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Vectors, components, and minerals
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Ansrn-l.cr

Ionic substitutions in minerals are directed chemical displacements and may be treated
as vector quantities. This approach, pioneered by J. V. Smith and J. B. Thompson, Jr.,
has many advantages over the barycentric coordinates (such as Gibbs triangles) long fa-
miliar to mineralogists and petrologists. Among these are the convenience of plotting
recalculated mineral formulas directly on x-y (cartesian) diagrams; a possible reduction in
the number of end-members, e.g., in the spinel and garnet groups, resulting from the
valence insensitivity of exchange operatqrs; the identification of possible new end-mem-
bers, illustrated with composition planes that have up to five vertices; and the applicability
of the same set of vectors to different minerals, illustrated with regard to pyroxene, pla-
gioclase, and melilite.

Planar vector diagrams for a given mineral group can have chemical limits, generally
dictated by ionic charge and bounded by lines representing zero contents of individual
ions, as well as narrower crystal-chemical limits, generally dictated by ionic radii and
bounded by lines representing constraints such as all Si as tetrahedral and Mg as octahe-
dral. A given vector does not necessarily imply that a given mineral will be correspondingly
zoned chemically, unless the mineral's composition is very close to a chemical or crystal-
chemical limit.

INrnonucrroN
Geologists conventionally plot mineral and rock com-

positions on triangles; the suggestion to plot composi-
tions according to a center of gravity (barycentric coor-
dinates) was made by J. W. Gibbs in 1878 (reprinted in
Gibbs,  1906,1961,  p.  l l8) .  J .  B.  Thompson,  Jr .  (1981,
p. 159) cites W. L. Bragg (1937;' cf. Bragg et al., 1965, p.
23) for first suggesting that the compositions of complex
mineralogical solid solutions could be represented by the
extent of substitutions from a given end-member com-
position rather than by proportions of a bewildering va-
riety of individual end-members. This approach was used
by Smith (1959) for model amphibole compositions and,
much amplified, by Thompson (1981, 1982) for amphi-
boles and other minerals.

Ionic substitutions in minerals, generally represented
by an undirected notation such as Na + Si : Ca + Al
(e.g., for plagioclase), can be represented more succinctly
by directed exchange operators (Burt, 1974) such as
NaSi(CaAl)-,. This notation for the operation of ionic
exchange was introduced in class lectures in the late 1960s
by J. B. Thompson, Jr. My initial interest in exchange
operators (Burt, 1974, 1979) was prompted by the real-
ization that they must be intrinsically acidic or basic in
the electronic or Lewis (1938) sense, because different
ions possess diferent electronic environments. For many
years, exchange operators were used barycentrically (as
points on triangles) or algebraically or in terms of their
chemical potentials ("exchange potentials"), rather than

as composition vectors. My first use of composition vec-
tors was in a systematization of lithium micas (in Cernj'
and Burt, 1984). Independent ionic substitutions in min-
erals, such as in this case LiAlFe , and FeSiAl -2, are di-
rected chemical displacements (i.e., they have both a di-
rection and a magnitude) and are as much vectors as
physical displacement operations (cf. Hotrmann, 1966,
1975). The starting point for chemical displacement op-
erations was termed the "additive component" by
Thompson (1981,  1982).

The unique feature of my vector diagrams was that
they included a scaled vector inset that showed the al-
gebraic relations among various ionic substitutions
graphically. Individual vectors on this scaled inset can be
labeled by ions that are not involved in the substitution
and are constant along their length. Their slopes corre-
spond with the slopes of isocomposition lines on the as-
sociated composition diagram. This labeling of vectors
by noninvolved ions is somewhat analogous to the label-
ing ofunivariant lines around an invariant point by non-
involved phases (e.g., Zen, 1966), and it can be extended
into the third dimension.

