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ABSTRACT

Both theoretical relations and observed structure data imply the following relationships:
for a series of multi-cation isostructural compounds such as A_B, --- Xp, the unit-cell
volume V and the radius r, of a cation A are related, when the anion and other cations
are fixed, as follows:

V=(@+ qr)(r, + r,y  (p, g =const).
A simplified relation for binary isostructural compounds is:
V=1k(rg + ra)

An approximation based on the above equations results in a linear relationship between
V and ri. Another approximation gives rise to a linear correlation between V and r,. An
application of the latter relationship shows that the effect of two or more cations in a
multi-cation carbonate is equivalent to that of one cation whose radius is an average of the
two. This implies that the molecular volume of a multi-cation carbonate is equal to the
sum of the molecular volumes of the corresponding component simple carbonates. When
the coordinations of cations are the same as in the simple carbonates, the additivity re-
lation gives rise to very accurate values. Regardless of the coordinations, the molecular
volume may still be obtained by addition of component volumes, though with slightly

(k = const.).

lower accuracy.

INTRODUCTION

The effective ionic radii proposed by Shannon and
Prewitt (1969) are widely used in crystal chemal relations.
Shannon and Prewitt (S-P) discovered the surprising re-
sult that the unit-cell volume V appears to be linearly
correlated with the cube of the cation radius 7 for a series
of isostructural compounds. Furthermore, many of the
S-P ionic radii were derived assuming this linearity, the
significance of which was discussed by Prewitt (1985).
The linear relation can be used to test the accuracy of
unit-cell parameters and to predict the formation of new
compounds, the volume relations attendant to solid so-
lutions, the electron spin states of transition-metal cations
and, when structural data are not available, the ionic radii.
The basis for the linearity has not been discussed, how-
ever, and the relationship remains an empirical one. Ha-
zen and Finger (1982) correctly noticed the curvature in
the case of NaCl-type compounds. Indeed, apparent curves
instead of straight lines occur in some cases and the reason
for this is not clear. Because of such questions it is worth-
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while to develop further insight into the correlation be-
tween the unit-cell volume and cation radii of isostructural
compounds.

RELATIONSHIP FOR MULTI-CATION COMPOUNDS

Consider a series of ternary isostructural compounds
A.B,X,. Figure 1 shows a hypothetical unit cell of
A,B.X,. If the origin is set at a specific atom such as A,
there is always at least one chain, composed of a number
of bonds A-X and/or B-X, along which it is possible to
proceed from the origin 0(0,0,0) to E(1,1,1). The projec-
tions of the chain on the three axes are a, b, and ¢, re-
spectively. Each is equal to the sum of the projections of
the component bonds on a specific axis. A bond distance
equals the sum of the radii of the cation and anion. The
unit-cell edges can then be written as:

a= 2 (rx + racosa, + 2 (rx + re)cos o, (1)

J

b= (rx + radeos B, + 2 (rx + re)cos B, (2)

c= 2 (rx + r)eosy, + O (rx + r)cosy,  (3)

where ry + r, and ry + r, are the bond distances of bonds
100
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X-A and X-B, respectively; «;, 8,, v, are the included an-
gles of the ith X-A bond with a, b, ¢, respectively; and
«;, B, v, are the included angles of the jth X-B bond with
a, b, c, respectively.

The unit-cell volume can be calculated from the cell
edges obtained from Equations 1-3. Assume the bond
distance of X-B is ¢ times that of X-A, then ry + 1, =
t(r«x + r4). Substituting into Equations 1-3 gives the re-
lations:

a= 2 (rx + rJeos a; + Dy t(ry + rycos o
J

1

=(ry + r,,)(E cos o; + tz cos aj>
i j

b= (rx + rycos B, + 2, t(rx + rucos B,

=yr o rA)<E cos 3, + tz cos ,BJ)

€= (rx + ra)cos v, + D t(ry + rycos v,
I J

=(ry + rA)<E cos v, + 1, cos 'y,-).
i 7

Then the volume of a rectangular unit-cell is:
V=abc=(ry + 1)’ <2 cos o, + 1, cos aj)
i J
(2 cos B; + t D, cos 3,-)
i J

(2 cos v; + 1, cos 7,) @)

When the anion X and cation B are defined, r, is the
only variable for isostructural compounds A, B, X,. It can
be reasonably assumed that the included angles «;, 3, v,,

