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Ansrn-lcr

Iattice energy minimization and lattice dynamics calculations for the minerals anda-
lusite, sillimanite, kyanite, diopside, cordierite, gehlenite, leucite, orthozoisite, grossular,

and pyrope are compared with experimental data and previous calculations. The potential

models used in this study included bond-bending interactions, short-range Born-Mayer
forces, effective dispersive interactions, long-range Coulomb interactions, and harmonic

core-shell interactions for the O ions. Parameters for the potential models were generally

taken from the literature, but the core-shell force constant was modified to give better

agreement with experimental data for refractive indices. It was necessary to include bond-
bending interactions for Al-O polyhedra with coordination numbers even larger than four'

A method for describing effective potentials with Al-Si disorder and solid-solution is
presented. Modified Morse and Buckingham potentials were used to model O-H bonds.
Relaxed energy-minimum structures were calculated, allowing cell parameters to change
and treating atomic cores and shells as independent entities within the adiabatic approx-
imation. Calculated phonon frequencies for the relaxed structures were used to construct

thermodynamic functions. Elastic and dielectric constants were also calculated. Compar-
isons between calculated structures and other properties with experimental data have shown
that the model is genuinely transferable and gives reasonable predictions of crystallograph-
ic, physical, and thermodynamic properties. Detailed analysis gives a measure of the re-

liability of the model.

INrnonucrroN The first aim of this study is to assess the transferability
of previously published potentials for modeling the struc-

The recent interest in static lattice energy calculations tures of complex minerals using SLEC. We have selected

(SLEC) and harmonic lattice dynamici calculations a number of structures that we consider to have features

(HLDC) for aluminosilicate minerals is partly motivated that provide balanced tests. The AlrSiOs polymorphs, an-

by the insights such calculations give about interatomic dalusite, sillimanite, and kyanite, each have one six-co-

forces. An immediate application of reliable SLEC and ordinated Al and one four-coordinated Si, but differ in

HLDC is for equilibrium thermodynamics, where such the coordination number of the second Al, which is four

models could provide data, e.g., on iolid solutions, which in sillimanite, five in andalusite, and six in kyanite. Di-

are tedious to obtain experimentally. It is hoped that these opside (CaMgSirOu) has a complex chain structure with

calculations can provide information about thermody- irregular Ca coordination. Gehlenite (CarAlrSiO') has a

namic and physical properties of minerals under extreme layer structure with Al-Si disorder and significantly dif-

conditions of pressrr.e or temperature that are not readily ferent bond lengths within the Ca coordination polyhe-

attainable in the laboratory. Reliable HLDC models will dron. Cordierite (MgrsisAloO,r) is by some definitions a

also permit the interpretation of complex spectroscopic framework structure with an Al-Si order-disorder phase

aata(e.g.,Raman,infrared,orinelasticneutronscattering transition that is accompanied by a small spontaneous

data). Furthermore, thermodynamic properties can be strain. Leucite (KAlSi'O.) has a true framework structure.

calculated from SLEC and HLDC, and these relations can Experiments suggest that there is no long-range Al-Si or-

be used to provide valuable insights into phase transition der at all temperatures. Leucite also undergoes a struc-

behavior. Other applications include studies ofdefect en- tural phase transition that is accompanied by a sponta-

ergies and transport mechanisms. Finally, as molecular neous strain. The garnets pyrope (MgrAlrSirO'r) and

dynamics simulaiions are used increasingly to study phase grossular (CarAlrSi.O,r) are orthosilicates in which all the

transitions in minerals, the need for tested reliable poten- corners of the SiO4 tetrahedra and the AlOu octahedra are

tials becomes more urgent. shared, leading to nearly regular triangular dodecahedra
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containing the Ca or Mg cations. The complex structure
of zoisite [CarAlrSir(OH)O,r] contains SirO? and SiOo
groups as well as chains of AlOu octahedra that are partly
linked by H bonds. Such a wide range of structures pro-
vides a stringent test for a single set of transferable po-
tential parameters.

The second aim of this study is to demonstrate that
these same transferable potential parameters can also re-
produce vibrational properties using HLDC. The third
aim is to show that reliable thermodynamic functions for
complex minerals can be obtained from HLDC. This em-
phasizes the link between microscopic interactions and
macroscopic properties.

The development of transferable model potentials for
minerals is vital if computer modeling techniques are to
be used as predictive methods. As Dove (1989) has point-
ed out, there is no overall consensus on the forms ofthe
potentials to be used and on how numerical values of
parameters in the respective models should be obtained.
The potentials that are currently available have been de-
rived by a number of different method's, e.g., ab initio
quantum mechanical calculations (Lasaga and Gibbs,
1987), modified electron gas (MEG) calculations (Post
and Burnham, 1986), and empirical fitting procedures
(Abbott et al., 1989a, 1989b; Collins and Catlow, 1990).
A promising empirical approach has been srrggested by
the very successfirl modeling of quartz (Sanders et al.,
1984), forsterite (Price and Parker, 1988), diopside (Dove,
1989), micas (Collins and Catlow, 1990), and zeolites
(Jackson and Catlow, 1988) using a model that includes
three-body bond-bending interactions and core-shell
forces. We have therefore chosen to work oxclusively with
this model in this study, employing previously published
potential parameters where appropriate.

The outline of this paper is as follows. In the next sec-
tion we summarize the thermodynamic relations used in
this paper. Then we discuss the potential models in detail.
Following that, we present the results of our SLEC and
HLDC for each material studied. Our aim is to present a
brief comparison between the calculated and observed
structures for each example and to give a more detailed
analysis of some of the more interesting features of each
calculation. This reflects the fact that the best tests ofany
model are the predictions of subtle effects (such as may
be associated with phase transitions). These are a greater
challenge for the modeler than simply the predictions of
structures. Finally we present a general analysis of the
results common to all systems, highlighting the transfer-
able aspects of the potential model.

Trru rrrnntvtoDyNAMrc BAsrs

In the quasi-harmonic approximation, a crystal's in-
ternal energy, E, can be described as a sum ofthe static
lattice energy, g, and the vibrational energy, -8",0:

E  :9  *  E " ,o .  ( l )

The static lattice energy, I, is the sum over all inter-

atomic interactions. The vibrational energy, E",o, is given
by

E",o: Zn,,,u,[i + ,r., n) (2)

where arr(k) denotes the frequency of the "/th mode at
wavevector k. The term, n(a, 7), is the Bose-Einstein
distribution:

Since n (<.r, Z) is independent of wavevector and mode
number, the sum in Equation 2 can be replaced by an
integral over the density of states, g(co):

r  f r  IE"*: J n,fj + n(<t.T)fkr)do;. (4)

Note that we are assuming infinite perfect crystals
throughout this study. The only quantity in Equation 4
that is dependent on the actual structure is g(or). The
density of states is a rather demanding quantity to cal-
culate from a computational viewpoint. Calculations in-
volving a fine grid over the Brillouin zone are impracti-
cal; however, calculations using only a single point (e.g.,
the I or k : 0 point) are prone to errors caused by the
neglect of phonon dispersion. This point is discussed in
more detail by Price and Parker (1988). The use of rep-
resentative points for cubic lattices has been suggested
(Baldereschi, 1973), but such points are also prone to
errors in the calculated g(<o), particularly at low frequen-
cies. We used the Baldereschi point ('1, '/r, t/r) for the
I-centered cubic garnets. For all other systems we have
made the pragmatic choice of constmcting g(<.r) from
HLDC performed at the I point and at points on the faces
of the Brillouin zone. By doing this, we hope that the
effects offrequency dispersions are adequately taken into
account, albeit in a coarse way. However, since most of
the modes only show weak dispersion, the only significant
source of error will arise from the contribution of the
acoustic models to g(co). This is only a problem for the
calculation of thermodynamic properties at low temper-
ature (Z < 50 K), which is lower than the range of interest
of most mineral scientists.

The heat capacity at constant volume, Cr, can be cal-
culated readily from the internal energy:

/ar\t': 
lar),

: k" I lw*7' *' (o+J g(cu)da,. (5)
The heat capacity at constant pressure, C", is the exper-
imentally determined quality. It can be derived ftorn C,
using the isotropic thermal expansion coefficient, a, and
the isotropic compressibility modulus, B:

n(,,;,r): {.-[#r] 
- r] 

'
(3)

Cr: C, * TVoa2B-t (6)
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where Zo is the molar volume at 298 K and I bar. In our
calculations of the heat capacities, we used experimental
values for the coefficients a and B. They could in fact have
been calculated from a lattice dynamics calculation (Price
and Parker, 1988) within the quasi-harmonic approxi-
mation using the Grtineisen approach. However, such
calculations are rather lengthy, and, for the purposes of
this paper, the effort expended on these calculations would
not be justified. Instead, when we compared calculated
and measured heat capacities, it should be considered
that we really compared C, rather than C.. In any case,
the differences between these quantities are never large
at the temperatures we considered. It should be stressed
that we used thermodynamic quantities in this paper, not
to test the basic model, but to show that our model is
capable of giving thermodynarnic information for many
cases ofinterest.