This vector approach has also been applied to phyllo-
silicates in general (Burt, 1988), to tourmaline (Burt,
1989a), and to alarge variety of rare earth-bearing min-
erals (Burt, 1989b). The purpose of this article is to make
some generalizations based on this previous work and to
give additional examples of the application of vector di-
agrams to several mineral goups.
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Fig. 1. Diagrams showing the composition plane of franklin-
ite spinel, (Zn,Mn,*,Fe,*)(Fe3*,Mn3*)rOo. (A) Exchange operator
or barycentric representation of the system FerOu-MnFe ,-
ZnMn-r. (B) Exchange vector representation of compositions de-
rived from FerOo by the vectors ZnFe_, and MnFe_,.

MrNnn c.LocrcAl ExAMpLEs

Franklinite and related spinels

Exchange operators, a type of chemical component, are
electrically neutral, and an operator such as MnFe , can
represent either Mn2*(Fe,*) , or Mn3*(Fe3*)_,. Mn- and
Fe-bearing minerals therefore can have fewer compo-
nents than one might infer from the number of named
end-members, and certain "end-members" can be com-
positional intermediates in a solid solution series (al-
though this does not necessarily make them invalid as
mineral species).

As an example, consider spinels related to franklinite,
(Zn,Mn2*,Fe2+)(Fe3+,M1r+)rOo. The five possible oxide
components areZnO, MnO, FeO, FerOr, and MnrOr. This
is obviously too many components, because franklinite
belongs to the four-component system Zn-Fe-Mn-O. One
could name six end-members: ZnFerOo, ZnMnrOo,
MnFerOo, MnMnrOo, FeFerOo, and FeMnrOo. How many
components does this system really have? Only three, as
shown on a barycentric exchange operator representation

(Fig. 1A) that was derived following the method of Burt
(1974), and a subsequent exchange vector representation
(Fig. lB). In a sense, franklinite belongs to the ternary
system FerOo-Mn.Oo-Zn.Ou, although the last oxide com-
position is unstable (equivalent to a mixture of 3 ZnO
andt/zOr), and the accessible compositions define a quad-
rilateral with the vertices Fe.Oo, MnrOo, ZnMnrOo, and
ZnFerOo (e.g., Mason, 1947).

For Figure lB, FerO. is the additive component
(Thompson, 1981, 1982); other additive components
could have been used instead, and each would have gen-
erated the same diagram. Inasmuch as vector operations
are commutative, the exchange operations can be applied
in any order. Vector operations are also associative, so
that operations such as ZnMn , can be considered as
ZnFe ,, then FeMn ,.

This diagram also illustrates two types of limits to such
diagrams, chemical and crystal-chemical. Strictly chem-
ical limits are those applied by stoichiometry alone and
are, for this diagram, the limits defined by the three lines
Zn : 0 (horizontal), Mn : 0 (vertical), and Fe : 0 (-
45"). These define a triangle with corners FerOo, MnrOo,
ZnrOo. The last corner, although chemically attainable,
must be unstable as a spinel because trivalent Zn does
not exist in minerals. The three points labeled ZnMn-,,
ZnFe-,, and MnFe ,, are only attainable mathematically;
they do not represent obtainable chemical compositions.
A second, more restrictive set of limits is provided by
crystal-chemical considerations. This is outlined in solid
lines and here defines a quadrilateral. Examples are given
below for systems in which the chemical limits alone de-
fine quadrilaterals and pentagons rather than triangles.

A vector representation such as Figure lB would be
especially useful for interpreting electron microprobe
analyses of franklinite. Although valences of Mn and Fe
may not be known accurately, lines of constant Mn (of
any valence) are vertical and ofFe (ofany valence) have
a slope of -1. Lines of constant Zn are horizontal, as
shown. These slopes are parallel to the slopes of the three
vectors in the scaled inset labeled Mn, Fe, and Zn, rc-
spectively, according to the noninvolved elements or ions.

