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Application of the Darken equation to mineral solid solutions with variable
degrees of order-disorder

Mlm S. Grrronso
Department of Geological Sciences, AJ-20, University of Washington, Seattle, Washington 98195, U.S.A.

ABSTRACT

A method is outlined for application of the Darken equation to thermodynamic solu-
tions characterized by both compositional and ordering variables. The method is simple
and may be readily implemented by computer software packages designed to perform
symbolic calculus and algebra.

INrnooucrroN

The mathematical expression that relates mole fraction
(X) derivatives of the molar Gibbs energy (G) to chemical
potentials of solution components (p) was first proposed
by Darken and Gurry (1953). They derived an expression
applicable to binary solutions and proposed the multi-
component relation

that generalizes the binary result with the geometrical
construct known as the pseudo-binary section. A pseudo-
binary is defined by focusing on the variation of the mole
fraction of the ith component, from zero to unity, along
a compositional join given by constant mole-fraction ra-
tios of all other solution components. Equation I is ar-
guably the most important relation in the whole of the
thermodynamic theory of solutions. It has come to be
known as the Darken equation.

Application of Equation I to simple solutions of two,
three, or four components is the subject of elementary
texts in solution theory. Complex solution models for
rock-forming minerals, however, often generate expres-
sions for the molar Gibbs energy that do not lend them-
selves to direct evaluation using Equation l. The diffi-
culty arises through the choice ofindependent variables
in the formulation of the expression for the Gibbs energy.
Conceptually, it is often convenient to separate compo-
sitional effects in a mineral solid-solution series from those
effects that describe the extent ofcation ordering among
various sites at a given bulk composition (Thompson,
1969, 1970). For example, in orthopyroxene solid solu-
tions along the Fe2*-Mg binary, one might focus on the
composition of the pyroxene separately from the extent
of Fe'?*-Mg cation ordering between the Ml and M2 sites.
Such considerations give rise to expressions for the molar
Gibbs energy ofsolution ofthe general functional form

G :  G O r ,  l z , . . . , ! , , s r ,  s 2 , . . . ,  J - ) ,  ( 2 )
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where y, through /, denote independent compositional
parameters and s, through s- refer to ordering parameters
ofthe solid-solution series. Expressions ofthis type have
been developed for rock-forming minerals by Davidson
and Lindsley (1985, pyroxenes), Ghiorso (1990, rhom-
bohedral oxides), Hill and Sack (1987, spinels), Sack
(1980, olivines and orthopyroxenes; 1982, spinels) and
Sack and Ghiorso (1989, olivines and orthopyroxenes).
The molar Gibbs energy formulation embodied in Equa-
tion 2 is equivalent to one expressed in terms of a linearly
independent set of n * z thermodynamic components

G :  G ( x r , X r , . . . , x n * ^ ) .  ( 3 )

Though the latter definition for d can readily be inserted
into Equation I for evaluation of the n I m end-member
chemical potentials, the expression for G generated in
practice (Eq. 2) cannot.

A general method is developed for evaluating Equation
I directly, utilizing the molar Gibbs-energy parameter-
ization given by Equation 2. The method is amenable to
automated symbolic computation (e.g., Wolfram, 1988)
and is consequently applicable to expressions for the mo-
lar Gibbs energy of arbitrary complexity.

Derivation and examples

We will develop the method by first examining a sim-
ple application involving one ordering parameter in a
three-component solution. Consider solid solutions in the
system FeTiO.-FerOr. There are three end-member ther-
modynamic components in this solid-solution series. We
take these to be FerO, with the hematite structure (Hm),
FeTiO, with the fully ordered low-temperature ilmenite
structure (O-Il) and FeTiO, with the completely disor-
dered hematite structure (D-Il). Alternatively, the molar
Gibbs energy of this system can be formulated using a
compositional variable, 1 which refers to the bulk mole
fraction of FeTiO, in solution, and an ordering variable,
s, which denotes the structure type at a given bulk com-
position. For the hematite structure type s is zero, and s
is equal to y for the ilmenite structure type. We may then
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This expression is convenient, in that the burden ofeval-
uating the pseudo-binary derivatives has been transferred
away from the molar Gibbs-energy formrrlation. This
transformation allows the derivatives of G to be deter-
mined using automated computer algorithms in symbolic
calculus and algebra-a necessity if G refers to a model
for solid solutions of even moderate complexity. Thus it
remains that the pseudo-binary mole-fraction derivatives
in Equation 8 be obtained. It is convenient to construct
these derivatives in reference to Figure l. The first
expression in Equation 7 may be differentiated with re-
spect to y and s to generate the following identities

/ ^ . ,  \  / ^ , .  , \
l q { ^ }  : {d ( t -Y ) l  : - r
\ay  /x -  \  dY / r . ^