The Helmhollz free energy, F, for a vibrating crystal
has been given by Born and Huang (195a):

f  [ r  I
F : e - 

J 1i n, + kBr rnln(r, OJ fe(,) d,. (7)

The entropy, S, is then

s :  - d F" d T

.g(<,r) d<,r. (8)

Phase boundaries can be determined by the Clausius-Cla-
peyron equation. We neglect the pressure dependence of
the entropy term and write

dP a^s(r)
dr: ^i(i'3,' (e)

Implicit in the applications of these equations is the as-
sumption that g(<.r) is independent of 7 and P. This im-
plies the neglect ofphonon frequency renormalization due
to anharmonic effects. Although experimentally it is
known that the individual phonon frequencies do vary
significantly with 7' and P, the overall effect on g(o,) is
much smaller. Moreover, for calculations of phase
boundaries, the important aspects are the differences be-
tween g(<o) ofdifferent phases, and these are expected to
be even less sensitive to changes in ?"and P.

THn rNrpuroMrc poirENTrAL MoDEL

The basic interatomic potential model has been de-
scribed by Catlow (1988). O ions are modeled using the
core-shell model, where a massless shell is linked to the
core by ideal harmonic interactions of the form

where d is the separation between centers of core and
shell. Polarization effects are therefore taken into ac-
count, enabling the high frequency dielectric constant to
be correctly evaluated.

Pair interactions between neighboring O shells are
modeled using a Buckingham potential:

( l  l )

where r is the interionic distance. The same potential is
used for Si-O interactions, where the interaction involves
the O shell and a rigid Si ion.

Al-O pair interactions are modeled using a Born-Mayer
potential:

v( i :  -1* B ".e(- ,

e(r) -- B*r(-,

e(o):+k@ - oo)2

(r2)

where the interaction is between a rigid Al ion and the O
shell. The same potential was used for Al in all coordi-
nations. All other cation-O pair interactions are modeled
similarly. Electrostatic Coulomb interactions are evalu-
ated using formal charges. Covalent effects are simulated
using three-body bond-bending interactions. They have
the form

:  h I {t, , trt ,  
ty +)rn*-, O + rr}

( l  3)

where 0 is the O-Si-O or O-AI-O bond angle, do being the
respective angle in an undistorted polyhedron.

The values for the parameters in Equations 10-13 are
given in Table l. The values for Si-O and O-O interac-
tions have been taken from the work of Sanders et al.
(1984) on quartz. Following Jackson and Catlow (1988),
we have taken the values for Al-O interactions from Cat-
low et al. (1982) and have used these values for all co-
ordinations. The value for k in Equation 13 was consid-
ered to be the same for all Al coordinations and equal to
the value for O-Si-O interactions. Only the value of do
was modified for different coordinations. We have mod-
ified the value of Kin Equation 10. Parameters for Ca-O
and K-O interactions have been taken from the MEG
calculations of Post and Burnham (1986). The parame-
ters for the Mg-O interaction could have been taken from
the same source; instead, we used the same values used
by Price and Parker (1988) and Dove (1989). Dove (1989)
has pointed out that these potentials give similar results.

O-H potentials were adapted by us from the work of
Collins and Catlow (1990), who used a modified Morse
potential ofthe form

9(r) : e{1.0 - exp[-a(r - p)l]' - e - 9a"r.-6. (14)

The parameters for Equation 14 are also given in Ta-
ble l.

The SLEC and HLDC were performed using the pro-
grams THB-REL and THB---PHON, respectively, which
explicitly include the interactions described above. These
programs evaluate the Coulomb contribution to the lat-
tice energy using the Ewald method. THB-REL uses a

e@ : tKd' (10)
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p C
lA l  [ eVA1  Re f . n

0.3205 10.6616 t1l
0.3012 0.0 I2l
0.29912 0.0 t31
0.2130 0.0 t41
0.2516 0.0 t41
0.2945 0.0 I51
0.149 27.88 I11
0.2s 0.0 16l

Short-range interactions: moditied Morse type between cores5
q p

lA-'l tAl
H0426+-O1426 7.0525 2.1996 0.9495 l2l

Shell-core interaction between O shell and O core6
K

lev A*l

OAoeeo2 - O2@@ 60.00
Three-body bond-bending interactionsT

k d "
[evrad ,]

TABLE 1. Potential parameters used in this workl

Short-range inleractions: Born-Mayer or Buckingham type between
cation cores and O shells,

strains are coupled automatically give the relaxation of
the structure under strain, ensuring that all the contri-
butions to the elastic constants are correctly evaluated.

Sorvrn GENERAL oBsERvATroNS

We found that some complex structures containing Al
coordinated by more than four O atoms could not be
successfully relaxed without taking the covalent bond-
bending effects into account. We found that our best model
for six-coordinated Al includes O-AI-O three-body bond-
bending interactions for all O-O distances tess than 3 A
with do : 90" in Equation 13, whereas the parameter k in
Equation l3 is the same as for tetrahedrally coordinated
Al and Si (Table l). We found that, in the case of five-
coordinated Al in andalusite, the best model included the
bond-bending term with 0o: 95o. We should remind the
reader that identical Born-Mayer Al-O pair interactions
were used for all coordinations.

When using a force constant, K:74 eV A-t, for the
core-shell interaction in Equation I 0 (Sanders et al., I 9 84),
we found that our calculations ofthe high-frequency di-
electric constant gave values that were generally approx-
imately 20o/o too low when compared with experimental
data. For example, the average observed values for an-
dalusite and kyanite are 2.7 and 3.0, respectively (values
have been taken as the squares of the average refractive
indices given by Deer et al., I 966), and the corresponding
calculated values are 2.2 and 2.5. A decrease of the value
ofthis force constant to 60 eV A-' gave improved results,
not only for the high-frequency dielectric constants (new
values for andalusite and kyanite are 2.54 and 2.88), but
also for most of the basic structures and the elastic con-
stants, although for some structures the changes were
small. We note that the introduction of a further value
for a potential parameter might be confusing, but we be-
lieve that our results justify this. However, our new value
is not an optimized value and, therefore, should be im-
proved upon in any future attempt to develop the poten-
tial model.

A lroonr. FoR Al-Si DTsoRDER AND
SOLID SOLUTIONS

In some of the systems we have studied there is site
occupancy disorder, such as in disordered Al-Si arrange-
ments or as in a solid solution. In order to model these
cases, we have devised a simple recipe to construct effec-
tive interactions from the pure interactions as given in
Table l. In our formulation, the fraction of atom type I
on a site is x, so that the fraction of type 2 is (l - ;r).
The effective charge is thus

Q*n: xQ, + Q - x)Qr. (l s)
The effective A parameter for the r 6 interaction in the
Buckingham potential of Equation I I is similarly grven by

A,n:  xA,  + ( l  -  x)Ar .  (16)

The effective Born-Mayer coefrcients B and r for ijqua-
tions I I and 12 were determined by setting the first and

A
levl

si4+_02-
si4+_01426-
Al3+ _ or-
K* - O'-
Ca,+ - O,
Mg'?+ - O'?
o -  -  02 -
H * - O 2

1 283.9073
999.98

1460.3
65269.71
6958.3
1428.5

22764.O
31 1.97

f

levl

02
02-

_ or-
_ 0 2

rl
t1 l- Sio*

- Al3*
2.09724 109.47
2.09724 90.95. 109.478

IeV units are quoted as these are the units used by THB-REL. 1 eV
: 96.484 kJ mol-'.

'? Defined by Equations 1 1-12.
3 The charges used are given in the ion description, in units of the electron

charge.
4The references cited are: [1] Sanders et al. (1984), [2] Collins and

Catlow (1990), [3] Catlow et al., (1982), [4] Post and Burnham (1986), tsl
Price and Parker (1988), [6] Abbott et al., (1989a, 1989b).

5 Defined by Equation 14.
6 Defined by Equation 10.
? Defined by Equation 1 1 .
8 The three values given tor the three-body O-AI-O bond-bending inter-

actions refer to octahedral, irregular five-, and tetrahedral coordination,
respectively.

standard Newton minimization technique for the lattice
relaxation. THB-REL does not use symmetry, and the
minimizations are performed assuming triclinic (Pl)
symmetry. Thus, ifthe relaxed structure contains a higher
symmetry (e.g., equal cell lengths or atoms in a special
position) the symmetric structure represents a global
minimum and not a minimum under any constraints.
The only condition imposed is the number of atoms in
the unit cell and, in practice, the topology of the structure.
In all cases where a structure with a symmetry higher
than Pl was obtained, we report only the symmetrically
independent parameter values rather than duplicate
equivalent quantities. We found that, in these cases, cell
lengths were calculated to be equal with precision far
greater than that given in the tables, and that deviations
from special angles, 90'or 120', did not appear in the
first ten digits. Degenerate phonon frequencies deviated
by less than l0 5ol0.

THB-REL automatically calculates the complete elas-
tic constant tensor. The components are evaluated in the
program from the strain derivatives ofa series expansion
of the lattice energy in terms of lattice and internal strains.
The terms in which the lattice strains and the internal
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second derivatives ofthe effective interaction equal to the
weighted averages of the derivatives of the component
interactions for the observed bond length r: ro:

(r7)

la,p-") /a,p,\ /a,c-\r - r  :  y r - - ; l  +  ( l  -  x ) l - l  ( 18 )
\  0r '  l , : ,o  

' " \0r-  
1, -o \dr .  / ,  ,o

This gives the following relations for p.,, and 8",r..

