretical studies of stisho- mentally known or hypothetical) crystal, one uses the
vite include empirical models (Erikson and Hostetler, symmetry constraints for the given space group to sim-
1987), ab initio models such as the potential induced plifythe calculation. The choice of symmetry, however,
breathing (PIB) model (Cohen 1987a), models based on is not an essential feature, and symmetry constraints can
molecular orbital theory (Burdett, 1985; Lasaga and be relaxed completely, except for translation symmetry,
Gibbs, 1987; Tsuneyuki et al., 1988, 1989), linearized when studying a bulk crystalline solid. Vibrational and
augmented plane wave (LAPW) calculations investigat- elastic properties can be studied by calculating the energy
ing possible high-pressure phase transitions (Park et al., as a function of strain or internal structural parameters.
1988), and Hartree-Fock crystal calculations at zero pres- Here the elastic and vibrational properties that can be
sure (Nada et al., 1990). Recently a reversible high-pres- obtained by distortions of stishovite without lowering the
sure phase transition from stishovite to a CaCl, structure space group symmetry, Pnnm, are considered. By induc-
was claimed by Tsuchida and Yagi (1989) at pressures of ing such strains and distortions, the fully symmetric, Alg,
80-100 GPa in a laser-heated diamond anvil cell. Raman frequency and its Gruneisen parameter, 7, the

First-principlecalculationsofthepropertiesofcrystals elastic constants C,, * Crr, Crr, Cr, (which also deter-
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734 COHEN: STISHOVITE AT HIGH PRESSURE

mine the bulk modulus Kand the linear compressabilities
k"and k,), the structural parameter c/a, the O positional
parameter :r(O) [the O equipoint is at (xxO)], and the
volume can be determined as functions of pressure. These
quantities can be compared with experimental data where
such data are available, and they form first-principle pre-
dictions in the absence of data. For example, the high-
pressure elastic properties of stishovite are unknown. In
addition to the elastic, vibrational, and structural quan-
tities that can be calculated, both the charge density and
the band structure can be investigated as functions of
pressure. Both the total energy and the charge density
results can be used as benchmarks for the formulation of
better models that could then be used to calculate ther-
moelastic properties of stishovite.

LDA lNo rnn LAPW METHoD

The calculations discussed here are based on the den-
sity functional theory ofHohenberg and Kohn (1964) and
Kohn and Sham (1965). The basic idea is that the exact
ground state properties of a substance, including the
ground state energy, are functionals ofthe charge density
alone. Kohn and Sham showed how to calculate the
ground-state charge density and total energy by solving a
set of single-particle SchrOdinger-like equation s, H rtt, (k)
: e,(k)r!;(k) self-consistently, with a Hamiltonian given
by

h 2
H: -::-v2 + v"*, + v*" (1)

zm

where 2.., is the nuclear electrostatic potential and 4" is
the exchange-correlation potential. The total energy is
given by

E : T + U + E * .  ( 2 )

where ?"is the kinetic energy ofa system ofnoninteract-
ing electrons with the same density as the interacting sys-
lem, U is the electrostatic (Hartree) energy including the
electrostatic energy between the nuclei, and E-. is the ex-
change-correlation energy. The beauty of the method is
that the exact, many-body ground state energy can be
found by solving a set of single-particle equations. Un-
fortunately, the exact solution requires the exact ex-
change-correlation functional, which is unknown and un-
doubtedly extremely complicated and nonlocal.
Fortunately, a simple functional based on the homoge-
neous electron gas works very well, at least for nonmag-
netic systems. In this approximation, one simply uses a
local exchange-correlation potential that corresponds at
each point in space to the exchange-correlation functional
appropriate to a homogeneous electron gas with a density
corresponding to the charge density at that point in space.
This is known as the local density approximation (LDA).
The Hedin-Lundqvist (1971) parameteization of the ex-
change-correlation functional is used here. Reviews ofthe

LDA are given by Pickett (1985) and Schluter and Sham
(1982).

