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The ionic model: Perceptions and realities in mineralogy*
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Ansrnacr

The ionic model for crystals was devised shortly after the first crystal structures were
determined in the early part of this century, but its use was hindered by the difficulty of
calculating Coulomb electrostatic sums, and its applicability was diminished by the fact
that empirical short-range repulsive potentials could be obtained only for the simplest of
structures. Over the past two decades these disadvantages have been overcome, by devel-
opment of techniques for fitting short-range potentials empirically to data for any structure,
and by the important innovation of the modified electron-gas (MEG) formalism by which
short-range potentials for closed-shell ions can be determined nonempirically from elec-
tron densities. Both techniques have now been employed to examine minimum-energy
structures and properties of a variety of mineral systems. In a review of studies of TiO,
polymorphs, MgSiO, perovskite, forsterite and its high-pressure polymorphs, quartz,
diopside, and albite, the modern applicability of the ionic model to examination of the
structures and properties of silicates and oxides is explored. The potential of these methods
to contribute significantly to quantitative understanding of crystal-chemical and thermo-
dynamic properties of a wide spectrum of minerals is firmly established.

INrnooucrroN

The ionic model in its simplest form asserts that atoms
in a crystal are ionized, with valence electrons transferred
from cations to anions. The nearest neighbors of posi-
tively charged cations are negatively charged anions and
vice versa. The major forces bonding the ions are elec-
trostatic, obeying Coulomb's law for the force between
point charges. At short separations the ions are held apart
by repulsive forces between partially overlapping electron
densities. These ideas led years ago to the important no-
tion that geometrical constraints of packing are a primary
factor controlling the structures of ionic solids.

There is a common perception among mineralogists
that the ionic model is now outmoded, that it is too sim-
plified, and that because bonding in minerals is rarely
purely ionic, the oversimplified model cannot possibly be
appropriate. But in reality there exists an undeniable, ex-
panding body ofknowledge about mineral behavior ac-
quired using the assumptions of the ionic model. My ob-
jective here is to outline some recent advances made using
ionic models. By illustrating the kinds of things that can
be learned, I hope to show that the ionic model remains
an important tool for mineralogists, crystal chemists, and
even mineral physicists.

* Adapted from the Presidential Address given at the annual
meeting of the Mineralogical Society of America, November 7,
I 989, in St. Louis, Missouri. Figures 7, 9, 10, I 1, and I 2 originally
appeared in Physics and Chemistry of Minerals and are reprinted
here with the permission of Springer-Verlag.
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The ionic model

The ionic structure energy is the energy change when
infinitely separated ions are brought to their positions in
a crystal. The notion that atoms in a solid are held in
equilibrium by an attractive force and a more rapidly
changing repelling force was suggested as early as 1785
by Bo5kovi6,' and Griineisen and Mie both employed
generalized potential expressions of the form (Sherman,
t932)

w,, : -k* I ,  a ,b>o;n>m.  ( l )

A quantitative theory for ionic solids was developed be-
tween l9l8 ar;,d 1924 by Madelung, Haber, and espe-

' Rudjer J. Bo5kovi6, born in Dubrovnik, Yugoslavia, in I 7 I I ,
published a five-volume work titled Opera pertinentia ad opti-
cam et astronomiam maxima ex parte nova et omnia hucusque
inedita in V tomos distributa in 1785. Among other things, this
work contains a "universal law of forces" among particles of
matter, which he developed as an outgrowth of Newton's spec-
ulations on the subject. From his analysis ofcollisions ofbodies,
he argued that the forces acting on elements of matter were al-
ternately attractive or repulsive, depending on the separation
distance, and that at very small distances the repulsive force pre-
dominated, becoming infinite at zero separation. Historians be-
lieve Bo5kovi6's ideas represent the first articulation of what
would in the 19th century become the concept of fields. Inter-
estingly, Bo5kovi6 had earlier (around 1742) developed ideas
about mountain building that are the precursors of isostasy and
had proposed methods for measuring gravity and the mean den-
sity of the earth (Gillespie, 1970).
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cially Born. The interionic pair potential, Wr, (with units
of energy), consists of a Coulomb electrostatic term, de-
rived from the force between nonoverlapping ions con-
sidered as point charges, and a short-range term arising
from ion overlap that is mainly repulsive. Born and Land6
(1918) wrote this potential as

wu:1EE * \ ,  (2 )
rij ril

where z, and z, arc the valences of the interacting ions, e
is the electron charge, r,, is the interionic distance, and b,,
and n are constants characteristic ofthe specific interac-
tion between ions i and j. For known structures, b,, could
be determined from the equilibrium condition

Y:o:  -zrz,e2r ; '  -  nb, , / - (o+t) ,  (3)
dr

from which

brr: -zrz,e2rX-t/n. (4)

The exponent n could be determined for certain simple
substances from bulk compressibilities. If the structure is
fixed by symmetry, and a change in unit-cell volume is
directly related to a change in one unique interionic dis-
tance, n can be obtained ftom d2W/dr2. A value for n of
9, based on the compressibilities of alkali halides, was
frequently used (Pauling, 1928).

From studies of quantum mechanics it had become
clear by the late 1920s that the short-range repulsive po-
tential was more appropriately described by an exponen-
tial form rather than by the inverse power form (Pauling,
1927). Born and Mayer ( 1932) wrote this potential as

W**pt: \rrexP(-r',/pr,), (5)

where 1,,, and p,, are parameters characteristic of the in-
teracting ions i and j. Replacing the short-range term in
Equation (2) with that from Equation (5), the interionic
potential becomes

w,. :z iz je ' *  \exp(- r , , /pu) .  (6)' u  
r . .' r J

Under the assumption of pairwise additive behavior, the
ionic structure energy can be obtained by summing all
interionic potentials:

Wror: W"ou + W"non ,uos.

w,o,: t/244 
+ 

. 
"?4 

troexp(-rolp,,). (7)
i + j  i + j

The summation of Coulomb electrostatic terms is over
all ion pairs in the crystal, whereas the summation of
short-range terms is generally not required to go beyond
nearest neighbors, or second-nearest neighbors in the case
ofanion-anion interactions. The factor Yz accounts for the

fact that in both summations each interaction is included
twrce.