^ _xpltB,exp(-ro/p,) + (l - x)p;tBrexp(-ro/pr)
t'* -

( le)

p _xpltBrexp(-ro/p,) + ( l  -  x)prtBrexp(-ro/pr)
pelr'"-p(-rlArJ

(20)

This formalism can be readily extended for cases involv-
ing more than two atom types. It should be noted that
although this method should give reliable diferentials of
the effective potential, and hence for equilibrium struc-
tures, it is not expected to give accurate values for the
effective energy, since the energy has not been incorpo-
rated into the method. However, we will find that this
method still gives good results for the energy of mixing
in a solid solution.

Tnn AlrSiOs poLyMoRpHS

There are three AlrSiO, polymorphs: andalusite (Pnnm),
sillimanite (Pbnm), and kyanite (PI). In all three struc-
tures there are Z : 4 formula units per unit cell; for our
purposes, the significant difference among the three struc-
tures is in the coordination of one of the Al atoms, as
described earlier. The structures of the AlrSiO, poly-
morphs are therefore a good test of transferable Al-O
potentials. Moreover, the calculation of the AlrSiO, phase
diagram was seen as a test of whether our model could
reproduce the relatively small differences in the thermo-
dynamic properties of the polymorphs. This is important
for the application of SLEC and HLDC in equilibrium
thermodynamics as needed in petrology.

Because of the use of the AlrSiO, polymorphs as pet-
rogenetic indicators, a number of experimental studies
have been performed to determine the positions of the
univariant reaction boundaries and the triple point ofthis
system. Robie and Hemingway (1984) summarized pre-
viously published work and determined the thermody-
namic properties of all the polymorphs. Furthermore, they
redetermined the AlrSiO, phase diagram (Fig. I and Ta-
ble 2). There are difficulties in determining the reaction
boundaries accurately, due to small differences in the re-
spective Gibbs free energies, kinetic problems, and influ-
ence of defects and fibrolitization, as discussed by Salje
and Werneke (1982a,1982b) and Salje (1986). To over-
come these problems, Salje and Werneke (1982a, 1982b)

0
400 600 800 1000

Temperature IK]
Fig. l. The phase diagram of AlrSiOr. The experimental data

(thin lines) are from Robie and Hemingway (1984). The results
from our calculations (model I and model 2, see text) are given
as thick lines. The boxes and connected circles indicate the range
of experimental data, as given by Robie and Hemingway (1984).

used infrared (IR) and Raman spectroscopic data in a
calculation of the phase boundary between sillimanite and
andalusite, and they estimated that the triple point occurs
around 643-663 K and 3.0-3.2kbar, excluding all effects
due to lattice faults and Al-Si disorder. Salje (1986) mea-
sured heat capacities of samples of andalusite and silli-
manite of different origins. He determined the influence
of fibrolitization on the P, 7 dependence of the univariant
reaction curve between andalusite and sillimanite. Using
the previously published standard entropy of andalusite
(Robie and Hemingway, 1984) and a standard entropy
for sillimanite calculated from Raman and IR spectro-
scopic data, Salje (1986) determined the triple point in a
system containing ideal sillimanite to be at 715 K and
3.2kbar, whereas the measured triple point of bulky sil-
limanite was determined to be at 795 + l5 K and 4.2 +
0.2 kbar. The possibility of Al-Si disorder in sillimanite
has been a controversial subject (Ribbe, 1982), but Hol-
land and Carpenter (1984) concluded that "stoichiomet-
ric sillimanite is ordered at all geological temperatures."
We therefore did not include anv Al-Si disorder in our
model.
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TABLE 2. Comparison of the experimentally determined and the calculated phase diagram of the AlrSiOs polymorphs

Thermal expansion coefficients, a, and compressibilities, p
Andalusite Sillimanite Kyanite

o (10s  K 1)

B (kbar ')

7 9 0 + 2 5 K
693 -  713 K
715  K
800 K
750 K

And-Sill

And-Ky
Sill-Ky

2.394 1.386
0.67 0.65

Ueasured and calculated values for lhe triple point
4.0 + 0.5 kbar (Robie and Hemingway, 1984, exp)
3.0 - 3.2 kbar (Salje and Werneke, 1982a, 1 982b, calc)
3.2 kbar (Salie, 1986, ideal sillimanite)
4.2kbar (this work, model 1)
4.0 kbar (this work, model 2)

Slopo of univariani reaction boundaries
Experimental Model 1

2.596
0.70

Model 2

-19.5 bar/K
-13.5 bar/K

1 1.8 bar/K
2O.1 batlK

090 < r< 850 K)
(r> 850 K) -19.2barlK

17.6 bar/K
26.3 bar/K

-13.3 bar/K
17.ObatlK
45 bar/K

Note; The thermal expansion coefficients, d, were calculated from the molar volume data at 298 and 873 K from Winter and Ghose (1979); the
mmpressibilities, B, were taken from Brace et al. (1969); the slopes of the experimentally determined reaction boundaries are those given by Robie
and Hemingway (1984).

We found that, in order to model the different struc-
tures of the polymorphs successfully, it is necessary to
include a bond-bending term for all Al polyhedra. The
calculated lattice parameters deviate only in one case by
more than 2o/o (Table 3) from the experimentally deter-
mined data, and we note that the cell angles for triclinic
kyanite are calculated to within 0.6". The calculated atomic
coordinates are compared with experimental data in Ta-
bles 4-6. The agreement is generally good. The major
discrepancy is that the model underestimates the length
of the anomalously short O(3)-O(3) distance. The cal-
culated value of 2.06 A is considerably less than the ex-
perimental value of 2.26 A. This contact occurs within
the five-coordinated Al polyhedron and points to inade-
quacies in the model at this point. Further investigation
showed that the value for do used in the calculations is
close to the optimum value, suggesting that improve-
ments to the model will lie in f,nding a better value for
the strength of the bond-bending force constant for this

coordination. The calculated elastic constants of anda-
lusite and sillimanite are compared in Table 3 to mea-
sured values (Vaughan and Weidner, 1978); no experi-
mental values are available for kyanite. The agreement is
reasonably good, taking into account the fact that only
the off-diagonal elements of the elastic constant tensor
deviate by more than 150/o from measured values in an-
dalusite. The only major discrepancy is for C, in silli-
manite; there are, however, no two independent experi-
mental studies available. As we are confident in the
predictive value ofour calculations, we also give our cal-
culated values for the diagonal elements of the elastic
constant tensor for kyanite (Table 3).

The calculated vibrational frequencies can be com-
pared with spectroscopic data. The experimentally deter-
mined frequency range for optic modes at the I point is
87- l l13 cm-r for  andalus i te and 70-1170 cm ' for  s i l -
limanite (Salje and Werneke, 1982a, 1982b). The calcu-
lated frequencies range from 87 to 1012 cm ' for anda-

Tlele 3, Comparison of experimental and calculated lattic€ parameters, molar volumes (y), and maindiagonal components of the
elastic tensor (q,,, units of Mbar) for the three AlrSiOu polymorphs

Andalusite Sillimanite Kyanite

exp exp

a (A)
b (A)
c (A)
c (')
pf )
r (')
Y(cm3 mol 1)

7.7980
7.9031
5.5566

90.0
90.0
90.0
51.58

exp

7.755
7.808
3.CCO

90.0
90.0
90.0
50.67
caE

7.4883
7.6808
5.7774

90.0
90.0
90.0
s0.049

exp

7.271
7.514
5.862

90.0
90.0
90.0
48.23
carc

7.'t262
7.8520
5.5724

89.99
101.1  1
106.03
44.22
exp

6.976
7.829
5.589

90.55
101.37
106.16
43.16
calc

2.35
2.89
3.80
1.00
0.88
1 . 1 2

2.64
2.54
4.38
0.85
0.81
1.20

2.87
2.32
3.88
1.22
0.81
0.89

2.8s
2.77
5.39
1.30
0.89
0.85

3.79
4.39
5.03
2.11
1.05
1.02

cr"
ce
Cno
Cuu
c6

Note.' Experimentally determined lattice parameters were taken from winter and Ghose (1979). Measured elastic constants are from Vaugh,rn and
Weidner (1978).
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TABLE 4. Observed and calculated fractional atomic coordinates of andalusite

3 1 9

f* f*t

A(1)
A(2)
s(1)
o(1)
o(2)
o(3)
o(4)

0.0
0.3705
0.2460
o.4233
o.4246
0.1030
0.2305

0.0
0.1 391
0.2520
0.3629
0.3629
0.4003
0.1339

0.2419
0.5
0.0
0.5
0.0
0.0
0.2394

0.0
0.3680
0.2356
0.4417
0.4209
0.0975
0.2210

0.0
0.1395
0.2544
0.3555
0.36ii!9
0.4104
0.1438

0.2459
0.5
0.0
0.5
0.0
0.0
0.2315

Nofe: Observed values were taken from Winter and Ghos€ (1979).

lusite and ftom 52 to 1053 cm ' for sillimanite; in general,
we have found that the calculations give frequencies that
are slightly lower than experimental data, as in this case,
Detailed comparisons of the I point frequencies with
spectroscopic data and of the low-frequency dispersion
curves with new inelastic neutron scattering data for an-
dalusite are given in Winkler and Buehrer (1990). The
overall comparison shows that the model gives a reason-
able representation of the phonon frequencies for all
wavevectors.