The LAPW method (Wei and Krakauer, 1985) is one
of the most accurate for solution of the Kohn-Sham equa-
tions within the local density approximation. All types of
crystals, whether bonding is ionic, metallic, or covalent
and no matter which elements in the periodic table they
contain, can be treated on the same footing. This is an
all-electron method that makes no shape approximations
for the charge density or the potential and that can be
essentially firlly converged. Space is divided into two types
of regions: the volumes inside spherical "muffin tins" sur-
rounding each nucleus and the interstitial volume be-
tween the muffin tins. Within the muffin tins, the radial
functions are represented as linear combinations of so-
lutions ofthe radial Schrddinger's equation for an energy
-8, for each orbital and its energy derivative in a spherical
potential. Different energy parameters -8, can be used in
separate energy windows. Nonspherical terms are repre-
sented in terms of sums of spherical harmonics. In the
interstitial region, a plane wave expansion is used. The
plane waves are joined smoothly onto the expansion in-
side the muffin tins. The one approximation inherent in
the method is that the basis functions inside the sphere
are not a complete set. The basis functions in each sphere
are the eigensolutions ofthe sphericalized potential, rath-
er than the actual nonspherical crystal potential inside
the spheres. (Note that this is only to form the basis func-
tions; the full nonspherical potential is used to diagonal-
ize the problem within the LAPW basis set.) Also, only
a single set of orbitals with a given angular momentum
is used inside a given energy window. This can cause
problems when highJying semi-core states with a given
angular mom€ntum are present below the valence band
where the same angular momenta are important; the low-
er states can be picked up below the energy window, ef-
fectively reducing the variational freedom to describe the
valence states. This is a technical issue that leads to great-
er complexity in the calculations but fortunately does not
arise at all in SiOr. The former approximation is not
known to cause problems even in the most nonspherical
systems.

The time-consuming steps are the setup of the Ham-
iltonian (I1, : \ilHlj>) and overlap (Or: (i l7)) matrices
and the diagonalization ofthe secular equation

4 
uur,k): 

) 
e{r) ouf,G).

The charge density is given by

re: I dk ) f,*(t)9,(t) (3)

where the integral ,r"o.r., tie srittorrin zone and is re-
placed by a discrete sum over a set ofspecial k-points in
the irreducible wedge of the Brillouin zone, i is the band
index, and the sum is for occupied states. Typically there
are 70-150 basis functions per atom in the unit cell. A



TaBLE 1. Equation-of-state, structural parameters, and A,e Ra-
man frequency for stishovite

v  v  E + 1 7 5 5  P
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v

x  ( c m ' )

x o z o

P

735

240
260
280
300
314
320

35.56 -0.0915 143 0.6548
38.53 -0.2440 84 0.6535
41 .49 -0.3290 43 0.6516
44.45 -0.3660 13 0.6460
46.53 -0.3708 -2.5 0.6404
47.42 -0.3686 -8.2 0.6361

I

rtg
>g

0.3002 1102
0.3013 983
0.3025 873
0.3042 808
0.3057 751
0.3066 727

setup and diagonalization has to be performed for each
k-point in the sum over the Brillouin zone. For maxi-
mum accuracy, at least two windows are used, with a
separate basis set for each window. The valence states are
treated in one window and the semicore states are treated
in another window. (This still allows the states to hybrid-
ize but in general increases the accuracy by linearizing
the basis functions around energy parameters in each
window.) The deep core states are treated by solution of
the Dirac equation in the potential of all of the electrons.
The core states are thus treated fully relativistically, and
the semicore and valence stat€s are treated semi-(scalar)
relativistically. Approximately ten iterations are required
to reach self-consistency.

The LAPW method has been used to study the ener-
getics of several oxides. Mehl et al. (1988) studied the
equations-of-state of MgO and CaO and predicted a phase
transition from the NaCl structure (Bl) to the CsCl struc-
ture (B2) in MgO at 510 GPa. Cohen et al. (1989a, 1990a)
calculated vibrational frequencies in LarCuOo, Cohen et
al. (1990b) calculated all 15 Raman frequencies and ei-
genvectors in YBarCurO,, and Cohen et al. (1989b) cal-
culated the equation of state of MgSiO, perovskite using
the LAPW method. Park et al. (1988) studied possible
phase transitions in stishovite using the LAPW. Mehl et
al. (1990) demonstrated that elastic constants can be re-
liably calculated in intermetallic alloys using the LAPW
method.