There are two sigrrificant difrculties with Equation 7
that precluded its early application to any but the sim-
plest structures. First, the Coulomb sum converges very
slowly, as can be easily appreciated from the fact that
alternating shells offurther neighbors have opposite va-
lences. Second, the short-range terms involve parameters
\ and p (or b and n in the case of the inverse power
formulation), which had to be determined empirically.
There was no readily understood way to calculate the
energy ofelectron overlap from first principles.

As one way to deal with the first problem, the Coulomb
summation was writted as

Wcou: Azrz,e2/ro, (8)

where A is a constant depending only on the structure of
the crystal-known as the Madelung constant-and ro is
the unique, or possibly the smallest, cation-anion dis-
tance. Madelung (1918) was the first to calculate such a
constant, for the NaCl structure. For structures such as
NaCl, CsCl, and ZnS, whose atomic coordinates are fixed
by symmetry, the madelung constant, A, is truly constant
for the structure type, and the Coulomb term for a spe-
cific example requires only the specific valences and ro
for that example. For a structure type as simple as rutile,
however, A is a function of both c/a and the one variable
atomic coordinate, x"*". Thus for complex structures,
Equation 8 provides no advantage.

Ewald (1921) devised a method to calculate W.ouin-
volving two rapidly converging sums. One is a direct lat-
tice sum whose convergence is accelerated by inclusion
of a modification function (complement of the error func-
tion) that decreases from I to 0 as r' increases. The error
introduced by this modification function is exactly com-
pensated by the second sum, whose convergence is also
accelerated by a modification function that decreases from
1 to 0 as I h I increases, where h is a reciprocal lattice
vector. Bertaut (1952) modified Ewald's method to sum
completely in reciprocal space. Both methods derive from
the fact that, using the identity

the Coulomb sums can be replaced by integrals, and by
appropriate transformations a Fourier representation of
potential can be obtained. Some aspects of the Ewald
method are discussed by Nijboer and DeWette (1957),
and Burnham (1985) has briefly reviewed the Bertaut
method. Both algorithms are widely programmed and give
rapid reliable results; examples include wvrrN (Busing,
1981), which uses the Ewald method, and eI-nN (Ohashi
and Burnham, 1972), which uses the Bertaut method.

Energy minimization

With the advent of widely available rapid computing
power, determination of minimum-energy structures be-
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l / r :  I  e-^ dx (r  + 0),  (9)
J

0
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came a reality. The structure energy of a crystal can be
calculated easily using Equation 7, provided appropriate
short-range parameters are available. Atomic coordinates
and unit-cell dimensions can be varied until the mini-
mum-energy configuration, having 0W/0x, : 0 for all
structure parameters x,, is found. The programs wMrN
(Busing, l98l) and MErApocs (Parker, 1983) are exam-
ples that provide this capability. Such energy minimiza-
tions yield static structures, strictly speaking, appropriate
f o r P : 0 a n d T : 0 .

As a simple example, Figure I is a plot of the net struc-
ture energy for MgO, as the difference between the neg-
ative Coulomb electrostatic energy and the positive, re-
pulsive, short-range energy, as a function of Mg-O
interatomic distance. MgO has the cubic NaCl structure,
in which the atoms are fixed by symmetry, all Mg-O dis-
tances are identical, and Vor: (2r*r_o)r. Whereas the
minimum appears ill defined at large energy scales, the
inset shows clearly at a magnified scale a well defined,
almost parabolic, energy minimum. The inset indicates
the observed distance, 2.105 A, as well as several other
recently determined minimum-energy distances. The
variation in calculated minimum-energy configurations
reflects differences in short-range parameters.

To account for the effect ofpressure, an additional term,
pAV, where AZis the volume change on compression, is
included in the energy minimization. With minimiza-
tions carried out at several pressures, the isothermal com-
pressibility and its inverse, the 0 K bulk modulus Ko, can
be determined from

(10)

It should be noted that the calculated bulk modulus de-
pends essentially on the second derivatives of the pair
potentials. Specific normal or shear stresses may be ap-
plied as well, and the calculated strains in the resulting
model are used to obtain elastic moduli (Busing and Mat-
su i , 1984 ) .

Calculation of thermodynamic properties

Further development of thermodynamic properties of
ionic crystals from the simple pair potential model em-
bodied in Equations 6 and 7 requires lattice dynamical
calculations. The complete internal energy, E, consists of
the static structure energy, W, plus the vibrational energy,
written as a sum over normal vibrational modes (Born
and Huang, 1954)

( l  l )
, srplzoiu nZ) - I

where the co, are frequencies of normal vibration modes,
i is Planck's constant, k is the Boltzmann constant, and
?" is temperature in K. The vibrational energy can be
recast in terms of an integral over frequency (e.g., Price
et al., 1987b)

1 2 3

r(MgO), A

Fig. l. Periclase structure energy as a function of Mg-O sep-
aration. Coulomb term obtained from Equation 8 using A :

1.747566 for the NaCl structure; MEG short-range term ob-
tained using tr and p from linear regressions (Table 1) extrapo-
lated to oxygen shell radius of 1.205 A. Inset shows net structure
energy, relative to zero at 2.12 A minimum, in the region close
to the minimum; short vertical bars indicate other reported MEG-
determined minima (Tossell, 1980; Muhlhausen and Gordon,
198la; Hemley et al., 1985; Mehl et al., 1986); longer vertical
bar indicates observed Mg-O distance, 2.105 A (Hazen, 1976a).