The HLDC results were used to calculate the thermo-
dynamic properties of andalusite and sillimanite. A com-
parison of experimental data for the heat capaeities, as
published by Salje and Werneke (1982a,1982b), is given
in Figures 2 and 3. The agreement between calculation
and experiment is very good if the sampling is performed
over more than one point in the Brillouin zone; for the
AlrSiO, polymorphs, we used the I point and seven points
on the faces of the Brillouin zone, (0 0 y2,0 Yz t/2, t/z Vz t/2,
etc.). Deviations from the expected behavior at T < 50
K are due to the coarse sampling of the Brillouin zone
(see above).

We calculated the phase diagram of the system using
two models. Model I was based on the molar volumes
taken from Robie and Hemingway (1984), whereas mod-
el 2 was based on the molar volumes from our SLEC.
The respective values are given in Table 3. In both mod-
els, the same thermal expansion coefficients for the poly-
morphs and the same compressibilities were ernployed.

Tlsr-e 5. Observed and calculated fractional atomic coordinates of kyanite

The former were calculated from the molar volumes of
the polymorphs at 298 and 873 K as given by Winter and
Ghose (1979), and the small temperature dependencies
of the thermal expansion coefficients were neglected. The
compressibilities were taken from Brace et al. (1959). The
respective values are given in Table 2. Equilibrium points
were taken to lie on the andalusite-sillimanite boundary
at 1048 K and I bar and on the andalusite-kyanite
boundary at 656 K and 2.4 kbar. The AS(7) was taken
from our HLDC. The calculated phase diagrams are com-
pared to the one grven by Robie and Hemingway (1984)
in Figure I and Table 2. The sillimanite-kyanite curve
did not cross the triple point as determined by the kya-
nite-andalusite and andalusite-sillimanite reaction curyes
in either of the models when we used any of the equilib-
rium points given by Robie and Hemingway (198a). The
triple points using the kyanite-sillimanite and andalusite-
sillimanite reaction curves would be at approximately 890
K and 4 kbar in model 1 and at 890 K and 2 kbar in
model 2. In general, model I shows a satisfactory agree-
ment for all three univariant reaction boundaries. where-
as model 2, although giving reasonable kyanite-andalu.
site and andalusite-sillimanite reaction curves, yields a
kyanite-sillimanite reaction curye with far too steep a
slope.

We conclude that the model used in the present study
may be used in equilibrium thermodynamic studies, pro-
vided that additional experimental data for thermal ex-
pansions, compressibilities, and molar volumes are avail-

/.* 1"""
A(1)
A(2)
A(3)
A(4)
s(1)
s(2)
o(1)
o(2)
o(3)
o(4)
o(5)
o(6)
o(7)
o(8)
o(s)
o(10)

o.3254
0.2974
0.0998
0.1 120
0.2962
0.2910
0.1095
0.1230
0.2747
0.2831
0.1219
0.2822
0.2915
0.5008
0.1 084
0.5015

0.7040
0.6989
0.3862
0.9175
0.0649
0.3317
0.1468
0,6856
0.4545
0.93s4
0.6307
0.4453
0.9467
0.2749
0.1520
0.2312

0.4582
0.9505
0.6403
0.1 649
0.7066
0.1 892
0.1 288
0.1812
0.9547
0.9353
0.6389
0.4288
0.4659
0.2440
0.6669
0.7553

0.3348
0.3033
0.1 004
o.1174
o.2947
0.2871
0.0964
0.1234
0.2838
0.2961
0.1235
0.2911
0.3068
0.4924
0.0967
0.4937

0.7061
0.7006
0.3825
0.9230
0.0583
0.3i165
0.1482
0.0845
o.4584
0.9375
0.632s
0.4476
0.949s
0.2620
0.1435
0.2417

0.4607
0.9518
0.6367
0.1689
0.7091
0.1828
o.1237
0.1825
0.94s1
0.9491
0.0409
0.4346
0.4646
0.2376
0.6563
0.7585

Notei Observed values were taken from Winter and Ghose (1979).
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Tlele 6, Observed and calculated fractional atomic coordinates of sillimanite

A(1)
At(2)
Si
o(1)
o(2)
o(3)
o(4)

0.0
0.14'17
0.1533
0.3605
0.3569
0.4763
0.1252

0.0
0.3449
o.3402
0.4094
0.4341
0.0015
o.2230

0.0
o.25
0.75
0.75
0.25
0.75
0.5145

0.0
0.1372
0.1 530
0.3663
o.3574
0.4726
0.1246

0.0
0.3441
0.3330
0.4012
0.4367
0.9998
0.2176

0.0
o.25
0.75
0.75
0.25
0.75
0.5129

Note; Observed values were taken from Winter and Ghose (1979).

able. As discussed above, it should, in principle, be
possible to determine these quantities from free energy
minimization calculations (Parker and Price, 1989; Col-
lins and Catlow, 1990). One difficulty in the present case
is that we expect different energies for four-, five-, and
six-coordinated Al because of covalent effects that the
model does not attempt to handle-the model is really
only designed to get the first and second differentials cor-
rect. We therefore cannot expect to be able to compare
the energies ofthe three phases and have had to include
experimental state points in our calculation of the phase
boundaries. Price and Parker (1988) did not face this
problem in their determination of the olivine-spinel phase
diagram.

1 6 0 ANDALUSITE

120

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0

Temperature [K]
Fig. 2. Comparison of the experimentally determined heat

capacity (C,) of andalusite (points, Salje and Werneke, 1982a,
1982b) with calculated values (line). The deviation from the ex-
pected behavior at T < 50 K is due to the coarse sampling of
the Brillouin zone (see text).

Dropsror

Diopside, CaMgSirOu, is a good example of a chain
silicate (C2/c, Z: 4). SLEC, using models almost iden-
tical to those used in this study, have recently been dis-
cussed in some detail (Dove, 1989). The bond-bending
potentials are essential in order to reproduce accurately
the details of the structure, particularly with regard to the
bond angles within the silicate chains, the Mg and Ca
coordination, and the relative Si-O bond lengths for
bridging and dangling bonds. Diopside has proven to be
a demanding challenge for modelers (e.g., Post and Burn-
ham, 1986).

We have performed additional calculations for diop-
side using our new value for the parameter Kin Equation
10, and have also included diopside in this paper because

SILLIMANITE

120

o 100 200 300 400 500

Temperature [K]
Fig. 3. Comparison of the experimentally determined heat

capacity (C,) of sillimanite (points, Salje and Werneke, 1982a,
1982b) with calculated values (line). The deviation from the ex-
pected behavior at T < 50 K is due to the coarse sampling of
the Brillouin zone (see text).
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TABLE 7. Comparison of observed and calculated structure and elastic constants of diopside

Unit-cell parameters

321

a (A)
b (A)
c(A)
B f )

9.746
8.899
5.251

105.63

9.5197
8.7096
5.1 496

104.47
Atomic fractional coordinates

Si
Mg
Ca
o(1)
o(2)
o(3)

0.0933
0.9082
0.3015
0.0873
0.2500
0.0176

calc

0.2850
0.0
0.0
0.1 105
0.3585
0.3615

0.0970
0.905s
0.3057
0.0936
o.2571
0.0213

0.2304
o.25
0.25
0.1442
0.3288
0.9950

calc

0.2862
0.0
0.0
0.1 1 56
0.3611
0.3505

obs

0.2293
0.25
0.25
0.1422
0.3180
0.9953

Elastic constants (Mbar)

0.77
0.81
0.57
0.17
0.07
0.43
0.07

't.20
1.06
0.85
0.20
0.04
0.62
0.04

Ct"
C""

cr"

Coa

2.68
1.99
2.72
0.65
0.80
0.98

2.23
1.71
2.3s
0.74
0.67
0.66

c.,

Vs

c4
cu,

/vote.'Observed structural data were taken from Clark et al. (1969); elastic constant data are from Levien et al. (1979).

we wanted to include diopside, as a chain structure, in
the data base for more detailed analysis. The results for
the calculated equilibrium structure are given in Table 7,
where they are compared with the results of the structure
refinement of Clark et al. (1969). The differences from
the results of previous calculations (Dove, 1989) are only
slight, but nevertheless represent a modest improvement
on the agreement with experimental data. We recall that
the conclusion reached from the previous calculations
(Dove, 1989) was that the chain structure, differences in
the Si-O bond lengths, and the Mg and Ca coordinations
can all be reproduced by the model; this conclusion holds
with the modified core-shell interaction parameter.

ConorrnrrB

Cordierite (MgrSirAloO,r) is of interest because it exists
as either of two polymorphs, an ordered orthorhombic
phase (Cccm, Z : 4) or a hexagonal phase with Al-Si site
disorder (P6/mcc, Z:2). We have modeled both phases.

Hexagonal cordierite contains two nonequivalent tet-
rahedral sites: site I [denoted T(l)] with % Al and 24 Si,

TABLE 8. Crystal structure of hexagonal cordierite

and site 2 [denoted T(2)] with 2/t Aland Yr Si (Dove et al.,
in preparation). Effective interactions were constructed
using Equations 15-20 for both sites. The calculated
equilibrium crystal structure for this model is compared
with the experimental structure (Dove et al., in prepara-
tion; Armbruster, 1985) in Table 8. The agreement is
satisfactory. It should be noted that the energy minimi-
zation was performed starting from an orthorhombic
structure with only two types of tetrahedral sites. That
the energy minimization yielded the hexagonal structure
shows that the observed phase transition to the ortho-
rhombic phase is triggered only by Al-Si ordering. This
is consistent with kinetic observations but is different from
the case ofleucite (see below).