Torn, ENERGv cALcuLATroNS AND RESuLTS

For stishovite, the O 2s states were treated in a separate
semicore energy window and the hybrid O 2p-Si valence
states in a valence window. (The use of two windows is
only to decrease any errors caused by the linearization of
the basis functions with respect to energy. It does not
assume that the semicore and valence states do not in-
teract. Also, the presence ofO 2s and hybrid O 2p and
Si band states is never assumed. That is a product ofthe
computations and agrees with chemical intuition.) The
deeper states were treated as core states. A convergence
parameter RK--. : 7 was found to be sufficient, which
gives about 540 (9O/atom) LAPW basis functions at zero
pressure. The nonspherical potential and charge density
were expanded to an angular momentum I : 8. To per-
form the Brillouin zone sums such as Equation 3, a (444)
special k-point mesh was used which gives six special
k-points for each energy window. The total energy was

rnrt
0 50 100 150

P (cPo)
Fig. 1. Equation-of-state of stishovite. The solid curve is the

LAPW equation-of-state, and the symbols represent_the follow-
ing experimental data'. +, Liu et al. (1974'11' A Sato (1977); x ,
Tsuchida and Yagi (1989).

calculated as a function of c/a and x(O) for six volumes
from 35.56 to 47.42 Ar. Calculations for at least three
values of x wer€ perforrned at each value of c/ a and for
at least three values of c/a at each volume.

Sfiucture and equation-of-state

The calculated energies at each volume and c/a were
fitted to a polynomial as a function of the parameter r,
and then the minimum energies with respect to r were
fitted as functions of c/a at each volume. In this way, the
minimum energy as a function of volume as well as the
structural parameters c/a and x were determined (Table
l). The total energies as a function of volume were then
fitted to a third-order Birch equation (Birch, 1978) to
obtain the equation-of-state and the parameters Vo, Ko,
and K"' . The resulting equation-of-state gives a zero pres-
sure volume V, of 46.16 A', bulk modulus K, of 324 GPa,
and bulk modulus pressure derivative K,' of 4.04. A fit
to the Murnaghan equation-of-state gives V,: 46.16 L3,
K,: 329 GPa, and K"' : 3.66. Figure I shows the cal-
culated equation-of-stato compared with experimental
data. The higher pressure data of Tsuchida and Yagi
(1989) are systematically displaced from both the pre-
dicted equation-of-state and extrapolated equations-of-
state of the lower pressure studies. This may reflect sig-
nificant nonhydrostaticity, as suggested in their paper, or
error in the lattice parameters derived from four to six
diffraction lines, or both. A Murnaghan equation-of-state
fit to their data gives K.: 407 GPa and K"' : 3.2 (K,:
376 GPa if K'is fixed at 4). This bulk modulus is signif-
icantly higher than that obtained by other studies (Table
2\.

The present LAPW results differ somewhat from the
LAPW results of Park et al. (1988), who found V.: 47.51
L', x":288 GPa, and K"' : 3.14 using a Murnaghan
equation-of-state. This difference may simply be because
Park et al. (1988) fitted their results over a different range
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Fig.2. The axial ratio c/a vs. pressure. Symbols are the same
as for Figure l, plus o, which represents data from Ross et al.
0990).

of volume, used one energy window, or used a different
exchange-correlation functional.

The present LAPW equation-of-state is in good agree-
ment with experiment (Table 2). It is evident from the
large error bars that there is essentially no information
on the bulk modulus derivative K,'. Even the very high
pressure equation-of-state to 75 GPa determined in the
diamond anvil cell by Tsuchida and Yagi (1989) cannot
constrain K,' well because of the nonhydrostatic condi-
tions and the relatively large uncertainty in the volume
and pressure at the highest pressures. The LAPW static
zero-pressure bulk modulus, 324 GPa, is slightly higher
than the experimental room temperature values, but at
the experimental zero-pressure volume, the present LAPW
value of 314 GPa is quite close to the experimental value
derived from the single crystal elastic constants of 306 +
4 (Weidner er al., 1982).

TABLE 2. Comparison of equation-of-state and zero-pressure
structure parameters with experimental values

LAPW LAPW
Present Park et al. Experiment

study static (1988) static (300 K)

o
O)

@
(I'

S
*
G)
ct

r)
ro
o

o
o
N

v. A"
K" GPa

46.16
324

4.O4

0.640
0.306

47.51
288

3.'14

46.60A
344 ! 27^
292 + gec
294 + 14oc
306 + 4E
3.1 + 3.7s 'c
3.2 + 3.3oc
2.8 + 0.2F

0.638c
0.306c

-r0 0 10 20 30 40 50
P (GPo)

Fig. 3. Pressure dependence ofthe A,, Raman frequency for
stishovite. The experimentddata (n) are from Hemley (1987).