-t
E : W + | hot {t/z + lexp(ha/kZ) - ll-t} G(<.r) dco.

-o

(r2)

Here <,r- is the maximum vibrational frequency of the
crystal and G(c,r) is the density-of-states function, such
that G(<.r) d<.r is the number of normal modes in the first
Brillouin zone having frequencies between <.r and <,r * d<o.
At 0 K, the vibrational contribution to internal energy is
from zero-point energy alone, r/z 2 har.

The relationship between interionic potentials (Eq. 6)
and the frequencies of normal vibration modes is em-
bodied in Newtonian equations of motion, and is dis-
cussed in several crystal physics texts (e.9., Born and
Huang, 1954; Cochran,1973). Price et al. (1987a) effec-
tively review the path from the fundamental notion that
the restoring force encountered by an ion,i displaced by
a small vector ui from its equilibrium position is given
by

g
o
E
lt

cl)
L

o

f i o

t  r [aA
K.:  

-  
V\dpl  ,

E : W -r t/z) ho:, *

2 .2  2 .3
r ( M g o ) , A

F, :0w/6 t , (13)
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to the resulting 3n equations of motion
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( 1 5 )

rnc.,'?(k)e(k) : D(k)e(k), (14)

where n is the number of atoms in the unit cell, ru is
atom mass, k is the wave vector of the vibration (whose
values range just through the first Brillouin zone of the
crystal), e(k) is the polarization vector describing the
atomic displacements for a particular vibration, and D(k)
is the dynamical matrix

ation of vibration frequency with molar volume. Since <,r
varies with k according to the dispersion relations, there
is an unlimited number of 7,'s. Nevertheless, an average
Griineisen parameter, ?, can be calculated from

r : diP9| eo)d ln(I4 
'

Within the framework of the quasiharmonic approxi-
mation, which ignores anharmonic vibrational effects and
assumes that Equation 13 is exact, it has been shown
(Slater, 1939) that the thermal Grifureisen parameter, 7,r,,
is equal to the mean mode Griineisen parameter, !.

Assuming that one has appropriate interionic pair po-
tentials (Eq. 6), minimum-energy static structures can be
calculated using Equation 7 for any pressure. The sub-
stantially more difficult and time consuming quasihar-
monic lattice dynamical calculations can then be carried
out for several volumes. With strategies based on rela-
tionships outlined here, elastic moduli and Griineisen pa-
rameters can be obtained, and from them isothermal
compressibilities, coefficients of volume expansion, and
heat capacities, leading to determinations of entropy and
Gibbs free energy. In theory, then, equations of state of
complex ionic crystals and relative stabilities among
polymorphs are accessible directly from interionic pair
potentials within the framework of the ionic model, using
energy minimizations and lattice dynamical calculations.

Short-range potentials

The extent to which simulations of structures and
properties can be successful depends largely on the integ-
rity ofthe short-range potentials. Given that these had to
be determined empirically until recently, two questions
had to be faced: First, what is the most appropriate pa-
rameterization? And next, how will the parameters be
determined?

Various modifications of the standard Born-Mayer form
(Eq. 5) have been devised. One form, first used by Gilbert
(1968), modifies the Born-Mayer parameteization ac-
cording to

wtj<n ) : (B, + \)exp[(A, + 4 
- r',)/(8, + Bj)] (21)

where, instead of parameters tr and p being specific for a
given interaction i - j, the potential is written in terms
of parameters A, and B, that are "properties" of each ion.
After As and Bs have been determined by some means
for a variety of ions, the potentials for different interac-
tions are then easily formulated.

A number of workers (e.g., Price et al., 1987a) have
employed what is sometimes called the Buckingham pa-
rameterization, in which an attractive van der Waals term,
accounting for instantaneous dipole-dipole interactions,
is added to a Born-Mayer form:

W,:t*pt : A,,exp(- rulB 11) - C,,/ 11,. (22)

D(k) : 
4 #,exp(ik'r,,).

For a given value ofk, solution ofEquation 14 yields 3n
eigenvalues, each of which corresponds to the squared
frequency, <o'z(k), of a normal vibration mode. The asso-
ciated eigenvectors, e(k), describe the atomic displace-
ments associated with each mode. It is important to note
that calculated vibration frequencies depend on second
derivatives of pair potentials. Eigenvalues calculated for
k : 0, the long wavelength limit, correspond to frequen-
cies measured by infrared and Raman spectroscopy, thus
providing for comparisons with experimental data. As
will be shown later, extensive calculations at numerous
values of k throughout the first Brillouin zone are re-
quired to evaluate the phonon-dispersion relations and
to calculate a density-of-states function, G(t't), which is
needed to evaluate the total vibration energy using Equa-
t ion 12.

Calculations of thermal properties and equations of state
require, in addition to the density-of-states function, G(c.r),
knowledge of the mode Griineisen parameters, "y,, given
by (Born and Huang, 1954),

d ln(<ot)
(16 ), Y , :

d ln(IJ 
'

From the constant volume heat capacity, Cr, givenby

lonl f {n.nV2 exp(ho/k7) ̂.( ' - . : t - t : k  I  '

" 
- 

farl,: 
K 

J lexpd,dkn - tr u(o,l o.,'
U

(  l 7 )

one obtains the heat capacity at constant pressure, C.
usrng

Co: Cn + P2TVKr, ( l  8)

from which the entropy is obtained using S : IQ/T) dT.
In Equation 18, K, is the isothermal bulk modulus and
B is the coefficient of volume expansion. Following Price
et al. ( I 987b) , B can be determined from

0: t,"(cr/Kr)v ( le)

where 7* is the thermal Griineisen parameter and K. is
determined from elastic constants, assumed to be inde-
pendent of temperature. The mode Griineisen parame-
ters, ?i, determined using Equation 16, represent the vari- Additional expressions have been employed to account
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for certain polarizable ions or for the covalent behavior
of, for example, the Si-O bond. A simple shell model for
polarizable anions separates the ion into a core contain-
ing all the mass surrounded by a shell of charge Y rep-
resenting the outer valence electrons (Price et al.,1987a).
The core and shell are separated by r and are coupled by
a harmonic spring with a spring constant, k, leading to
the potential W," : kr2, and polarizability, a : (Y€)r/(k
+ r). To model Si-O, Price and Parker (1984) used a
Morse potential whereas Sanders et al. (1984) and Matsui
and Busing (1984) employed various kinds ofbond-bend-
ing potentials.