The basis vectors ZnFe-, and MnFe-r on Figure lB
could have been drawn at an angle other than 90'(such
as 60", forming an equilateral triangle) and could have
been scaled differently. The advantage ofusing orthogo-
nal basis vectors ofequal length is that compositions can
be plotted on ordinary graph paper. Similarly, analyses
or recalculated mineral formulas, commonly recorded on
an electronic spreadsheet, can be plotted on ordinary x-y
diagrams (such as Zn vs. Mn in this case).

The scaled inset diagram also shows the derived vector
ZnFeMn ,, which represents a possible coupled substi-
tution. Numerous other coupled substitutions could be
derived by linear combinations of the two basis vectors
MnFe-, and ZnFe'; ZnMnFe r, for example, would
represent their sum. Note that solid solution mineral
compositions need not fall along such vectors unless the
compositions approach a side line or some other crystal-
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Fig. 2. Vector diagram showing the accessible composition
plane of calcium manganese iron garnet, of general formula
(Ca,Mn2*,Fe2*)r(Fe3*,Mn3*)rSirO,r. Compositions shown are de-
rived from that of andradite bv the basis vectors MnCa , and
FeCa-,.

chemical limit. Note also on Figure lB that the MnFerOo
phases jacobsite (cubic) and iwakiite (tetragonal) are
compositionally only intermediates of a solid solution se-
ries between Fe.Oo and MnrOo, although as ordered nor-
mal spinels, they are valid species (Essene and Peacor,
I  983) .

Garnet group

Garnets can also contain both divalent and trivalent
Fe and Mn. Accessible garnet compositions derived from
that of andradite using the substitutions FeCa-, and
MnCa , (and the derived substitutions MnFe ,) are de-
picted on Figure 2. The composition of calderite, derived
from andradite by MnCa ,, is seen to be intermediate in
a possible solid solution series between "skiagite" and
"blythite" (both unknown in nature, but synthesized at
high pressures, e.g., Fursenko, 1986). The compositions
within the crystal-chemical limits of garnet again define
a quadrilateral because the theoretical, yet chemically at-
tainable, end-member CarSirO,, must be unstable as gar-
net (equivalent to CarSirO, plus CarSiOo plus Yz Or), in-
asmuch as trivalent Ca is unknown.

The dashed isocomposition lines inside the quadrilat-
eral are not labeled on this and most following figures,
but from the vector inset one can see that lines of con-
stant Fe are vertical, lines of constant Mn are horizontal,
and lines of constant Ca have a slope of - l. The chemical
limits of the figure are provided by the lines Mn : 0, Fe
: 0, and Ca : 0; an additional limit at Ca:3 is provided
by the lack of trivalent Ca.

In general, in drawing such diagrams it is a good idea
to seek all the chemical limits, which correspond to lines

\ ,  {Noco){M9o .s lo 5 ls i2oZ
1 -  - \NoCo)A 'S ,2O7

- \ .  |  \ ' Sodo -me l i l r f e "'-r, | .. \
H

n n o r t n'i?3 
"'-? 

Hi;,i.:';'i'"'"'' t

o

A Jodei te

co/v\gsi 206No=o CoAl rsiou
Diops ide  "  Cc ts"

No 2SiS i rOt'\(., c

Fig. 3. Vector diagrams showing the composition planes for
clinopyroxene, plagioclase, and melilite, using as basis vectors
Al,(MgSi)-, and NaAl(CaMC) ,. (A) Clinopyroxene plane. (B)
Plagioclase plane. (C) Melilite plane. See text for discussion.

of zero content of each component. Simply applying the
vectors MnCa-, and MnFe ' to the composition of an-
dradite would have yielded the calderite and "skiagite"
compositions at the corners of a triangle but would have
missed the entire left side of the diagram, including two
additional potential garnet end-members. The "tyranny
of the triangle" would have won again.