The structural parameters c/a and x (O) agree well with
experiment at zero pressure. Figure 2 compares the cal-
culated with experimental c/a ratio as functions of pres-
sure. The lattice parameters of Tsuchida and Yagi seem
to be less reliable, perhaps because oflarge nonhydrostat-
ic stresses compared with either the trends in lower pres-
sure data or with the LAPW results. The observed and
predicted c/a values could be combined with the elastic
constants (derived below) to estimate the nonhydrostatic
stresses. The calculated decrease in c/a with increasing
volume is consistent with the high-temperature study of
Ito et al. (1974), in which c/a deqeased by 0.290lo from
291Kto 873 K.

Ar*Raman frequency

Table I and Figure 3 show the calculated A,. Raman
frequency as a function ofpressure. The zero-pressure Ars
frequency is calculated to be 751 cm-r, in perfect agree-
ment with the experimental value of 753 cm-' (Hemley,
1987). (Here and below, when the LAPW results are com-
pared with zero-pressrue experimental quantities, the de-
rived LAPW values are presented for the cell volume
46.53 43, which corresponds to -2.5 GPa, to account for
zero point and thermal pressure, which is probably roughly
2-3 GPa. This is a minor correction in any case.) The
Gruneisen parameter T : -(d ln v/dln V) was obtained
by fitting ln v to a second order polynomial in ln Z(with

K"',

cla
x(o)

A Liu et al. (1974).
B Sato (1977).
c Reanalyzed by Bass et al. (1981).
D Olinger (1976).
E Weidner et al. (1982).
F Ross et al. (1990).
G Spackman et al. (1987).
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TABLE 3. Derived values of elastic properties for stishovite

Y (Bohr3) & x 1 o o k " x 1 0 1 K 1l(2k. + k) C"" Cr + Cr2

240 5.15
260 4.95
280 7.47
300 10.6
314 12.7
320 13.6

840
638
489
376
314
290

3.08
5.22
c . / o
5.65
5.42
5.31

551
470
327
255
221
219

246
188
173
157
158
145

747
661
483
372
323
307

1 405
1024
889
812
807
763

161 2
1524
1 087
807
693
650

an rrns error of 0.lolo). The derived value T : 1.40 is in
excellent agreement with the experimental value 1.38 +
0.04 obtained by Hemley (1987). The second derivative
(d'zlnv/dln V2): -(d ln 7/d ln Z) is ofinterest since the
thermodynamic Gruneisen parameter z, which is impor-
tant in the thermal equation of state, is related to the
individual mode parameters, /,, and few or no experi-
mental data are available to estimate its magnitude. The
second derivative obtained is 0.14, which gives ̂ y: 1.47
at 143 GPa.

Elasticity

In a crystal with Raman-active modes, the Raman
modes couple with the elastic constants. Thus elastic con-
stants cannot be obtained by simple homogeneous shears
of the crystal lattice. It is necessary either to use the long-
wavelength limit of lattice dynamics, as was done using
the PIB model for stishovite by Cohen (1987a), or to
minimize the energy as a function of internal atomic co-
ordinates for each value of strain. Here the latter ap-
proach is used. The c/a strain at constant volume can be
represented as the following strain tensor:

The new lattice parameters are given by a' : (e * I)a
where l is the identity matrix. The parameter 6 is related
to c/aby (c/a): (c/a),(L + 6) where (c/a)"is the equilib-
rium value of c/ a at the given volume. Strains at constant
volume (Eq. 4) were used here to find elastic constants,
so no pressure terms arise in the analysis. Equation 5 was
used to derive the values of the elastic constants, which
is correct for the second-order elastic constants. The re-
lationship between the second derivative of the energy
with respect to strains is found from A'E/V: t/22 C,,e;ei,
using the Voigt notation (Nye, 1985). The result for a

tetragonal crystal and the above strain is AE/V : (l/

9XC,, + 2Cr, + Co - 4CB)62 : C,62. The resulting val-

ues of C" are given in Table 3 as functions of pressure.
The elastic constants Ctt + Cn, Crr, artd C,, can be de-
coupled by using two of the following which have also
been determined: the a and c linear compressibilities, k,

and h defined as for example k.: -dln a/dP, and the
bulk modulus K. These quantities are related by K :

l/(2k" + k ). Here the linear compressibilities were ob-
tained by fitting a third-order polynomial in the pressure

to the natural logarithm of the lattice parameters, with
the pressures obtained from the third-order Birch fit to
the energies. This procedure is less reliable for the highest
pressures because of the limited number of volumes stud-
ied. The bulk modulus K and l/(zk" + k ) are compared
in Table 3, and one finds reasonable correspondence be-
tween these two estimates. The linear compressibilities
are related to the following elastic compliances (Nye,

l 98 5):

k , : s , , + s r 2 + s r l
k": 2sr., * srr. (6)