Coordinates and other data for the relaxed structure of
the fully ordered orthorhombic form are compared with
those of the experimental structure (Dove et al., in prep-
aration;Gibbs, 1966; Cohen etal.,1977) in Table 9. There
is again satisfactory agreement. But ofgreater significance
than the comparison of the absolute structures is the cal-
culation ofthe distortion ofthe structure ofthe ordered

Unit-cell parameters

a (A)
c(A)

9.7683
9.3408

Xox

9.8548
9.1 134

Atomic flactional coordinate3

V4
V4

V4
U4

Mg
r(1)
r(2)
o(1)
o(2)

V3
Y2

0.3724
0.4853
0.2304

Ca
th

0.2662
0.3492
0.3081

0
0.1 439
0

t/3

Y2
0.3693
0.4846
0.2315

2h

V2
0.2628
0.3461
0.3080

0
o.1479
0

Note.'Observed values are trom Dove et al. (in preparation), which are consistent with Armbruster (1985). T denotes a tetrahedral site.
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TffiLe 9. Data for the crystal structure of orthorhombic cordierite

Unit-cell parameters
ca|c

a (A)
b (A)
c(A)
es

17.0448
9.7127
9.3i]18
0.00655

Xo*

17.',t674
9.7517
9.0661
0.00813

Atomic fractional coordinate3

Mg
A(1)
A(2)
s(1)
s(2)
s(3)
o(1)
o(2)
o(3)
o(4)
o(s)
o(6)

0.3372
0.25
0.0511
0.0
0.1927
0.1349
0.2461
0.0630

-0.1730
0.0439
0.1216
0.1636

0.0
0.25
0.3080
0.5
0.0789

-0.2363
-0.1029
-0.4152
-0.3100
-0.2515

0.1863
-0.0800

0.25
0.2541
0.0
0.25
0.0
0.0
o.3572
0.3494
0.3585
0.0
0.0
0.0

0.3367
0.25
0.0503
0.0
0.1913
0.1319
0.2466
0,0637

-0.1700
0.0405
0,1218
0.1713

0.0
0.25
0.3031
0.5
0.0766

-0.2355
-0.1001
-0.4144
-0 .3110
-0.2351

0.1829
-0.0844

0.25
0.2537
0.0
0.25
0.0
0.0
0.3539
0.3483
0.3s38
0.0
0.0
0.0

Nofe.-Observed data are from Dove et al. (in preparation), which are consistent with Gibbs (1966) and Cohen et al. (1977); es is the spontan€ous
strain defined by Equation 21.

phase from the hexagonal structure of the disordered form.
This is quantified by the spontaneous stfttin, e., defined as

a - \/tb
o  : -v s  

a + $ b

where c and b are the orthorhombic unit-cell parameters
(a - l\b in the hexagonal phase). The calculated and
observed values of es are, respectively, 0.0081 and 0.0066
(Dove et al., in preparation). The sizo of this strain is
slightly smaller than the differences between the calculat-
ed and observed cell lengths and thereby provides a sub-
lle test of the predictive ability of these models. The
agreement between the calculated and observed Yalues of
e. is encouraging.

GBur-nxrrB

The crystal structure of gehlenite, Ca'AlrSiO', is te-
tragonal (P42rm, Z : 4).The main feature of the struc-
ture is that it is composed of layers of five-membered
rings of tetrahedra, with Ca in the large gaps between the
layers. These features make gehlenite a useful system for

testing transferable potential models. There are two dis-
tinct tetrahedral sites in the structure. The first site, T(l),
is at the origin of the unit cell and has 4 symmetry. Crys'
tal structure analysis has shown that this site contains Al
(Kimata and Ii, 1982; Swainson et al., in preparation).
The second site, T(2), is disordered, containing Yz Al and
Yz Si. The effective potential for this site was again cal-
culated from Equations 15-20. The results ofthe SLEC
are given in Table 10, where they are compared with
those of the observed structure (Swainson et al., in prep-

aration; Kimata and Ii, 1982). The agreement is reason-
able, and the model correctly reproduces the different
T(2)-O bond lengths. The model also reproduces the Ca
coordination satisfactorily.

Lnucrrr,
Irucite, KAlSirO6, is a framework structure (I4r/a, Z

: 8), which is an ideal system for testing modol potentials
because the tetragonal structure is a slight distortion from
a high-temperature cubic structure (Im3m, Z : 8). A
good model, therefore, should be able to reproduce this

(2r)

Tmr-e 10. Crystal structure data for gehlenite

Unit-cell parametero

a (A)
c(A)

7.6850
5.0636

Xou

7.5915
4.8964

Atomic fractional coordinateg
f*

Ca
r(1)
r(2)
o(1)
o(2)
o(3)

0.3389
o,'t434
0.0
0.5
0.1428
0.0876

0.1611
0.3566
0.0
0.0
o.3572
0.1 676

0.5104
0.9540
0.0
0.1765
0.2835
0.8077

0.3407
0.1426
0.0
0.5
0.1406
0.0928

0.1593
0.3574
0.0
0.0
0.3594
0.1 649

0.5172
0.9572
0.0
0.1963
o.2997
0.7953

Note..Observed data are from Swainson et al. (in preparation), which are consistent with Kimata and li (1982). T(1) is occupied by Al and T(2) is

occupied by Alo.Sio", as described in the text.



WINKLER ET AL.: LATTICE ENERGY AND LATTICE DYNAMICS 323

Fig. 4. Projection down I I I l] of the structure of leucite: (a) observed tetragonal structure at room temperature, @) calculated
tetragonal structure, (c) observed cubic structure. The comparison ofa and b shows that our model has reproduced the tetragonal
distortion from c. observed structure data are from Dove and Palmer (in preparation).

small distortion. In the cubic phase (which is stable above
940 K), there is only one symmetrically distinct tetrahe-
dral site, so this phase must have no long-range Al-Si site
order. There are no other sites (e.g., octahedral) in either
phase for Al or Si atonns. The cubic-to-tetragonal phase
transition occurs much faster than would be expected for
a transition due to Al-Si ordering (Palmer et al., 1989;
Palmer et al., 1990; Heaney and Veblen, 1990). There-
fore, we would expect the tetragonal phase to remain dis-
ordered. This has been confirmed by diffraction experi-
ments (Mazzi et al., 1976; Grogel et al., 1984; Dove and
Palmer, in preparation), which are sensitive to long-range
order, although there is evidence (albeit contradictory)
for the existence ofshort-range order from nuclear mag-
netic resonance experiments (Brown et al., 1987; Mur-
doch et al., 1988; Phillips et al., 1989).

Effective interactions for the tetrahedral sites were con-
structed assuming complete Al-Si disorder [i.e., each site
contains (Al + 2Si)/31 and using one mean bond length
obtained from the three sites in the tetragonal structure.
It should be noted that leucite is our only example that
tests the K-O potential parameters.

The tetragonal structure could be relaxed easily, since
it is the stable leucite structure. A straightforward energy
minimization allowing for changes in the cell volume was
not possible because the cubic structure is unstable with
respect to the tetragonal distortion and the program
THB-REL does not incorporate the use of constraints
on the symmetry of the structure or on the shape of the
unit cell. We therefore carried out a number of constant-
volume energy minimizations of the cubic structure, us-
ing different unit-cell edge lengths. We then fitted the
minimum eneryies to a fourth-order polynomial in the
cubic unit-cell edge length. The strain-free unit-cell edge
length was obtained from the minimum of this polyno-
mial, and another structure relaxation was carried out

using this value for the unit-cell edge length. The results
of this energy minimization confirmed that the relaxed
structure was actually free of all residual stresses.

The results ofSLEC for both the tetragonal and cubic
phases are given in Table I l, where they are compared
with observed results (Dove and Palmer, in preparation;
Mazzi eI al., 1976; Grogel et al., 1984). The details are
best discussed with reference to Figure 4, which shows
the [ 1 l] projection ofthe tetragonal phase as determined
by experiment and as given by SLEC, together with the
same projection of the cubic phase as determined by dif-
fraction data. This projection highlights the loss of the
three-fold axis on transformation from the cubic to the
tetragonal form. The key features to note are the distor-
tion of the six-membered ring of tetrahedra surrounding
the [Il] axis and the off-centering of the K ions. Both
of these features are reproduced remarkably well in our
calculations.

The transition also involves a change in volume and a
spontaneous strain (Palmer et al., 1989). Palmer et al.
(1989) define the two strain parameters e^and eri

(22)

(23)

where c and c are the tetragonal unit-cell lengths, ao is
the actual cubic unit-cell length, and do is given by

c - t  2 a
d o : (24)

The d. would be equal to a. if the transition were purely
ferroelastic, but experimentally it is found that these two
quantities have very different values. Hence e, gives a
measure of the pure ferroelastic strain, and e" gives a
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TABLE 11, Crystal structure and spontandous strain parameters of leucite

Unit-cell parametels and spontaneous strain parameters
calc

a (A)
c (A)
ao (A)-
a. (A)-
e3'
e.'