Clinopyroxene, plagioclase, and melilite

The diagrams in Figures I and2 involve relatively sim-
ple ionic substitutions, albeit for ions ofvariable valence.
Much more complex coupled substitutions are also pos-
sible. For such cases, it is advantageous to condense the
simple substitution vectors, such as FeMg r and AlFe ';
combining ions of similar ionic size and valence for
graphical pu{poses has long been a familiar procedure.
Most diagrams given below may be considered to be sim'
ilarly condensed.

The same vector operations can be applied to different
mineral groups. Figures 3A, 38, and 3C show how the
same exchange vectors can be applied to the formulas of
diopside (clinopyroxene), albite (plagtoclase), and aker-
manite (melilite). The vector inset shows the horizontal
"Tschermak vector" Alr(MgSi)-' of constant Na and Ca
and the vertical vector NaAl(CaMg) , of constant Si. De-
rived vectors of constant Mg and of constant Al, labeled
on the diagram, are obtained by taking linear combina-
tions of the basis vectors so as to eliminate Mg or A1.
Similar inset vector diagrams in subsequent figures will
not be discussed in the text.

Figure 3,{ shows how the compositions of jadeite and
of "CATS" (CaAlrSiOJ can be derived from that of di-
opside as the corners of a triangle. The chemical limits,
however, define a quadrilateral (unlike the triangles in
Figs. I and 2), with the lines Al : 0 and Ca : 0 con-
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Fig. 4. Vector diagram for possible Be substitutions in the
sodalite group (sodalite-tugtupite-helvite relations). The primary
interest of this diagram is that its chemical limits define a pen-
hgon. See text for discussion.

verging at a fourth vertex at composition Na(MgrSior)
SirOu. The presence of I6lSi in pyroxene is improbable,
however, and the crystal-chemical limit is defined by the
vertical line for Si : 2.

Figure 38 gives an analogous and congruent diagram
for the chemical limits of plagioclase. The main solid
solution here is between albite and anorthite; substitution
of talMg in a feldspar is difficult, although Sclar and Ben-
imofi 1980, have reported the synthesis of the end-mem-
ber CaMgSirO8 at 1200 "C.

Figure 3C gives a similar diagram for melilite, with
gehlenite and "soda-melilite" compositions derived from
the akermanite composition. The chemical limits are more
extensive than for clinopyroxene or plagioclase and define
a sloping triangle with an apex at the composition
NarSiSirOr. Such a composition with the larger tetrahedral
site containing Si is somewhat improbable in melilite
(Goldsmith, 1948, failed to synthesize melilites with any
solid solution toward it), and the vertical line of Si : 2
again provides a crystal-chemical limit that may, how-
ever, be tentative because oxynitride melilite, YrSi3O3N4,
does have three Si (Fukuhara, 1988).

Be in the sodalite group

Numerous natural and synthetic phases isostructural
with sodalite are listed by Hassan and Buseck (1989; cf.
Hassan and Grundy, I 984, I 98 5). Such a long list provides
many opportunities for application of exchange vectors,
but one example involving Be is illustrative. The formula
oftugtupite can be derived from that ofsodalite by double
application of the vector BeSiAl ,, which only affects tet-
rahedral sites. Helvite, on the other hand, although iso-
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Fig. 5. Vector diagram along the line Si : 6 in the previous
diagram showing sodalite-helvite relations. This is a reciprocal
ternary subsystem.

structural with sodalite, only shares Si in common with
it. Figure 4 represents an attempt to relate these two Be-
bearing sodalite structures.