The elastic compliances are related to the quantities C,
k", and k,by

srr: (4k" + 2k, + C,lA/d

srr: (-2k. - k" + C"k,k,)/d

.s,, + sr2 : Qk" + k" + zc"le)/d (7)

where d : 2C,(k" + k"). The elastic constants can be
found by inversion of the compliances. The results are
shown in Table 3 and Figure 4.

The derived elastic constants can be compared with the
single crystal Brillouin scattering results of Weidner et al.
(1982) (Table 4). The elastic constants derived from the
LAPW calculations are within a few percent of the ex-
perimental values, which is probably the limit of numer-
ical accuracy of the calculations. Probably the LDA works
so well for stishovite because it is rather stiffin terms of
strains in volume and c/a, so that relatively large changes
in energy are involved. There is no reason for the accu-
racy ofLDA to decrease as pressure is increased, and in
fact its accuracy may increase because the charge density
becomes more uniform in the limit of very high pressures
and energy differences become much larger.

The very small pressure derivative for C,, which is ap-
proximately 0.2, is interesting because it may imply that
the pressure dependence ofthe average shear modulus is

/ 3 - l  0

( 6 + 1 ; - " ' - t

0  ( 0 +

(4)

which is to linear order in D:
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Fig. 4. Derived elastic constants for stishovite as functions
of pressure.

small. The upper bound (Voigt approximation) for the
average shear modulus for stishovite is G, : 0.3C" +
0.1(C,, - C,r) + 0.4C44 + 0.2C66 (see Schreiber et al.,
1973). The value of C"' :0.2 is smaller than the value
of 1.3 predicted by the fully ionic PIB model calculations
(Cohen, 1987a). The pressure derivative (Cr, - C,r), is
calculated using the PIB model also to have a tiny pres-
sure derivative (0.2), and (C,, - C,r) is actually expected
to soften at high pressures because of the softening of the
B,, Raman mode (Hemley, 1987; Cohen, 1987a). Using
the present value of C"' and the PIB values of the other
pressure derivatives gsves Gri : 1.3. The lower bound
(Reuss bound) would be significantly less than I (the pIB
lower bound for the shear modulus pressure derivative is

TABLE 4. Comparison of calculated zero-pressure elastic prop-
erties with experimental values (GPa)

LAPW
Weidner et al. Ross et al

(1982) (1990)

!

g
u o

. f  
A X Y M  D  f  A  Z U R T A  S  Z

Fig. 5. Band structure for stishovite at (top) zero pressure
and (bottom) 143 GPa. The labeled k-points are in units of (z/
as/bs/c),I  (0,0,0), X (1,0,0), M (1,1,0), z(0,0,r),  R (1,0,1), and
A (1 , r , 1 ) .

0.7), and the Reuss bound will go to zero as the B,u mode
softens before C,, - C,, goes to zero. For comparison,
the estimated G' is | .7 for MgSiO. perovskite and 2.2 for
MgO using the PIB model (Cohen 1987b). The small
pressure derivatives ofthe shear modulus caution one not
to rule out the possibility that stishovite exists in the
lower mantle because of its relative stiftress at zero pres-
sure; in other words, stishovite may stiffen more slowly
with increasing pressure than other possible lower mantle
phases.

BoNurNc AND ELECTRoN srRUcruRE

Band structure and hybridization

Figure 5 shows the calculated band structure for sti-
shovite at low and high pressures. The only qualitative
changes in the band structure with pressure are general
widening of the bands. The valence band consists pri-
marily of O 2p states and is quite wide (l1.2 eY at P :
0), but the dispersion of individual bands in the manifold
is quite small. The small dispersion implies a localized
ionic or atomic character, but the very large band width
implies strong covalency, so that the mixed ionic-cova-
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lent character of SiO, is evident in the stishovite band
structure. The Si hybridization in the valence wavefunc-
tions has s, p, and d character, and the decomposition of
the resulting valence charge density atzero pressure con-
sists of 0.19 s, 0.26 p, and 0.11 d electrons in each Si
atomic sphere.