S
'l___________

1.0(0,0,0)

o O

O A B Ox

Fig. 1. A sketch of a hypothetical unit cell. The chain of
bonds proceeds along the arrows from O(0,0,0) to E(1,1,1). Its
projections on the three axes are a, b, and c, respectively.

and so on are functions of r,. QObviously, ¢ is also a func-
tion of r,, so the product of the terms after (ry + r,)’ in
Equation 4 is a function of r,. The volume of a rectan-
gular cell can then be written as:

V=1 + r)? 5)

For a nonrectangular unit-cell, the axial angles are also
functions of #,. The unit-cell volume is in the same form
as Equation 5.

Suppose f(r,) has derivatives of orders up to »; accord-
ing to Taylor’s formula, we get:

TaBLE 1. Relationship between the ratio Vi(r, + r.)® and r, of ternary isostructural compounds
Compound ry Vi(ro + 1. Compound ra Vi(ro + 1y Compound ra Vilro + n.)?
AISbO, 0.53 8.92 ScAsO, 0.87 24.82 ScvO, 0.87 25.43
CrSboO, 0.615 8.27 LuAsO, 0.97 23.80 Luvo, 0.97 24.32
GaSbO, 0.620 8.22 YbAsO, 0.98 23.68 YbVO, 0.98 2419
FeSbO, 0.645 7.98 TmAsO, 0.99 23.62 TmvVO, 0.99 2413
RhSbO, 0.665 7.90 ErAsO, 1.00 23.53 Ervo, 1.00 24.08
YAsO, 1.015 23.27 YVO, 1.015 23.83
DyAsO, 1.03 23.14 DyVvO, 1.03 23.60
TbAsO, 1.04 23.19 TbVO, 1.04 23.58
GdAsO, 1.06 22.82 Gdvo, 1.06 23.30
EuAsO, 1.07 22.81 EuvO, 1.07 23.24
SmAsO, 1.09 22.48 SmvVO, 1.09 2295
Oro 0.05 0.40 [ 0.06 0.63 [ 0.06 0.68
r —0.998 r —0.996 r —-0.998

Note: Structural data are from Wyckoff (1965). The ionic radii are Shannon and Prewitt’s (1969) effective ionic radii.
* The term ris the linear correlation coefficient.
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Fig. 2. Linear relationship between the ratio V/(r,, + r.)* and
7, of compounds AAsQ, and AVO, with tetragonal zircon struc-
tures. Structural data are from Wyckoff (1965).

) = Rr2) + (s = ) - )

d2
dri

1
it E(rA —ry? fry + ...
where r{ is a specific value of r,. Since (r, — r9) is very

small, the terms from the quadratic term on are negligi-
ble. We have:

d d
fr) = fry) - rOAd_rAf(r?\) + rAd—rA fr)

=p+qra (p. g = const.).

The unit-cell volume is:

V=(p + qr)(rx + r,)? (p, g = const.) (6)
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Fig. 3. Variation of the unit-cell volume with (r, + r,)* of

oxides M,0, with the corundum structure. Structural data are
from Donnay and Donnay (1963).
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TaBLe 2. Ratio V/(r, + r.)® of binary compounds

NaCl structure Corundum structure Bixbyite structure

Com- Com- Com-
pound Vi( + P pound WVi(r + ) pound  Vi(r + ra)
NiO 7.87 Al O, 36.37 Mn,O, 1003
NbO 7.95 Cr,0, 36.12 In,0, 101.0
MgO 7.90 Ga,0, 36.08 Lu,0, 101.6
CoO 7.93 V.0, 36.08 Yb,0, 100.6
MnO 7.92 Fe,0, 36.27 ™0, 101.1
CdO 7.97 Rh,0, 36.13 TI,O, 100.9
CaO 8.06 Ti,O4 36.35 Er.,0, 100.9
EuO 8.02 Dy,0, 100.9
BaO 8.08 Tb,0, 100.6
Eu,0, 101.4
Sm,0, 101.0
X 7.97 X 36.20 X 100.51
o,/X 0.0091 o,/X 0.0035 o, X 0.0082

Note: Structural data are from Donnay and Donnay (1963).