Having formulated the short-range potential for var-
ious interactions, values for the parameters must be found
empirically. As mentioned earlier, bulk compressibilities
are useful only for the simplest structures in which all
interionic separations are determined by the lattice pa-
rameters alone. Since dW/drr,: 0 at equilibrium and
d')W/d,rl,: k,,, where k,, is the force constant for ij stretch-
ing, \,, and ri; for the Born-Mayer short-range potential
formulation may be determined from fully characterized
vibrational spectra (Lasaga, 1980). This procedure re-
quires, however, that simple stretching or bending modes
be readily identifiable, which further requires a some-
times unrealistic assumption that the vibrations are suit-
ably localized (McMillan, 1985).

During the past decade a substantial number of ionic
modeling studies have used short-range potential param-
eters determined by fitting to known structures. Both the
programs wurN (Busing, 198 1) and uerepocs (Parker,
1983) are capable ofdetermining a set ofshort-range pa-
rameters that best reproduce one or more known struc-
tures, and fittings can be carried out with any ofa variety
of potential formulations. Recognizing that silicates and
many oxides of interest to mineralogists have real elec-
tron distributions substantially different from those ex-
pected in truly ionic crystals (e.g., Sasaki et al., 1980;
Fujino et al., l98l), several workers have carried out fit-
tings using variable ionic charges. I have previously re-
viewed a number of silicate modeling studies carried out
with short-range potentials determined by a variety of
empirical fittings to observed structures (Burnham, 1985).

All empirically determined short-range potentials in-
clude implicitly the consequences of the details of the
bonding in whatever structures are used for fitting, re-
gardless of whether the observations are compressibili-
ties, vibrational force constants, or the structural param-
eters themselves. Thus ionic modeling with such potentials
includes some effects related to lack of pure ionicity. In-
sofar as these short-range parameters reflect specific
bonding circumstances, significant questions arise as to
the appropriateness of applying such parameters to the
same interactions in other structures. This is the issue of
transferability: Will Mg-O short-range potentials deter-
mined from properties of periclase, for example, be ap-
propriate when applied to modeling of Mg-O octahedra
in, say, olivine? Some examples that I discuss below bear
on this important question.

Given that few solids are known to be purely ionic, one
might legitimately ask how the ionic model, with a co-
hesive energy represented by Equation 7, canbe expected
to yield useful results for any but a small handful of the
most ionic phases. Clearly some elaborations of short-
range potentials, mentioned above, attempt explicitly to
accommodate nonionic effects. But more generally it is
worth pointing out that the model, as embodied in Equa-
tion 7, is addressed to central forces between atoms, and
assumes, with some justification, that the cohesive energy
is closely approximated by pairwise addition of these in-
terionic potentials. It does not speak to the reality ofva-
lence elctron distributions, but assumes, regardless of these
distributions, that the energetics are adequately de-
scribed. I reemphasize that empirical short-range poten-
tials include implicitly the effects of a particular electron
distribution, and to the extent that such distributions dif-
fer from structure to structure, the transferability ofsuch
potentials will be diminished.

THn vrolrrrED ELEcTRoN-cAs (MEG) MoDEL

A model for interactions between closed-shell ions with
short-range potentials determined nonempirically from
electron-gas theory was introduced by Gordon and Kim
(1972). The model assumes that the interaction between
two closed-shell ions is a function of their electron den-
sities. Ifp, and p, are two partly overlapping charge den-
sities, the total charge density, pi.;, is assumed to be simply
the sum of the individual charge densities; thus in the
overlap region, the densities are assumed to be additive.
The interaction energy is given by

W: W"o. + W", + W"., (23)

where I,Z.ou is a Coulomb interaction, 2". is the short-
range energy, and W".is ion self-energy. Charge densities,
p,, for closed-shell ions are obtained from Hartree-Fock
self-consistent field calculations using Slater or other an-
alytic extended-basis sets. Although from the perspec-
tives of mineralogists and crystals chemists, calculations
using this model might easily be termed ab initio because
no empirical parameters are used, a more rigorous view
holds that the model should not carry that label because
the charge densities, once calculated, are not varied, and
interaction energies are derived from these fixed, as-
sumed additive, densities.

W"*is calculated directly as in the standard ionic model
for point charges. It is applicable to the nonoverlapped
portion of the ion electron densities. There is a much
smaller nonpoint Coulomb contribution, arising within
the overlapped portion of the charge densities, that is
calculated exactly and included as part of W",.

The short-range energy, W",, is calculated using energy-
density functionals obtained from electron-gas theory
(Gordon and Kim, 1972; Waldman and Gordon, 1979).
Separate functionals are employed for three components
ofthe short-range energy, namely kinetic, exchange, and
correlation energies:
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f dius rn and charye Q F -t) at its surface. The shell po-
,,,: 

J 
d3rlp,,EoQt,,) - piEc(pi) - p:E"(p:)l (24) tentiai Z"n, is:

and

E"(p): E"" * E"*"n * E.oo. (2s)

The energy-density functionals (Muhlhausen and Gordon,
l98la) are shown at bottom ofpage.