On Figure 4, the horizontal vector is BeSiAl , and the
vertical vector is MnAl(NaSi) r, related to the plagioclase
substitution by the vector MnCa ,. The Ca analogue of
this vector diagram could be used to model Be substitution
in plagioclase. When these vectors are applied to the com-
position of sodalite, the pentagonal figure at the bottom
results. It is doubtful whether many of the compositions
shown are stable with the sodalite structure, although there
is no obvious reason other than dissimilarities between
Na and Mn why they should not be. Hassan and Buseck
(1989) list Si-free aluminate phases with the sodalite struc-
ture. The chemical and crystal-chemical boundaries co-
incide in Figure 4, and they define a composition plane
with five sides for zero values of each of the five elements
Na, Be, Mn, Al, and Si. Such pentagons are not uncom-
mon in the vector world of mineral compositions; Burt
(1989b) gives examples involving the compositions of ap-
atite, pyrochlore, and chevkinite/perrierite.

On Figure 4 the Si : 6 l ine along the vector
MnBe(NaAl) , joins sodalite to a composition close to
that of helvite, Mnr(BeuSiuOro)Sr, and related to it by the
vector 2 MnS(NaCl) ,, as labeled. This relation is also
indicated on Figure 5, which is a reciprocal ternary sub-
system. The compositions at the upper left and lower right
of the rectangle are probably unstable as sodalite struc-
tures, as indicated. Helvite is related to sodalite by the
rather complex vector MnoBe.S(NaoAlrCl) ,, which is also
derived simply by subtracting the formula of sodalite from
that of helvite. Working through this exercise in reverse
shows how such a complex vector can be resolved into
simpler ones.

Space does not permit additional or more complex ex-
amples; others, reviewed by Cernj'and Burt (1984) and
Burt (1988, 1989a, 1989b), involve H gain or loss from
hydrous phases, vacancies, and interstitials and present
diagrams for which the number of anions is not constant.
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SuNrNr.lnY oF FEATURES

Vector diagrams can be plotted on ordinary orthogonal
graph paper or using the standard x-y plotting routines
available in electronic spreadsheet programs. The formula
contents ofindividual phases are plotted directly, without
the need for a barycentric recalculation. Lines of equal
contents of other ions can be determined from the scaled
vector inset that should accompany each vector diagram
(or x-y plot). Basis vectors can be varied according to the
data available.

Exchange vectors are electrically neutral and valence
insensitive; this fact can allow some apparently complex
composition spaces to be plotted on a plane. Examples
given above involve Mn and Fe-bearing spinels (frank-
linite-related compositions) and garnet (andradite-related
compositions). See Burt (1988) for a similar example in-
volving annite. The valence insensitivity ofexchange vec-
tors on mixed-valence diagrams may also be useful for
plotting microprobe analyses.

On the other hand, compositions conventionally plot-
ted on a triangle may be more correctly plotted as a con-
densed vector space. See the vector section ofCernf and
Burt (1984) for an example involving the lithium iron
aluminum micas and Burt (1989b) for an example in-
volving the isostructural alunite, beudantite, and cran-
dallite groups.

Vectors are additive. A complex substitution vector can
therefore be expressed as the sum of simpler ones (as
above, for sodalite-helvite relations). Any convenient
combination of simple independent exchange vectors can
be applied in any order to arrive at a complex actual
mineral composition.

Vector diagrams commonly reveal hypothetical end-
members which can be sought in nature or by experiment
in order to discover the compositional limits of a given
structure type. An example is given for the sodalite group
with up to five chemically determined vertices in a plane.

The boundaries of vector diagrams can be both chem-
ical as determined by stoichiometry (i.e., lines of zero
content of individual elements or ions) and crystal-chem-
ical as determined by valence and ionic radius (i.e., lines
representing additional constraints such as lack oftriva-
lent Zn or of octahedral Si or of tetrahedral Mg). The
chemical boundaries may reveal important parts of the
diagram, which otherwise might be overlooked.

Unless compositions lie very close to a line determined
by chemical or crystal-chemical considerations, the com-
position of a mineralogical solid solution is not necessarily
constrained to vary along a single vector, although it may
do so to a first approximation. Looking for a unique "sub-
stitution vector" in some minerals may be a pointless
exercise, unless account is taken of the compositions of
coexisting minerals and fluids.
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