According to Equation 6, the ratio of V/(ry + r,)? will
vary linearly with r,, as is confirmed by actual crystal
data. Listed in Table 1 are the V/(r, + r,)® ratios and the
radii of A cations of compounds ASbO,, AAsO,, and
AVO,. The well-defined linearity is demonstrated by the
linear correlation coefficients.

Figure 2 illustrates the variation of the V/(r, + r.)®
ratio with r, for compounds AAsO, and AVO, with the
tetragonal zircon structure. The result is two reasonably
well-defined straight lines with negative slopes. The slopes
are always negative in the examples that have been con-
sidered. The explanation for the negative slopes may be
that as the radius of cation A increases, the contribution
to the volume of other cations is eclipsed because large
ions can form a frame to accommodate other cations.

Based on Equation 6, it is easy to understand that the
plot of V vs. (ry + r,)? should be a curve rather than a
straight line, and that as g is negative, the curve is convex
upward. The curvature is determined by the ratio p/q.

SIMPLIFICATION WITH BINARY COMPOUNDS

For binary isostructural compounds such as A_ X,
Equations 1-3 reduce to:

a= D) (rx + r)eos a, = (ry + r) E cosa, (7)
b= (rx + rJeos B, = (rx + r.) 2, cos B, (8)

c= 2 (rx + rcosy, = (rx + 1) 2 cosy, (9)

According to the definition of Bloss (1971), isostruc-
turalism or isotypism refers to two or more compounds
having atoms arranged in the same type of crystal struc-
ture. In multi-cation compounds, different types of co-
ordination polyhedra must link together so that the rel-
ative positions of atoms vary with the sizes of the cations.
In binary compounds, on the other hand, the relative
coordinates of atoms are almost identical in a given iso-
structural series. Along the same chain of bonds from
(0,0,0) to (1,1,1), the angles defined by any bond, i.e., the
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Fig. 4. Curves of (rx + r,)? vs. ri. The two values of ry are
the radii of O?- in sixfold coordination and of F- in fourfold
coordination, respectively. Both curves approximate a straight
line.

angles «;, 8;, and v, in Equations 7-9, are approximately
the same in different compounds. In addition, because
of the approximation cos(¢ + Ad) = cosf when Af is small,
the cosine values remain approximately constant even if
there are some variations of the angles. Then, based on
Equations 7-9, the unit-cell volume formula for binary
compounds becomes:

V=>Fk(re +ry)? (k = const.). (10)

For a series of isostructural compounds where the rel-
ative positions of all atoms are fixed, the validity of Equa-
tion 10 is self-evident. It is also valid when a structure
has variable coordinates. Listed in Table 2 are data for
three series of isostructural binary compounds with both
fixed and variable structural parameters. The ratios of
V/(rx + r,)® are approximately constant in a given series
without obvious variation with the size of the cation. In
Figure 3 unit-cell volumes are plotted against (r, + ry)?
for oxides M,0, with corundum structures. All points fall
close to a straight line. In fact, Equation 10 is a simpli-
fication of Equation 6. The term gr, in Equation 6 is a
factor that reflects systematic variation of the structures.
Since there is little variation in the case of binary com-
pounds, this term approaches zero and Equation 10 re-
sults.

RELATIONSHIP BETWEEN V' AND r3

Shannon and Prewitt’s (1969) linear relation between
the unit-cell volume and 7* is actually a first approxima-
tion. From Equation 10 it can be seen that a plot of V'
vs. r} will be virtually the same as a plot of (r, + ry)? vs.
r3 because Vand (r, + r)? are linearly related. When (ry
+ r,)? is plotted against 73, the result is illustrated by the
solid curves in Figure 4. The r, values of the two curves
are the radii of six-coordinated O>~ (1.40 A) and four-
coordinated F~ (1.31 A), respectively. The actual rela-
tionship between (r, + r,)?and r3 isa curve. The curvature
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Fig. 5. Unit-cell volume vs. r}; of oxides MO with the NaCl

structure. Though the plot approximates a straight line, the the-
oretical relationship is given by the dashed curve. Structural data
are from Donnay and Donnay (1963).

is slight, however, and the curve approximates a straight
line over a considerable range of ionic radii. The range of
the abscissa of Figure 4 embraces the radii of many dif-
ferent cations. In addition, when experimental unit-cell
volumes are plotted against 73, the points usually will
fluctuate about the true curve because of experimental
errors. Thus the curvature is liable to be obscured and a
linear relationship may be apparent. Figure 5 shows the
variation of unit-cell volume with r}, of oxides MO with
NaCl structures. The straight regression line fits the data
points relatively well. However, the actual relation is rep-
resented by the dashed curve whose equation is V =
7.97(1.40 + r,,)* with the coefficient 7.97 taken from Ta-
ble 2.