The O 2s band is also quite wide (4.4 eV), so one might
be concerned about treating the O 2s states as core states
in, for example, a pseudopotential calculation. The O 2s
and valence states are well separated by a gap of 7.0 eV.
The calculated band gap (which should be an underesti-
mare wirh LDA (Pickett, 1985) is a direct gap atl of 5.7
eV. The band widths are in good agreement with the X-ray
photoemission study of Wiech (1984) on stishovite; Wiech
obtained an O 2s band width of 5.5 + 0.6 eV and an O
valence band width of 12 + 0.6 eV, with a gap between
of 5.5 t 0.6 eV.

The valence band width increases from ll.2 at zero
pressure to l3.l eY at 143 GPa, the O 2s width increases
from 4.4 to 6.8 eV, the gap between O 2s and O 2p de-
creases from 7.0 to 6.2 eY, and the band gap increases
from 5.7 to 6.1 eV.

The latter observation is important because it indicates
that the band gap ofstishovite will not close at pressures
existing in the earth. The band gap of MgO is also cal-
culated to increase with pressure, but the gap of CaO
decreases (Mehl et al., 1988). The band gap also increases
with pressure in diamond (Fahey et al., 1987), but in
most semiconductors the band gap shrinks with increas-
ing pressure. Fahey et al. (1987) explained the positive
pressure derivative of the diamond band gap by the ab-
sence of d-states with the same principal quantum num-
ber as the upper valence states. The same explanation
might hold for SiO, and MgO. One cannot predict wheth-
er any silicates or oxides metallize in the earth at high
pressures because ofthe presence ofCa and Fe, but met-
alization of magnesium silicates is unlikely.

The Hartree-Fock density of states (Nada et al., 1990)
is qualitatively similar to the LDA and experiment but
differs quantitatively, as expected. The Hartree-Fock va-
lence band width is 14, compared with 11.2 eV, and the
gap between the valence and O 2s bands is 10, rather
than 7 eV. Nevertheless, the Hartree-Fock total energies
give a good zero-pressure crystal structure for stishovite
and give qualitatively similar charge density deformation
maps.

Charge density

A more intuitive picture of bonding in stishovite can
be obtained by examining the self-consistent charge den-
sity. It is difficult to obtain crystal charge densities ex-
perimentally because the interesting part of the charge
density, that involved in the bonding, is superposed over
spherical core densities that usually dominate the diffrac-
tion. Spackman et al. (1987) obtained a roliable experi-
mental charge density for stishovite by using a combi-
nation of powder and single-crystal diffraction data and
took great care to eliminate or correct for systematic er-

rors. The atomic motions were removed from the exper-
imental map by an anisotropic Debye-Waller treatment.
They refined the nonspherical parts ofthe charge density
alone, using standard sphericalized atomic densities for

the spherical parts. Thus the experiment can contribute
little regarding the relative ionicity of Si and O but can

contribute much about the covalent bonding features. The

experimental deformation densities are compared with
the present calculations in Figure 6. Figures 6a and 6b
show the axial and apical Si-O bonds, and Figures 6c and
6d show the O-O shared edge.

Very good qualitative agreement is found between the
experimental deformation maps and the LAPW results.
The main difference is that the calculation shows excess
charge on the O and less on the Si than neutral atomic
densities, as was assumed in the experimental study. Both
the theoretical and experimental deformation densities
show nonbonding O density perpendicular to the Si-O
bond, and both give rise to about the same value of the
peak bond charge density. It should be pointed out that
the LAPW difference map was calculated using LDA
spherical atoms as a reference density so that systematic
differences in LDA and Hartree-Fock charge densities do
not dominate the differences. Since the spherical part of
the charge density was not determined in the experiment
in any case, the choice of neutral spherical reference is

somewhat arbitrary.
To explore the bonding in stishovite further, it is useful

to have a reference density, unlike the reference neutral
ions, that takes the ionicity into account. Furthermore, it

is of interest to know what the effective ionicity is in

stishovite in order to improve model calculations for high-
pressure silicates. Cohen (1987a) used the nonempirical
PIB model, with fully ionized Sio* and O2-, and obtained
elastic constants significantly higher than experimental
values. One possible source ofthe large discrepancies was
the neglect of covalency and the use of fully ionized spe-
cies. Therefore, the self-consistent charge density is com-
pared with PIB charge densities generated using O charg-