X-n XH

FeTiO3 (ordered)
( y = 1 , s = 1 )

FezOg
( y = 0 , s = 0 )

Fig. l. Illustration ofthe dependency ofcompositional and
ordering variables along the pseudo-binaryjoin appropriate for
the evaluation of the chemical potential of FerOr in the system
FeTiO,-FerOr.

write equivalent definitions

G: GtJ,, s)
: G(Xr^, xo-rr, Xo-rr) (4)

following Equations 2 and 3, and obtain an expression
for the chemical potential of FerO, (with the hematite
structure) by writing Equation I as

where it must be understood that y and s no longer vary
independently when attention is restricted to the pseudo-
binary (see Fig. l). This dependency emerges by differ-
entiating the constant mole fraction ratio

:1,q-rj :-(+) , (e)
\ ds I r*" \ds/ x-

Xo" Xoo

,(x,):,(,+):',

A d G a G
u-^: (t - V-:- - s-:-- d y  d s

e),=
XN

Xon

We proceed to evaluate Equation 5 by recognizing that
the total derivative ofG is given by

d G .  d G
d G  : :

and that ,r" "":;;.1 -"l"-;;n. "oo.un.,rt,ulEquation 5 have definitions in terms of the preferred set
of composition and ordering variables

X"^ : f r ^ ( ! ,  s ) -  I  - y

X"-u : "f".o@, s) : s
Xo-r,: .fo-r,(!, s) : .Y - J. (7)

It should be noted that the partial derivatives in Equation
6 are evaluated holding all other variables in the expres-
sion for G constant. This is the usual method of partial
differentiation and will be denoted below by the absence
of parentheses about the derivative term. Substitution of
Equation 6 into Equation 5 results in

(10)

which results in the re

(y - s)'
: 0 ,  ( l l )

(5) and the identitY

(t2)

Substitution of Equations 12 and 9 into Equation 8 re-
sults in an expression for the desired chemical potential
in terms of simple partial derivatives in the preferred set
of compositional and ordering variables

F,^: G+ (l - 
""-r(*-)*'

-'l
1b( y - s ) -

lation

'(*

?,f,*'* 2E^"

A general procedure may be formulated upon which
this simple example is based. Given Equation 2 as a
working definition of the molar Gibbs function, the tolal
derivative of G may be written:

(1 3)

(14)dG:

. (8)
x^,,

frorn which the partial derivative appropriate for evalu-
ation of Equation I may be constructed:

19) :;y(u\ * ; uc1L.l o5)
\ax,la- 2r, dy,\dx,la ' i as, \ax,/4

xs xp xp
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As in Equation 6, the Gibbs energy derivatives in Equa-
tion l5 are taken without imposing ratio constraints. The
pseudo-binary derivatives in Equation 15 may be eval-
uated by recognizing that each ofthe r + ln component
mole fractions can be expressed as a function of the pre-
ferred set ofcornposition and ordering variables,

X": f"(Yr, ly '. . , Yn, Jr, Jz, . . . , J-), (16)

and that the pseudo-binary constraints enforce n + m -
2 linearly independent first-order differential equations
relating these functions

f, dI - I df,: 0. (r7)
This is because there are only n + m - 2 independent
mole-fraction ratios that fix the orientation of the pseudo-
binary section. In practical terms, these ratios rnay be
specified by selecting a arbitrarily (as long as a is not
taken to be equivalent to i) and allowing B to range over
all possible values, I to n + m, except i and a. The total
derivatives for f" and fu in Equation 17 may be expressed
by the usual expansion in terms of the preferred set of
composition and ordering variables. Substitution for dL
and, dfu results in

There are n + m - 2linearlyindependentstatements of
Equation 18. Treating this set of equations as a system
allows the definition of n * m - 2 unknowns. These may
be specifled by selecting an arbitrary variable, say, /2, for
convenience, and transforming the total derivatives in
Equation 18 into partial derivatives subject to the rele-
vant pseudo-binary constraints. From Equation 18 we
obtain

( le)

which provides a system of n + m * 2equations in the
same number of constraint-derivative unknowns of the
pseudo-binary. As we have specified linearly independent
thermodlmamic components, the system of equations (Eq.
19) can always be inverted (symbolically of course) to
solve for the ratio derivatives. It should be apparent that
all dependent derivatives may be defined from those ob-
tained by solution of Equation 19, i.e.,

Equations 19 and 20 permit evaluation of the pseudo-
binary constraint derivatives in Equation 15, which con-
sequently provides a definition for the fth chemical po-
tential upon substitution into Equation l.