For multiple compounds, as a result of the combina-
tion of the convex curves of V' vs. (rx + 7,)* and (rx +
ry)? vs. ri, the convex nature of the curve of V vs. r} is
often rather obvious. Whether the deviation from linear-
ity is displayed depends on the ratio p/g in Equation 6,
the range of ionic radii, and the accuracy or consistency
of the data.

APPROXIMATE LINEAR RELATIONSHIP
BETWEEN V AND r,

The equation involving unit-cell volume V = k(r, +
r,)? for binary compounds contains a cubed term. A plot
of such a function y = ax? is nearly a straight line beyond
the point (1, a) if the range of x is not very large. Since
the ionic radii of O?— and F- are all greater than 1, the
curves of V' vs. (ry + r,) for oxides and fluorides all be-
long to the region exceeding the point (1, a). The rela-
tionship between V and r, can then be replaced by a

linear function; i.e.,
V=Ar, + B (4,B = const.).

Figure 6 shows the variation of ¥ with ry of oxides
MO, with the fluorite structure. The approach to linearity
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Fig. 6. Approximate linear relationship between the unit-cell
volume and r,, of oxides MO, with the fluorite structure. Struc-
tural data are from Donnay and Donnay (1963).

is very good. The regression equation is V' = 178.70r,, —
14.52, with a linear correlation coefficient of r = 0.998.

For multiple compounds, the curvature of ¥V vs. (ry +
ra) is slight. In addition, the convex nature of the plot
for this curve and the concave curvature of the curve for
the cubed function partially offset each other. The rela-
tionship between V and r, therefore also approximate a
linear function, as demonstrated by the following exam-
ples for carbonates.

ADDITIVITY OF THE MOLECULAR VOLUMES
OF CARBONATES

The relationship between the molecular volume and
cation radius is linear for carbonates with the calcite
structure (Table 3). An interesting result is that carbon-
ates with more than one type of cation fall on the line
defined by mono-cation carbonates within an isotypic se-
ries. In Figure 7 the molecular volumes of carbonates
with the calcite structure and having more than one kind
of cation are plotted vs. the average cation radius. The
data points are on the line obtained by linear regression
of the data for carbonates with a single cation species.

TABLE 3. Linear relationship between the molecular volume and
cation radius for carbonates with the calcite structure

Cation radius (A)  Molecular volume (A?)
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Fig. 7. Molecular volume vs. average cation radius of mul-

ti-cation calcite-type carbonates. The points fall close to the dashed
regression line of single-cation calcite-type carbonates. Structural
data are from JCPDS (1950-1986) and Winchell and Winchell
(1964).

This suggests that the average effect of two or more cat-
ions is equal to that of a cation with an average radius.
It is easy to prove that this is sufficient and necessary for
condition that the separate molecular volumes of single-
cation carbonates can be added to give the volume of the
multi-cation carbonate.

If the coordinations of cations in the component single-
cation carbonates are the same as in the multi-cation car-
bonates, the additivity relation gives values close to ob-
served ones. In Table 4 the molecular volumes obtained
through addition are compared with experimental values
and they can be seen to be very similar.

The coordination of a cation should be the same for
the component carbonates and multi-cation carbonates if
the resultant multi-cation molecular volumes are to be
accurate. However, when a carbonate occurs as poly-
morphs, their molecular volumes do not differ very
much. For example, the molecular volumes of calcite and
vaterite, 61.31 and 62.63 A3, respectively, are similar. A
general additivity relation is therefore possible. Regard-
less of the coordinations of cations, the molecular volume
of a multi-cation carbonate can be obtained by summing
the molecular volumes of the component single-cation
carbonates.

TasLe 4. Comparison of the calculated and observed molecular
volumes (A?) of multi-cation carbonates

NiCO, 0.700 44.92
MgCoO, 0.720 46.51
CoCO, 0.735 46.84
ZnCO, 0.745 46.95
FeCO, 0.77 47.22
MnCO, 0.82 51.59
CdCO, 0.95 56.95
CaCo, 1.00 61.31
Linear correlation coefficient 0.991

Note: Structural data are from JCPDS (1950-1986).