13.0897
13.7530
14.38*
13.3108
0.0332
0.013

1 2.9884
13.8000
1 3.64441
1 3.2589
0.0408
0.0291

Fractional atomic cooldinates fot the tetragonal phase

K
r(1)+
r(2)+
r(3)+
o(1)
o(21
o(3)
o(4)
o(5)
o(6)

0.3663
0.0582
0.1685
0.3933
0.1308
o.0927
0.1 455
0.1342
o.2892
0.4841

obs

0.3654
0.3967
0.6124
0.6406
0.3136
0.5105
0.6790
0.6839
o.5773
0.6175

0.'1171
0.1 654
0.1279
0.0863
0 . 1 1 1 1
0.1310
o.2269
0.0358
0.1212
0.1 665

0.3659
0.0563
0.1 668
0.3929
o.1327
0.0881
0.1 459
0.1 325
0.2894
0.4839

0.3631
0.3971
0.61 15
0.6407
0.3162
0.5135
0.6819
0.6857
0.5733
0.6161

0.1 073
0.1671
0.1269
0.0848
0.1 097
0.1 329
0.2257
0.0359
0.1 1 83
0.1 658

Mean T-O bond lengths (in A) for the tetragonal phase$
calc cubic phase

r(1)-o
r(2)-o
r(3)-o

1.642(17)
1 .648(1 0)
1 .658(1 2)

Xo*

1.646(6) 1.622(2)
1 .654(1 5)
1.663(4)

Atomic coordinates tor the cubic phase

K
r+

0.375
0.0878
0.1 329

0.375
0.375
0.2806

0.125
o.1622
0.1034

0.375
0.0877
0.1 354

0.375
0.375
0.2813

0.125
0.1 623
0.1035

A/ote.'Observed data are from Palmer et al. (1989) and Dove and Palmer (in preparation). The observed structure data are consistent with Mazzi et
al. (1976) and Grogel et al. (1984).

'Quantities defined in the text by Equations 22-24.
.* Value obtained by extrapolation trom high temperature data.
f Value obtained from energy minimization of cubic structure.
+ T denotes disordered tetrahedral site containing Alr^Si2is.
$ Quantities in brackets give standard deviations over four bond lengths.

measure of the nonferroelastic strain. Most of the volume
change associated with the phase transition is due to the
nonferroelastic strain e..

The observed and calculated values for these strain
quantities are given in Table I l. Although the calculated
value of the ferroelastic strain e3 agrees well with the ex-
perimental value, there is a difference of a factor of 2
between the calculated and observed values of the non-
ferroelastic strain e". This is principally due to the fact
that the calculated cubic unit-cell edge length, a., differs
from the experimentally determined value by more than
the differences between any of the other calculated and
observed lengths. That said, the discrepancy is as small
as l.2o/o, so we are really talking of small errors that are
greatly magnified when subtracting two similar large
numbers. It should be noted that the experimental value
of a" was obtained by extrapolation over a range of 650
K away from the actual experimental data, but the dis-
crepancy between the calculated and observed values
cannot be fully accounted for by postulating the existence
ofundetected errors in the extrapolation procedure. The
discrepancies that we have pointed out should not detract
from the fact that the model has given the essential qual-
itative details of the strain distortions, which means that
the model correctly reproduces the couplings between the

order parameters associated with the symmetry changes
and the spontaneous strains.

We can therefore conclude that the basic model is able
to reproduce the phase transition behavior in leucite, with
the correct couplings between the framework distortions,
K ion displacements, and volume and strain distortions.

One other feature ofthe tetragonal structure that is of
interest is the range of tetrahedral bond lengths. In the
tetragonal phase there are three nonequivalent tetrahe-
dral sites, so in principle there could be some Al-Si or-
dering. An analysis of the experimental bond lengths has
suggested that the degree of any ordering will be small,
but it has been noted that the bond lengths for the differ-
ent sites are not equal. Our model has used identical po-
tentials for each of the sites (the assumption of complete
disorder). The calculated structure gives unequal bond
lengths similar to those calculated from the observed
structure parameters (Table I l). We can therefore con-
clude that the experimental structures are consistent with
the complete lack of any long-range Al-Si order. We can
also conclude that the observed strain distortions are not
caused by Al-Si ordering. This has been confirmed by a
calculation for a hypothetical ordered structure, with Al
on the T(2) site and Si on the other two tetrahedral sites.
The strain distortions given by this structure were barely



different from the strain distortions given by our disor-
dered model. A more detailed study elucidating the role
of Al-Si ordering will be presented elsewhere (Dove et al.,
in preparation).

Z,orsrrn
Zoisite, CarAlr[O/OH/SiOr/SirO?], is an Fe-free ortho-

rhombic (Pnma, Z: 4) end-member of the epidote group.
The structure, as determined by Dollase (1963), contains
SiOo and SirO, groups, as well as chains of edge-sharing
Al octahedra running parallel to [010]. H bonds are lo-
cated between these chains. The Ca atoms are situated in
irregular polyhedra. If a cutoff value of 2.85 A for bond
lengths is used, both independent Ca atoms are seven
coordinated (Dollase, I 968).

Not only is the complexity of this structure a challenge
for modeling, but it is also a good test case for O-H po-
tentials. Because of the relatively small numbers of H
atoms, one can neglect direct non-Coulombic H-H inter-
actions in a first approach. The modeling of OH groups
is not straightforward. Different potentials have been pro-
posed (Saul et al., 1985; Abbotr et al., 1989a, 1989b;
Collins and Catlow, 1990). The potentials suggested by
Abbott et al. (1989a, 1989b) were derived from energy-
minimum search calculations for brucite OH and mica
OH in a number of structures (e.g., chlorite, clintonite,
lizardite, tremolite). Abbott et al. (1989a, 1989b) sug-
gested a value of p : 2.5 A in Equation 12. They con-
cluded that the O-H distances and orientations are mod-
eled best with Bo" : 30000 kJ/mol for trioctahedral mica
layers and tremolite, and -Bo, : 24250 kJlmol for brucite
sheets in chlorite. O atoms were modeled as rigid ions
with a formal charge of -2e, and H atoms were given
the charge *le. Collins and Catlow (1990) successfully
modeled micas using a model similar to the one described
in the present paper. They modeled the O-H interaction
with the modified Morse function of Equation 14, the
parameters for which are given in Table l. The O in the
O-H group was modeled as a rigid ion with a charge of
-1.426e, whereas the H atom was assigned a charge of
+0.426e. The O-H bond distance in the model was cal-
culated to be about 60/o larger than the experimentally
determined one (Collins and Catlow, 1990). All other O
atoms were modeled with a core and a shell. Neither
model has been tested by HLDC, which we regard as the
most stringent test of any O-H potential.

Dollase (1968) determined the O-H distance tobe 1.2(2)
A and the length of rhe OH . . . H H bridge r"obe 2.76(2)
A. Linke (1970) confirmed by single-crystal polarized lighr
IR spectroscopy that the O-H dipole is parallel to [001].
We tested the potential parameters of Abbott et al. (1989a,
1989b) and Collins and Catlow (1990) in our model of
the zoisite structure. The potential parameters of Coltins
and Catlow (1990) did not work initially, because of the
large attractive electrostatic forces on the H atoms from
O atoms not belonging to the OH group. The inclusion
of short-range repulsive interactions using the potential
parameters of Abbott et al. (1989a, 1989b) led to a sat-
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TABLE 12, Comparison of observed data and results of SLEC
and HDLC for zoisite

obs Model 1 Model 2
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a (A)
b (A)
c (A)
o-H (A)
<oH,[001]
oH-o (A)
ioH (cm 1)

Other optic
phonons

1 6.1 93(2)
5.549(1)

1 0.036(2)
1.2(2)

e
2.75(21

-3160

<1 160 cm 1

15.927
5.534
9.731
1 . 1 2 6
0.06
2.44

-2325

50-1069. cm-1

15.725
5.608

10.003
0.983
0.02
2.66

-4029

50-1072 cm 1

/Vote: Observed data were taken from Langer and Lattard (1 980); model
1 uses the parameters of Abbott et al. (1989a, 1989b), and model 2 uses
those of Collins and Catlow (1990) as described in the text.

. Excluding the modes related to the bending vibration of the H bond at
-1420 cm 1.

isfactory relaxation ofthe structure. The calculated lattice
parameters for both models are given in Table 12. As
may be seen from Table 12, both models reproduced the
orientation of the OH group with respect to the c axis
very well. Both models gave an O-H bond distance that
was too short, the modified Collins and Catlow model
giving an even shorter bond than the Abbott et al. (l 989a,
1989b) model. There are two different Ca polyhedra in
zoisite structure. The O-Ca-O bond angles are modeled
to better than 8o for polyhedra, whereas the bond lengths
are all about 0.1 A too short.