C*, C*, and C. are density-functional correction factors,
introduced by Waldman and Gordon (1979), that modify
the original electron-gas theory. The purpose of the cor-
rection factors is to compensate, without disrupting the
simplicity of the electron-gas formalism, for known errors
arising from gradients in nonuniform densities (Gordon
and Kim, 1972) Ihat lead to significant errors in the pre-
dicted potential-well depths of rare-gas systems. Correc-
tion factors are given by Waldman and Gordon (1979)
for various rare-gas interactions; these are appropriate for
corresponding isoelectronic ion-ion corrections.

The kinetic and exchange functionals are known ex-
actly, but the correlation functional is more complicated.
Indeed, alternatives to the Gordon and Kim (1972) in-
terpolation formula (Eq.26c) have been suggested; Clugs-
ton (l 978) has discussed these in the context ofan overall
assessment of the electron-gas model.

The fundamental assumption of MEG theory is that
the total charge density of ions in a crystal is appropri-
ately considered to be the superposition ofcharge densi-
ties of separated ions. It assumes, like earlier ionic models,
that the net interaction energy is suitably represented by
a pairwise additive approximation. Many-body contri-
butions that arise as ions are juxtaposed in a crystal may
add nonlinearities to the density functionals for short-
range energy terms, and they may, additionally, cause
changes in the free-ion charge densities. These changes
can be divided into two categories: (l) ion size changes
that retain spherical symmetry, and (2) anisotropic dis-
tortions ofcharge density owing to field gradients in the
crystal that lead to dipolar or higher-order multipolar in-
teractions. Muhlhausen and Gordon ( 198 I a) demonstrat-
ed that, whereas nonlinear many-body effects are of little
significance, isotropic-size changes owing to the effects of
potentials on ions in a crystal are important. Following
the strategies of Pachalis and Weiss (1969) and Watson
(1958), they calculate a "stabilized" ion charge density
by surrounding the ion with a spherical shell having ra-

Q/ro for r < ro
Q/r  forr )  ro.

(27)

Thus the shell potential seen by the ion can be adjusted
by changing the shell radius, ro. Since this shell potential
mimics the crystal field seen by the ion, Muhlhausen and
Gordon (l98la) argue that the most appropriate shell ra-
dius is one that yields a shell potential equal to the Ma-
delung (Coulomb) potential at the ion site. The shell po-
tential effectively alters the size ofthe ion, which changes
the charge density and hence the short-range interactions
with adjacent ions. Muhlhausen and Gordon (l98la) show
that these effects are much more pronounced for anions
than cations, and, indeed, that shell stabilization is not
needed for cations. The ion self-energies, Z* in Equation
23, correspond to the energy differences between free ions
and shell-stabilized ions and are an important part of the
total energy. For O, because the isolated divalent anion
does not exist stably, the self-energy includes, in addition,
the energy for the reaction 02 - Or- + e-.

Parameterization of MEG short-range potentials

Energy minimizations using MEG theory with shell-
stabilized anion charge densities requires that short-range
potentials be calculated for a variety ofanion shell radii
covering the range ofanion site potentials anticipated. In
addition, the anion self-energies must be calculated as a
function of shell radius. As minimization proceeds, anion
site potentials may change; in response, cation-anion and
anion-anion short-range pair potentials calculated with
new anion shell radii must be used, and total energies will
change slightly as new anion self-energies are used. Final
energy minimization must demonstrate self-consistency,
that is that short-range energies are consistent with anion
shell radii whose stabilizing potentials agree with anion
site potentials. Muhlhausen and Gordon (1981a), Hem-
ley and Gordon (1985), and others calculate short-range
energies for each kind ofinteraction for arange ofshell-
stabilized anion wave functions over a range ofion sep-
arations. The short-range energy for a pair interaction at
a specific separation is obtained by interpolation.

Post and Burnham (1986a) have fitted MEG-calculated
short-range energies to the Born-Mayer exponential form

4,(D: 
{

.Ek" : (3/I0)(3trz)zrt g*zrt

E"*"n : -(3/4)(3/r)ttt g*rrrt

[C.(-0.438r"-t  + 1.325r;3/2 - 1.47r;2 - 0.4r;s/2)

E*- : 1C.(0.01898 ln(r") - 0.06 I 56)
[C"(0.0311 ln(r.) - 0.048 * 0.009r,In(r") - 0.01r")

where r" : (3/4rp)t/3.

for r. = 19
for 0.7 < r" < l0
for r. < 0.7

(26a)

(26b)

(26c)
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--{l- MEG, (shell)=O.93 A

* MEG, (shel l )=1.11 A

-+ fromcompressibility

1 . 7 1 . 8 1 . 9 2 .0 2 .1 2 .2 2 .3 2 . 4

r (Mg-O),  A
Fig.2. Mg-O short-range potentials as a function of Mg-O separation. Shaded region is bounded by MEG potentials for oxygen

shell radius of 0.93 A (ower curve) and for oxygen shell radius of 1.1 I A lupper currre). Other curves are obtained from the empirical
THBI potential (Price et al., 1987a;' Lewis, 1985) and from periclase compressibility (Ohashi and Burnham, 1972).
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(Eq. 5). For a given ion pair and specific anion shell ra-
dius, the least-squares values for tr,, and p,, reproduce well
the MEG short-range energies over the full range of ex-
pected nearest neighbor distances, or next-nearest neigh-
bor distances in the case ofanion-anion interactions; cor-
relation coefficients exceed 0.9995 in all cases.
Examination of the energy-density functionals (Eq. 26)
shows that whereas the kinetic energy term is repulsive,
both the exchange and correlation terms are attractive.
Because kinetic energy and exchange energy are propor-
tional to p2/3 and pri3 respectively, the potential curve will
be attractive at large separations. Clearly the Born-Mayer
exponential form is inappropriate under those circum-
stances, but realistic nearest and next-nearest neighbor
separations are well within the repulsive regime.