Ve Voss Vease Vows
CaMg(CO,), 107.6 107.0 CaBa(CO,), 1328 1337
Ca(Mg, &;Fe, 33)(CO5), 108.4 107.9 PbMg(CO;); 113.9 1159
CaFe(CO,), 109.8 1074 BaMg(CO,), 1226 121.9
CdMg(CO,). 103.6 103.0 BaMn(CO,), 127.7 1324
CaMn(CO,), 1127 1125 MgSr(CO,), 1113 1142

Note: Structural data are from JCPDS (1950-1986) and Winchell and

Winchell (1964).
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TasLe 5. Comparison of the calculated and experimental molecular volumes (A3) of complex carbonates

Relative Relative
difference difference
Formula Veae. Vioe (%) Formula V.o Vips (%)

Ca(Mn, gMg, ,.CO5), 111.7 111.0 +0.63 Ca,Cu(UO,}CO,),-6H,0 400.8 4129 —-2.93
Na,Ca(CO,),-5H,0 249.7 246.8 +1.18 Cal0,CO0,),-3H,0 219.2 219.9 -0.32
Na,Cu(CO,),-3H,0 197.9 204.3 -3.13 K,Ca,(U0,),{CO,)s- 9H,0 697.8 696.8 +0.14
Na,Mg(CO,), 113.1 115.7 —2.25 Ca,Cey(CO,)sF, 337.7 339.5 -0.53
Na,Ca,Sr,(CO,), 309.6 306.9 +0.88 K,Mg(CO,),-4H,0 243.7 240.9 +1.16
K,Ca(CO,), 151.0 151.4 -0.26 KNaCO;-6H,0 234.4 235.4 —0.42
Mg,Ca(CO,), 200.7 204.0 -1.47 K;NaUO,(CO;),-H,O 2949 309.4 —4.69
CaBi,0,(CO,), 159.3 155.8 +2.25 Na,Cu(CO,),-3H,0 189.5 204.3 —-7.24
Li,Cr(CO,),-3H,0 200.1 194.2 +3.04 NaCaSr,Y(CO,),-3H,0 446.6 427.2 +4.54
KAgCO, 84.8 86.5 —1.97 LiKCO, 76.4 77.4 -1.29
Ca,Bay(CO,),, 853.3 836.3 +2.03 MgSr(CO,), 111.3 114.2 —2.54
BaCe(CO,),F 147.8 147.2 +0.41 K;Mg(CO,). 140.8 132.7 +6.10
Ca,Cey(CO,)sF; 337.7 339.5 -0.53 K.SHCO,), 159.1 167.4 —4.96
CaYF(CO,), 120.4 124.6 -3.37 RbAgCO, 91.7 93.5 -1.93
CaZn(CO,), 108.3 107.4 +0.84 NaAgCO, 72.2 74.5 -3.09

Note: Data are from JCPDS (1950-1986) and Winchell and Winchell (1964).

Listed in Table 5 are the calculated and experimental
molecular volumes of 30 multi-cation carbonates. The
molecular volume of H,O in hydrates is taken as 24.40
A3 (Zhang and Ye, 1985). The additivity relation still
holds, although the precision of the relation is diminished.

SUMMARY

The relationship between the unit-cell volume and the
radius of cation A of a multi-cation isostructural series is
V=(p + qr.)(rx + r.)’, where p and q are constants. The
equation for binary isostructural compounds is V = k(ry
+ r,)?, where k is constant. Because the curve of (ry +
r.)? vs. r} is nearly a straight line, the unit-cell volume is
empirically linearly correlated with r3. A nonlinear rela-
tion for multiple compounds is usually observed. The
curve of V vs. r, is the curve for a cubed function and is
nearly a straight line in all cases where the present dis-
cussion is applicable. It is safe to say that V is approxi-
mately linearly correlated with r,. Multi-cation carbon-
ates plot on the line of molecular volume vs. r, formed
by mono-cation carbonates with the same structure. This
implies that the molecular volumes of multi-cation car-
bonates are additive. If the coordinations of the cations
in the component carbonates are the same as in the multi-
cation carbonates, the additivity relation is quite accurate.

A general additivity relation, i.e., one independent of the
coordination, is also acceptable, though with slightly lower
precision.
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