es from -2 to -1.2 and Si charges to compensate. The
Si ion charge densities were calculated with partial oc-
cupancy of the Si 3s states and calculating a spherically
averaged charge density self-consistently. Each O ion
charge density was calculated self-consistently as in the
PIB model (Cohen et al., 1987) using a Watson sphere
charged opposite that ofthe O ion charge and was spher-
ically averaged with partially occupied 2p states. The ra-
dius of the Watson sphere was chosen to give the Ma-
delung potential at the O nucleus in the chosen charge
configuration.

Figure 7 shows the diference in integrated charge in
each 1.5 Bohr sphere centered around each ion between
the PIB charge density and the self-consistent LAPW
charge density. There is not a single value of ionicity that
agrees perfectly with the self-consistent inte$ated charg-
es, but an O charge between -1.4 and -1.5 is the best
fit. (By separately varying the Watson sphere potential

rather than using the Madelung potential, a slightly better
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Fig. 6. Deformation densities for stishovite. (a) LAPW results for axial-equatorial bond plane (5 A by 5 A). O) Experimental
model (Spackman et al., 1987, Fig. 7a), same section as a. (c) LAPW result for shared edge between two SiOu octahedra g Aby 4
A1. 1a; nxperimental model (Spackman et al., 1987, Fig. 7b), same section as c. Contour interval is 0.05 e/A,'.

fit could be obtained.) Figure 8 shows the differences in
the valence band eigenvalues between the potential gen-
erated by the PIB charge density and the self-consistent
potential at the six k-points that were used for self-con-
sistency. The differences converge at an O charge between
-1.2 and -1.4, shifted somewhat to lower ionicity but
generally consistent with the ionicity derived from Figure
7. It is impossible to draw more precise conclusions on
the ionicity of stishovite by comparing charge densities,
but it is clear that the ionicity is reduced from full O,
and Si4* to something like O'a and Sirs+. This is very

close to the Mulliken charges of -1.2 and +2.4 derived
from Hartree-Fock calculations (Nada et al., 1990). Note
that these static charges should not be confused with the
dynamic efective charges appropriate for lattice dynam-
ics (Martin and Kunc, l98l).

Also of interest is how the ionicity changes with pres-
sure. It appears that no major change in ionicity occurs
between zero pressure and 143 GPa. At the latter pres-
sure, the best fit obtained for the integrated muffin tin
charges is bracketed by O charges of -1.4 and O -1.5,
very similar values for zero pressure.
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Fig. 7. Difference in muffin tin charges between PIB and

LAPW for different assumed O and Si ion charges at zero pres-

Diference maps show that the O atoms are very non-
spherical. O charge moves out ofthe shared edge region
into the direction perpendicular to the [1 l0] plane ofthe
shared edge and the Si, i.e., out of the bonding regions.
This feature is similar to so-called lone pairs but consists
of much less than two electrons. To model this feature
accurately would require more than a simple shell model,
even with multiple shells.

CoNcr-usroNs

For the first time, elastic constants for a complex crys-
tal with Raman-active modes are calculated using a self-
consistent, full potential method, with no uncontrolled
approximations other than the LDA. Excellent agreement
wilh experiment is found for the structural properties, the
equation-of-state, the linear compressibilities, three elas-
tic constants, and the Raman active A,, mode. Predic-
tions are made for the pressure dependence of some elas-
tic constants. The feasibility ofaccurately studying elastic
and vibrational properties at high pressures from first
principles is demonstrated. The discrepancies between the
calculated and observed structures at very high pressures
(Tsuchida and Yagi, 1989) suggest a reinvestigation of
the possible 100-GPa phase transition in stishovite, es-
pecially since the interpretation of a phase transition in
the diffraction data was based on a small shift in one
diffraction line.
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Fig. 8. Differences in valence band eigenvalues ofthe poten-
tial generated by the PIB charge density and the LAPW self-
consistent potential at zero pressure.

Both the charge density and the band structure indicate
mixed ionic and covalent character in stishovite, with
best fit static charges of O'o- and Si28+. The challenge
now is to take the results ofthe total energy calculations
and the observations about the charge density to con-
struct a model that can be used to accurately calculate
thermal properties and the rest of the elastic constants
and vibrational frequencies at high pressures.
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