HLDC were performed to elucidate the reliability of
the OH potential further. We calculated the phonons at
the I point. IR studies in the frequency range above 400
cm-r were performed by several authors, e.g., Linke
(1970), Langer and Raith (1974), Langer and Lattard
(1980), and Winkler et al. (1989). The IR spectrum of
zoisite in the region above 400 cm-' may be subdivided
into three regions: the OH stretching vibrations occur at
around 3160 cm-', there is a distinct band at about 2160
cm-l, and the normal lattice modes have wavenumbers
<1160 cm-'. The normal lattice modes below approxi-
mately 1160 cm-r are correctly calculated using both
models; the calculated frequency range is 50-1070 cm-'.
Langer and Lattard (1980) assigned the 2160 cm-' band
to an unusually strong, second H bridge. On deuteration
this band shifts to lower frequencies (Langer and Lattard,
1980) and shifts to higher frequencies with increasing
pressure (Winkler et al., 1989). Because of these shifts
and the unlikelihood ofthe existence ofsuch a strong H
bridge in silicates [the stretching frequency is expected to
shift from approximately 3700 cm ' to 2160 cm-' when
the OH-O distance is approximately 2.5 A (Nakamoto et
al., 1955), Winkler et al., (1989) concluded that the pre-
vious assignment of Langer and Lattard (1980) was in-
correct and suggested that, instead, the band was caused
by a mode-mode coupling of the bending vibration of the
H bond and a lattice mode. In general, the OH stretching
frequency is a function of the OH-O distance and the
O-H distance (Nakamoto et aL, 1955; Novak, 1974). Both
models gave O-H distances that were too short, and this
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14

12

10

-0 .1

-o.2
0 20 40 60 80 100

mol % Pyrope
Fig. 5. Comparison of experimentally determined excess

volume of pyrope-grossular garnets (points, Haselton and New-
ton, 1980) and calculated values (line). Note that there is no
consensus on the best value for the lattice parameter of pyrope
(see text).

would increase the stretching frequency. On the other
hand, both models also gave short OH-O dislances, which
would decrease the stretching frequency. The HLDC that
we carried out using the model of Collins and Catlow
(1990) did not give any modes with frequencies between
1073 cm ' and the high OH stretching mode frequencies
at 4032 cm-l. The model with the potential parameters
ofAbbott et al. (1989a, 1989b) gave high-frequency modes
at 1420 cm I and 2325 cm-'. An analysis of the respec-
tive eigenvectors showed that the modes around 1420
cm-r are caused by the bending vibration of the OH-O
H bridge, whereas the modes around 2325 cm ' were due
to the OH stretching motion. As we are convinced that
our HLDC are sufficiently reliable, we conclude that the
experimentally determined vibration at approximately
2160 cm-' is due to anharmonic effects. This supports
the suggestion of Winkler et al. (1989) that this band is
due to a coupling process.

GlnNnrs

Aluminosilicate garnets have the general formula
A3Al2Si3O,,. They are cubic (Ia3d) with Z: 8 formula
units per unit cell. We modeled grossular (gr) with A :

Ca and pyrope (py) with A : Mg. To demonstrate that
the potentials used are realistic enough to model small
effects, like the excess volume of mixing and the excess
enthalpy of mixing, we carried out calculations for solid
solutions between the end-members. These are denoted
by either pyXgr(I0 - X) or grXpy (10 - X). The molo/o
of the respective component divided by l0 is given as X.
The end-member which is given first indicates the struc-
ture which was used at the beginning of the relaxation.
The effective A-O potentials were constructed from
Equations 19 and 20.

In general, excess properties deviate by less than lolo
from the value which the respective property would have

06
20  40  60  80  100

firol o/o Pyrope
Fig. 6. Comparison of experimentally determined excess en-

thalpy of pyrope-grossular garnets (points, Haselton and New-
ton, 1980) and calculated values (line).

if ideal mixing took place. This ideal behavior can be
obtained by linear interpolation between the end-mem-
bers. Although the values of the excess properties are
small, they are important for the P, Z dependence of the
thermodynamic functions. For this reason the mixing be-
havior of a large number of silicates and nonsilicates have
been studied (e.g., Newton et al., 19771, Newton and Wood,
1980; Haselton and Newton, 1980). Haselton and New-
ton (1980) published a summary of the excess properties
ofpy-g solid solutions. Their results for the excess vol-
ume and excess enthalphy of mixing are given in Figures
5 and 6, respectively. We note that there seems to be no
consensus as to the best value for the lattice constant of
dry synthetic pyrope. Geiger et al. (in preparation) com-
pared several observed cell parameters. For similar syn-
thesis conditions (30-40 kbar, 1673-1723 K), the mea-
sured values ranged from 11.4540(5) to 11.459(l). Ifthe
value of 11.454 is taken, there is no region of negative
excess volume.

The structures of the end-member garnets were mod-
eled satisfactorily (Table l3). The calculated elastic con-
stants are too large by approximately 20o/o. The excess
volumes and enthalpies are given in Table 14 and Figures
5 and 6. We have assumed that the excess enthalpies are
primarily due to excess lattice potential energy. The ex-
cess properties are calculated to within the correct order
of magnitude. The experimentally determined excess vol-
ume deviates by only approximately 0.3o/o from the ideal
behavior (Haselton and Newton, 1980) at py5gr5 com-
position. Our calculated value of 0.50/o is therefore judged

as satisfactory. Furthermore, Haselton and Newton (1980)
point out that the excess volume is asymmetric. The mag-
nitude of this asymmetry cannot be determined until more
accurate data on the lattice parameters for this solid so-
lution series, especially for the pyrope-rich members, be-
come available. The model gives a slight asymmetry of
the excess volume. The agreement between the calculated
and observed values ofthe excess enthalpy is not as good
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Tmu 13. Crystal structures and elastic constants (units of Mbar) TABLE 14. Calculated mixing properites of pyrope-grossular sol-
of pyrope and grossular id solutions

Pyrope Grossular

catc

Molar Ex@ss Lattice Excess
volume volume energy energy

(cm3/mol) (cft3/mol) (ev/mol) (ev/mol)
a (A)
x
v
z
cu
C,"

't1.454
0.0328
0.0502
0.6534
2.87
1.05
0.92

1 1.302
0.0311
0.0549
0.6526
3.39
1.32
1  . 1 5

1 1.846
0.0380
0.0450
0.6518
3.22
0.91
1.05

11.565
0.0356
0.0515
0.6506
3.97
0.98
0.94

pyrope
pygSrl
py7gr3
py6g14
pysg15
gr5py3
g€pyl
grossular

108.68
109.68
11  1 .48
112.30
113.08
114 .51
115 .82
116 .43

0.22
0.47
o,52
0.53
0.40
0.17

338.03
337.80 0.03
337.36 0.07
337.16 0.07
336.95 0.08
336.95 0.08
336.56 0.07

Note: x, y, z are the fractional coordihates for the O atom; all othel
coordinates are defined for special positions of the space group. Observed
data for the crystal structures were taken from Hazen and Finger (1978);
elastic constants for pyrope are from lsaak and Graham (1 976), and elastic
constants for grossular are trom Bass (1989).

as for the excess volume, although it should be noted that
the size of the effect is as small as 0.0206 of the calculated
lattice energy.

Table l5 shows a comparison of some of the calculated
k : 0 optic mode frequencies for pyrope with corre-
sponding experimental values determined by IR spec-
troscopy. The agreement is reasonably good. We have
also calculated the specific heat and the entropy for py-
rope. The density of states was calculated by using the
mean point of the Brillouin zone of an I-centered cubic
lattice at ('/u, Yu, Yr) (Baldereschi, 1973). The calculated
values are compared with the data published by Haselton
and Westrum (1980) in Table 16. The agreemenr wirh
the experimental data is not as good as for other systems.
We attribute this to the neglect of Mg anharmonicity or
site disorder in the model, which will cause the entropy
to be underestimated.

GnNnnLr, ANALysrs

The previous sections have shown that the basic po-
tential model used in this paper is able to reproduce a
wide range of alurninosilicate structures. A general quan-
titative assessment of the accuracy of the model is there-
fore possible. We need to define two standard deviations
for this:

(2s)

f r;(P'o"=^r,r,"'"1'1"' (26)o*": 
l lr  3\ p",- ) )

where.Fb" 41d fidc are observed and calculated quantities
(such as cell edges, bond lengths), respectively. N is the
number of quantities used in the calculation of these stan-
dard deviations. The weighted deviation, o*o, gives a
measure of the agreement as a proportion and will be
used for quantities such as the unit-cell edges, which have
a wide range of values. On the other hand, the quantity,
oo, gives a measure of the absolute agreement and is use-
ful for quantities such as bond lengths, which do not
change much from one structure to another. It is instruc-

tive to compare calculated values of ao with the regular
standard deviation for the experimental data, o, given as

"": [#,? o'' - 'ie'f

(27)

where P is the mean of the observations. We expect that
oo will be less than o if the model has given satisfactory
results.

It should be noted that, in the analysis presented below,
we have included the results from both models of zoisite.
We have excluded the results for the cubic phase of leu-
cite, since the experimental data are necessarily for high
temperatures.

Unit-cell edge length

Averaging over all the cell edge lengths, we obtain

mean observed cell edge length:9.3313 A
mean calculated cell edge length : 9.22t1 A

oro : 0.0184
N :  3 6 .

The model, in general, reproduces the cell edge lengths
to within 2o/o, which gives on average a slight underesti-
mate of lol0.