For some ion pairs, Post and Burnham (1986a, Table
l) have determined Born-Mayer parameters, X and p, for
several anion shell radii. For Mg-O, tr's and p's were de-
termined for six O shell radii from 0.93 A to l.ll A,
corresponding to O site potentials ranging from 2.15 to
1.80 e/A. Figure 2 is a plot of the resulting Mg-O short-
range pair potentials for the smallest (0.93 A) and largest
(l.ll A) O shell radii. As shell radius increases, corre-
sponding to a reduction of site potential (i.e., a lower
crystal field at the anion site), the O ion wave functions
relax, and for a given Mg-O separation, the repulsive en-
ergy increases. As shell radius decreases, repulsion energy
at a given separation decreases in response to the con-
tracting anion wave functions. In essence, the anions are
no longer rigid, and short-range effects respond to changes



450 BURNHAM: IONIC MODEL

0)
o
E
? 4ooooo

o
a
o
=

300000
.E
tt
.ct
Eg

al

in crystal field. Figure 2 shows, for comparison, an Mg-O
short-range potential determined from compressibility of
periclase (Ohashi and Burnham, 1972) and one deter-
mined by fitting to the structure and elastic data of MgO
(Lewis, 1985); the latter potential was used by Price et al.
(1987a,1987b) to model the MgrSiOo polymorphs.

Recently we observed, quite by accident, that the vari-
ation of tr and p with anion shell radius is remarkably
linear, at least over the range of shell radii investigated.
Table I gives linear regression equations for both tr and
p against shell radius for Mg-O, Si-O, and O-O, which are
the only pairs for which Post and Burnham (l 986a) gave
values for more than three anion shell radii. The linear
variations of Mg-O tr and p values with O shell radius are
shown graphically in Figure 3. Clearly a further systematic
compilation and analysis of MEG-derived Born-Mayer
short-range parameters is in order, both to examine the
extent to which linearity holds and to provide in conve-
nient form theoretical short-range parameters for a large
number of useful closed-shell ion pairs.

MEG. SSMEG. and PIB

Following early application of electron-gas theory to
ionic solids (Gordon and Kim, 1972), and, introduction
of the density-functional correction factors (Waldman and
Gordon, 1979), the MEG theory has proved increasingly
successful at modeling the structures and properties of
alkali halides (Cohen and Gordon, 1975), alkaline-earth
oxides (Cohen and Gordon, 1976), and a variety of re-

TABLE 1. Linear regression equations for short-range energy parameters

0.25

o.24

bl

lated materials with rather simple structures (Tossell,
1980). Tossell's (1980) calculations on several less ionic
oxides appeared to suggest rather significant limitations
as ionicity decreases. Significant difficulties with the rigid-
ion MEG model were overcome, however, when Muhl-
hausen and Gordon ( I 98 I a, I 98 lb) introduced anion shell
stabilization (SSMEG) as discussed above; they demon-
strated that SSMEG represented a first-order improve-
ment because it effectively dealt with the most important
many-body crystal field effects. Whereas Post and Burn-
ham (1986a) used SSMEG to model static structures of
a variety of minerals, others employed SSMEG in qua-
siharmonic lattice dynamical calculations to model high
temperature and pressure equations of state for alkali ha-
lides (Hemley and Gordon, 1985) and MgO (Hemley et
a l . ,  1985).

The self-consistency required by SSMEG is achieved
by providing to the actual energy minimization short-
range cation-anion and anion-anion interactions calcu-
lated separately using shell-stabilized anion wave functions
appropriate for the observed site potentials. Appropriate
anion self-energies are added separately after energy min-
imization. Clearly a more desirable procedure would be
to incorporate the dependence of short-range potential
and of anion self-energy on anion site potential directly
in the energy minimization. This has been done by Boyer
et al. (1985), who term the improved procedure the po-
tential-induced-breathing model, PIB, after the notion that
anion wave functions respond dynamically during min-

o
ct
=
o

0 . 9  1 . 0 1  . 1  1 . 2 0 . 9  1 . 0 1 . 1  1 . 2

Oxygen shell radius, A Oxygen shell radius, A

Fig. 3. Born-type MEG-determined short-range potential parameters for Mg-O interactions. (a) )r versus oxygen shell radius; (b)
p versus oxygen shell radius. Regression equations given in Table 1.

lon pair Lrnear reoressron
Correlation
coetficient Shell radius range (A) lon separation range (A)

M9-o

si-o

o-o'

x 1 05 (roa)

x 105 (r"H)

x 106 (rm)

0.992
0.997
0.999
0.999
0.993
0.992

0.93-1.11

0.93-1.11

0.93-1.1 1

1.80.-2.35

1.48-1.80

2.38-2.91

X: 1.0958 x 106 -  7.2747
p : O.1282 + 0.1 166 (r"h"r)
I :9.4285 x 10s -  5.7807
p: 0.1285 + 0.1135 (r"hd)
I :  1 . 4852  x  106  -  1 .1824
p:0.1001 + 0.1877 (r"hd)

Note: I in kJ/mol; p in A.
- For identical shell radii on both anions onlv
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TABLE 2. MEG-based minimum energy structures of rutile and anatase compared with observed structures (after Post and Burnham,
1 986a)

Autile (P42lmnml Anatase ll4rlamd)

Observed Minimum energy' Observed Minimum energy.