To illustrate the aspects of the general method that arise
through consideration of more than three components,
we generalize the example developed above to include
the components MgTiO, with the fully ordered (ilmenite)
structure (O-Gk) and MgTiO, with the fully disordered
(hematite) structure (D-Gk). Taking the compositional
variable z to denote the bulk mole fraction of MgTiO,
and I to refer to the state of Mg-Ti order-disorder, Equa-
t i ons2and3become

G: G0, z, s, t)
: G(xr^, xo_rr, Xo_ru xo_or, Xo_on). er)

Focusing for illustrative purposes once again on ths
chemical potential of hematite, we see that Equation 1
may be written

,'^ : G+ (r - t'(#)= 
.!s!-.!st' 

(22)

where the three mole-fraction ratios that define the pseu-
do-binary constraint have been explicitly stated. For this
example, Equation l6 becomes

X"^ : f"^(!, z, s, t) : | - y - z

Xo-rr: fo-r,(!, z, s, t) : s

Xo.rr: fo-n(j, z, s, t) : y - s

Xo-ou: .fo-o*(J, z, s, t) : t

Xo-or: .f''-on(!, z, s, t) : z - t. (23)

Equation 22 may now be expanded with the aid of Equa-
tion 15 and the definition for the mole fraction of he-
matite (Eq. 23) to yield the expression

^E#dvr+ i*r^.)
- r"$ffn,r. 2*a*):0. (,8)

2Q,+'"*;(Y) o * 2 QX':*)G+
X"

- C\,) -,-" ...
X>;X@I,XW

V'#,- r"r*),

t,^: G + (y + ̂ #(#)X_+*

+ (v + rf (#J-&**&,*&

+ (y + ,E(#)x**

(24)
xG xG xo.

xv x@ xtu

Evaluation of Equation 24 requires expressions for the
pseudo-binary constraint derivatives. Ditrerentiating the
functionlr- with respect to y, z, s, and I results in:E)JH" (20) /ry'\ :-,

\ dy f xo, xo, xo,
I D n  l ( ) e  I m
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/ ^ , ,  \  / ^  \
{q{*) : Jal
\ as /x- x." x., \ds/r." x." x."

xrixod;xEk .rD!'xMr'xrr

/ ^  \-  Iezl
\aslE;;"*r="

/e{*\ :-/q\ -,
\ 0z l.ron xon xcn \02 I x-" x",, x."

/ " , ,  \  / ^  \
{ , ,"- l  :  - 'q] l l
\ ar /x., x." x., \dr/x., x." x."'  ' . - , - , -

.Yln XNr Xrc\ XTLXNLXDd

/ -  \
l d z \
\ ar / r"" x-n Xo.u' ' 

x^,'x*'x* (25)

We now utilize Equation 19 to construct three indepen-
dent linear equations that relate derivatives of z, s, and t
with respect to y along the pseudo-binary section:

/as\
V l - : - l  : S' 
\dYl x.,, .r.,, r".,,

xDn'-Yocr'xDc"

la'\-s l - l  +  (z  -  I )
\dy/ xo,, xo, xo,

/^  \  /ar \{S )  +  s r - f  :0 .  (26 )
\dy /x . ,  r " ,  x " ,  

- \dy /x . ,  
x " "  x . ,

1r",,,'x".o,'x-o, xD trx€k'xlcr

Solution ofEquation 26 yields
/ ^  \
I o t l  : 1
\dv/1""1." r*" v

Substitution of Equations 28, 27, and 25 into Equation
24 yields an expression for the chemical potential of he-
matite

trt^^: G+ (-y + ,rE(:-\
\ y /

+(.y+.x(j_\
\  s s/

+0+,r f (* \
\  z  

- /

+(y+,,#(i--\, (2s)
\  /  t l

which simplifies to a relation in the form that we set out
to obtain

A d G d G d G d G
11u^: G - 

v-:- 
- i-:- - -- - i-F H m  "  " d y  

' d s  - o z  ' d t

where the remaining dependent constraint derivatives are
obtained by application of Equation 20:

(30)

Equation 30, or the generalized equivalent obtained by
applying Equations 14-20 to Equation l, holds for what-
ever functional form is adopted for G.

Suuvrnnv

The advantage ofthe procedure outlined above is that
it can be accommodated by software packages (e.g., Wol-
fram, 1988) that perform symbolic calculus and algebra
on relatively small computer systems (Mac II or the
equivalent). Chemical potentials may be constructed from
expressions for the molar Gibbs energy of solution with
an ease that allows the exploration of a wide spectrum of
theoretical relations in a short period of time. Attention
is focused less on the algebra and more on the theoretical
and quantitative constraints. Even for systems with a small
number of components, analyzed with pencil and paper,
reduction ofthe Darken equation into a form relieved of
its pseudo-binary constraints is useful and in application
is much less subject to manipulative error.
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