Bond lengths

Averaging over all the Si-O bond lengths, we obtain

mean observed bond length: 1.628 A (o : 0.029 A)
mean calculated bond length : 1.641 A (o : 0.041 A)

TABLE 15. Calculated and observed T," k : 0 optic phonon
frequencies in pyrope

Obs (cm-t; Calc (cm ')

":[-5,?o,* - u,'f

331
387
420
450
480
508
836
868
969

339
386
424
463
482
539
877
907
967

A/ote: Observed data were taken from Geiger et al. (1989).
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TABLE 16. Heat capacities, Cp in (J mol-' 6-';, and third law
entropies, St, - S8 in (J mol-' K-'), of pyrope gros-
sular garnets

obs calc

c",  150 K 171.5 157.75
Ce,298 K 325.3 323.04
So, - 53, 150 K 95.56 74.45
so, - s3,298 K 266.3 237.32

A/ote-'Observed data were taken from Haselton and Westrum (1980);
the Cvto Cpconversion factors weretaken from Holland and Powell (1989)'

oD:  0 ' 021  A
o*o :  0 .013

N :  3 0 .

The model gives, in general, a slight overestimate, but
nevertheless the bond lengths are reproduced to within
lo/o.

For A1-O bond lengths we need to consider both tet-
rahedral and octahedral bond lengths. From the averag-
ing we obtain

mean observed tetrahedral bond length : | .7 40 A
(a : 0.033 A)

mean calculated tetrahedral bond length: 1.740 A
(o :  0 .041  A )
o D  : 0 ' 0 1 7  A
o*o :  0 '010

N : 9
mean observed octahedral bond length : 1.907 A

(o : 0.073 A)

mean calculated octahedral bond length : 1.396 A
(o : 0.073 A).il:8ilf

N :  5 4 .

The agreement is comparable with the agreement for the
Si-O bond lengths. It may seem remarkable that the use
ofa single Al-O interaction for both types ofcoordination
polyhedra can give similar accuracy for both types of bond
lengths.

The statistical analysis of all bond lengths shows that
the model can give individual bond lengths to an accu-
racy of better than2o/o. The mean calculated bond lengths
are within lolo of the observed mean values. There is a

distribution ofactual bond length values in the different
crystals, and our model reproduces this distribution.

Bond angles

We now perform a similar analysis for the tetrahedral
and octahedral bond angles, including Si-O, Al-O and
disordered bonds in the data set

mean observed tetrahedral angle : 109.49"

mean calculated tetrahedral angle : 109.44

oD:  1 .38o
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mean absolute difference: 2.18"

N : 7 2

mean observed octahedral angle : 89.96'

mean calculated octahedral angle : 89.89"

o o :  l ' 2 3
mean absolute difference: 1.85"

N : 5 4 .

This analysis, and the previous bond length analysis,
enables us to conclude that the size and shape of the Al-

Si tetrahedra and octahedra can be accurately reproduced
by the model for the whole range of different aluminosili-
cate structures studied. We are confident that other struc-
tures can be modeled with similar accuracy.

Cation coordination

The potentials we have used for Mg-O, Ca-O, and K-O

interactions have been obtained independently ofthe Al-O

and Si-O potentials described above. The averages over
all the systems give

mean observed Mg-O distance :2.136 A (": 0.088 A)

mean calculated Mg-O distance :2.096 A (" : 0.078 A),:_:!_zTr:
N : 8

mean observed Ca-O distance :2.575 A (": 0.229 A)

mean calculated Ca-O distance : 2.495 A (" : 0.246 A)

':-::-"::r:

N :  3 5
mean observed K-O distance : 3.028 A (" : 0.072 L)
mean calculated K-o distance :2.956 A t" : 0.065 A)

:;:311,f
N :  6 .

We conclude from these figures that the model is also
capable ofreproducing the general cation-O bond lengths
to within 4o/o in all cases, and the average bond lengths
are in even better agreement.

Bond orientations

The structure is characterized by the size and shape of

the coordination polyhedra, which we have shown are

accurately reproduced by the model, and also by the ori-
entations ofthe polyhedra. These orientations can be an-

alyzed by considering the orientations of the individual
bond vectors. We have calculated the root-mean-square
angle between the observed and calculated bond vectors
for the structures we have modeled:

tetrahedral (Si,Al)-O rms angle : 2.49"

octahedral Al-O rms angle:2.24'
Mg-O rms angle : 1.88"

Ca-O rms angle : 2.51"

K-O rms angle:2.13.



The rms angle, in all cases, was found to be larger than
the mean of the angle moduli. It is clear from this analysis
that both the shapes and the orientations ofthe polyhedra
are correctly given to within 2-3o on average. In the full
analysis, the maximum difference was 6".

There is an interesting interplay between short-range
and long-range interactions in aluminosilicate structures.
For any aluminosilicate structure, there will be a group
of normal mode type distortions in which the basic rigid
units (tetrahedra or octahedra) remain undistorted and
only the connecting frameworks is distorted. These are
called rigid-unit modes, and they form a small subset of
the full set of allowed vibrational normal modes. The
number of rigid-unit modes will depend on the structure,
and the existence of any rigid-unit modes will also de-
pend on the wavevector. This idea was first pointed out
in connection with the phase transitions in quartz (Grimm
and Dorner, 1975; Berge et al., 1986), and a general
method for the evaluation of the set of rigid-unit modes
in any crystal structure has been described by Giddy et
al. (in preparation). From the point of view of structure
modeling, the existence of rigid-unit modes presents an
additional challenge since it is then possible to get the
short-range aspects of the structure exactly correct (for
example, the Si-O bond lengths) without consequently
getting the framework structure correct to the same ac-
curacy. The latter aspect is determined by the longer-
range forces, namely the electrostatic interactions and the
O . . . O dispersive interaction.

Suurvrlnv

We have reported lattice energy minimization studies
for a wide variety of aluminosilicate minerals, and we
have augmented some of these with harmonic lattice dy-
namics calculations. Our primary aim has been to test
one specific model, and we have been able to conclude
that the basic model works rather well. We have made
some minor modifications that we believe have im-
proved the performance of the model. We have also in-
troduced a method that can handle site occupancy dis-
order (either due to order-disorder phase transitions or
solid solution formation), and we have shown that this
method works well as far as the structures and energetics
are concerned.

Our criteria for testing the potential model have gone
beyond the reproduction of structures only; we are more
interested in using the potentials in the study of more
subtle effects, such as the properties associated with phase
transitions. We have therefore used the model to predict
a phase diagram (AlrSiO,) and to calculate the following:
the coupling between an order-disorder phase transition
and spontaneous strain distortions (cordierite), the simi-
lar couplings between a displacive phase transition and
spontaneous strain distortions (leucite), departures from
ideal solid solution behavior (pyrope-grossular solid so-
lution), and thermodynamic quantities. We have found
that the model always gives the correct qualitative be-
havior, and in many cases, we have found that the quan-
titative agreement between calculation and experiment is
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far better than one might have expected for such a simple
model. The reader should note that these tests are push-
ing the model to limits beyond those for which it was
designed. Although the discrepancies between calculated
and observed properties point to inadequacies of the
model, the essential result is that the model is nearly able
to account corectly for such subtle effects.

If we combine our results with the results from the
applications of this basic model to MgrSiOo (Price and
Parker, 1988), SiO, (Sanders et al., 1984), and zeolites
(Jackson and Catlow, 1988), we can conclude that the
basic model described in this paper is a genuine transfer-
able model that can be applied to a wide range of struc-
ture topologies (ortho-, chain-, layer-, and framework-
aluminosilicates). It can model both structural and lattice
dynamics aspects reasonably well. We have also tested
the model on a number of other systems that have not
been reported here (due to space limitations) and have
found results that support our conclusion of the accuracy
and transferability of the model.

However, we believe that the model can, and should,
be improved, particularly with regard to the Al-O poten-
tials. Although such an enterprise may seem daunting,
the way ahead is clear. The potential parameters of the
basic model can be refined by fitting calculated structures,
elastic and dielectric constants, and vibrational frequen-
cies to available observed data for a wide range of sys-
tems. This point was discussed by Dove (1989). Our own
preliminary investigations of the model for andalusite
have shown that minor modification of the value of the
O-AI-O bond-bending force constant for the five-coor-
dinated Al does lead to significant improvements in the
resultant calculated structure. However, it is our opinion,
supported by the experience of similar enterprises for
modeling organic materials (Dove, 1989), that focusing
on only a single system invariably leads to a potential
model that is no more transferable than the starting point;
instead, a wide number of structures is required for the
development of a transferable model.

In the meantime. we believe that reliable results can
still be obtained from studies using the model as it stands.
One of the features we wish to highlight is the success of
the potentials for Mg-O, Ca-O, and K-O interactions ob-
tained from MEG calculations (Post and Burnham, 1986).
We have also shown, in unreported work, that some of
the other potentials given by Post and Burnham are
equally useful. Additional potentials obtained by this
method (e.g., for Rb-O and Cs-O interactions) would be
extremely helpful.

We hope also that we have been able to demonstrate
the predictive benefits of the model. This point has been
exemplified by our discovery that the mechanism of the
ferrodistortive phase transition in leucite is virtually in-
dependent ofany Al-Si ordering. Our successful calcula-
tions of phase diagrams and excess properties of solid
solutions also point to future applications of the model'
It is our hope that the general analysis we have performed
will now enable the model to be used with some confi-
dence, given the knowledge of the limits of its reliability.

WINKLER ET AL.: LATTICE ENERGY AND LATTICE DYNAMICS
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