Unit cell
a (A)

v(A.)
Interatomic distances

Ti-o (x4) (A)
Ti-O ( x 2)
(Ti-o)
O-O (sh)
O'? shell radius (A):

4.594
2.958

62.43

1.948
1.980
1.959
2.536

4.491 (-2.2)
3.063 (+3.5)

61 .78 (- 1 .0)

1.961 (+0.7)
1.935 (-2.3)
1.952 (-0.4)
2.462(-2.9)
1 . 1 1

3.776
9.486

135.25

1.930
1.973
1.944
2.459

3.689 (-2.3)
10.067 (+6.1)

137.00 (+1.3)

1 .90e( -1 .1 )
2.030 (+2.9)
1.949 (+0.3)
2.405 (-2.2)
1 .08

'Values in parentheses are % deviations from observed.

imization to changes of site potential. In studies of al-
kaline earth oxides (Mehl et al., 1986) and rutile and
stishovite (Cohen et al., 1987), the PIB model has been
shown to provide a significantly improved capability to
simulate dynamical and elastic properties. In particular,
it reproduces observed violations in cubic structures of
the Cauchy condition of elasticity, cn : cu, which rigid-
ion models cannot do.

Monrr,rNc RESULTS

To illustrate the strengths of the ionic model, as well
as some of its weaknesses, I now examine several appli-
cations to minerals with nontrivial structures. These ex-
amples test the model rather severely, from its ability to
predict equations ofstate at high temperatures and pres-
sures to its ability to reproduce complex low-symmetry
structures and their response to mineralogically impor-
tant phenomena such as order-disorder.

TiO, polymorphs

Post and Burnham (1986a) used SSMEG to model the
static structures of rutile. anatase. and brookite and to
determine their relative energies. Tables 2 and 3 compare
unit-cell dimensions and interatomic distances of the
model structures with observation. Energy minimizations
were carried out within the constraints of the observed
space groups, although it certainly would have been pos-
sible to test structural stability against reduced symmetry,
of course at the expense of substantially increased com-
puter time. For both rutile and anatase, the unit-cell vol-
umes are matched to about lol0, whereas a axes are short
by 2o/o and c axes are long, by 3t/zo/o it rutile and 60lo in
anatase. In both observed structures the Ti octahedra have
at least symmetry 4, with two axial Ti-O distances differ-
ent from four equatorial distances. The rutile model re-
produces the magnitude of the distortion well, but in the
wrong sense, whereas the anatase model magnifies the
observed distortion by about three times; mean Ti-O dis-
tances are modeled very well. Calculated shared O-O edges
are short by 2-3o/o. Note that O shell radii are different
in the two structures, reflecting different O site potentials.
The orthorhombic brookite structure is modeled well: Cell

edges match to within 1.50/0, cell volume matches almost
exactly, and individual Ti-O distances reflect a well-
matched distortion of the Ti octahedron. Two distinct
O-O shared edges are again calculated short by 2o/o.

Figure 4 compares the calculated cohesive energies of
the minimum-energy model structures and the observed
structures. Relative energies calculated without the anion
self-energies are incorrect, showing anatase more stable
than rutile; but when the appropriate self-energies are in-
cluded, the relative stabilities become correct. The cal-
culated AWbetween rutile and anatase-0.9 kcaVmol for
the observed structures and 0. I kcal/mol for the calcu-
lated structures - compares well with the calorimetrically
obtained value of - 1.3 kcal/mol for AHr'" for anatase -

rutile (Navrotsky and Kleppa, 1967). Although it has been
suggested that the relative stabilities of the three poly-
morphs might reflect the number of shared edges per oc-
tahedron (Evans, 1966), the calculations show that
brookite, with three shared edges, is less stable than either
anatase, with four, or rutile, with two. This sequence

Trer-e 3. MEc-based minimum energy structure of brookite
compared with observed structure (after Post and
Burnham,1986a)

Brookite (Pcab)

Observed Minimum energy*

Unit cell
a (A)
b

v(A")
lnteratomic

distances
ri-o1 (A)
Ti-o1'
Ti-o1'
Ti-o2
ri-oz'
ri-o2'
(ri_o)
01-O1 (sh)
O2-O2 (sh)

9.184
5.447
5.145

257.38

1.865
1.992
1.994
1 .919
1.946
2.039
1.959
2.485
2.514

9.171 ( -0 .1 )
5.373 (- 1 .4)
5.224 (+ 1.5)

257.42 (+01

1.904 (+2 .1)
1.998 (-0.3)
1.929 (-3.3)
1 .956 (+ 1.9)
1.931 (-0.8)
2.O't7 (-1.1)
1.956 (-0.4)
2.434 (-2.1)
2.462(-2.1)

Note.  O,-  shel l  radi i :  01 :  1.11 A,  02:  1.10 A.
* Values in oarentheses are % deviations from observed.



452 BURNHAM: IONIC MODEL

No O2- shell radlus correctloncorrecteal for o2- she1l racllus

i,l (rca/rou)

Obseded IGc/m dn
atruclure enelgy rcdel

b-  ^_ ,  .

A = I I .  9

o -

EG/WIN nln
energ  DodeI

Fig. 4. Calculated structure eneryies for TiO, polymorphs.
The letter a : anatase; b : brookite; r : rutile. From Burnham
0 985).

matches the observed natural abundances of the three
polymorphs.

Cohesive energies are calculated with respect to sepa-
rated free ions, essentially as a gas phase. If a Born-Haber
cycle can be calculated, an observed dissociation energy
can be obtained. In the case of rutile the calculated co-
hesive energy is about 50/o greater than that obtained from
a Born-Haber calculation. In many applications energy
differences between phases are more important than the
absolute energy of any individual phase; if the phases
under comparison are similar, then these energy differ-
ences are undoubtedly better determined than the abso-
lute energies. Since in many cases the vibrational char-
acteristics of structurally similar phases are not markedly
different, free-energy differences will consist largely of
static cohesive energy differences.

MgSiO, perovskite

There is a rapidly expanding literature devoted to the
likely role of MgSiO, perovskite in the earth's lower man-
tle (e.g., Ringwood, 19621, Yagi et al., 1978;, Jeanloz and
Thompson, 1983). Because it is difficult to conduct ex-
periments under the pressure-temperature conditions
found there, a model that is capable of yielding theoret-
ically the equations of state and thermodynamic proper-
ties of phases under lower mantle conditions would have
wide importance. A variety of empirical short-range po-
tentials, mostly obtained from fits to the observed perov-
skite structure, were used by Wall et al. (1986) to simulate
the cubic, tetragonal, and orthorhombic structures. Rig-
id-ion MEG methods have been used to simulate the dis-
tortions and calculate the lattice dynamics of both Mg-
SiO, and CaSiO, (Wolf and Jeanloz, 1985; Wolf and
Bukowinski, 1987). SSMEG methods (Hemley et a1.,
1987), and PIB methods (Cohen, 1987) have proved most
successful, however, for calculating structures, equations
ofstate, and dynamical properties ofthese perovskites.

The structure of ideal cubic perovskite, ABOr, contains
a corner-sharing network of B octahedra with large A
cations occupying l2-coordinated sites between octahe-
dra (Fig. 5a). There are several lower-symmetry deriva-
tives of the ideal structure. related to the ideal bv relative

a)

I - l
9 '

Fig. 5. MgSiO, perovskite stnrctures. (a) Ideal cubic struc-
ture (Pm3m\ (b) distorted orthorhombic structure (Pbnm). Oc'
tahedra contain Si, filled circles are Mg.

rotations of octahedra that reduce the effective coordi-
nation of the A cations. From powder X-ray diffraction,
Yagi et al. (1978) determined that synthetic MgSiO. pe-
rovskite has an orthorhombic structure (Fig. 5b) at room
temperature and pressure. Hemley et al. (1987) have car-
ried out SSMEG calculations on both the ideal and the
distorted structures of MgSiO, and CaSiO. over a range
of volumes. Figure 6 shows that at all volumes the dis-

tl (rcq-/rcu)

Obsefred
s t tuc tu re
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Fig. 6. ssMEG,,*J:;.:r;"1,,', "t'-. 
rorcubic and

orthorhombic structures of MgSiO, and CaSiO, perovskites. From
Hemley et al. (1987).

torted orthorhombic (Pbnm) structure for MgSiO, is more
stable than the ideal cubic (Pm3m) one, whereas for
CaSiO, the cubic structure is stable with respect to dis-
tortions down to about 35 A'l(formula unit), correspond-
ing to a pressure of about 109 GPa (298 K). This relative
stability diference clearly arises from the size difference
between Mg2* and Ca2*.

Using the SSMEG models Hemley et al. (1987) have
carried out quasiharmonic lattice dynamics calculations
on both perovskite structures at different volumes. In the
cubic MgSiO3 structure the calculated phonon-dispersion
relations (Fig. 7) show that several normal vibration
modes have negative energies, hence imaginary frequen-
cies, near the R and M points at the edge of the first
Brillouin zone. The eigenvectors of these unstable modes
indicate motions that correspond to librations of Si oc-
tahedra with respect to each other, thus demonstrating
the dynamical instability of the ideal structure with re-
spect to distortions arising from octahedral rotations.
Phonon-dispersion relations for CaSiO, show that the
corresponding modes have real frequencies at large vol-

a = 3.rr85 i

Fig. 7. Calculatedphonondispersion(vibrationenergy, n to
o2. versus wave vector) for normal vibration modes of mini-
mum-energy cubic MgSiOr at zero pressure. Labeling of wave
vector paths and points in the first Brillouin zone along the ab-
scissa follows the Bouckaert et al. (1936) convention; mode sym-
metry designations were identified by comparing calculated ei-
genvectors with those published by Cowley (1964). From Hemley
et al. (1987).

umes, that reduce to zero frequency at the point where
the distorted orthorhombic structure becomes more sta-
ble. The distortional symmetry-reducing transformation
thus takes place in response to the onset of dynamical
instability with increasing pressure.

Figure 8 compares pressure-volume equations of state
for orthorhombic MgSiO, calculated using three MEG
variations with recent experimental data (Knittle and
Jeanloz, 1987). The PIB model (Cohen, 1987) agrees very
well, the SSMEG results (Hemley et al., 1987) slightly
less well, and the rigid-ion MEG results (Wolf and Bu-
kowinski, 1987) substantially less well, indicating again
that it is essential to account for the effects of crystal fields
on anion charge densities.

There has been some discussion regarding the variation
of distortion in MgSiO, perovskite with increasing pres-
sure. Yagi et al. (1978) predicted that the distortion from
cubic symmetry would decrease with pressure, whereas
O'Keetre et al. (1979) predicted an increase. Analysis of
the SSMEG model structures calculated by Hemley et al.
(1987) shows that the distortion parameter iD (:sqs-r
(2a2/bc) for the Pbnm oientation), which O'Keeffe et al.
(1979) derive as the departure ofregular octahedra from
cubic orientation, ranges between 13.7' and 14.9' for
structures at 0 GPa through 156 GPa, then increases to
1 9' for the structure aI 237 GPa. Si octahedral angle vari-
ance rises fairly regularly from 0.76 for the structure at 0
GPa to 1.33 for the structure at 237 GPa, indicating a
slight increase in distortion over this pressure range. The

w

MgsiO3-Perw!kits
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behavior of Mg coordination is more difficult to describe:
The range of all 12 Mg-O distances, A,, : Mg-O-* -

Mg-O-", increases from 0.84 A for the structure at 0 GPa
to 0.98 A for the structure at 237 GPa, but the range for
the shortest six Mg-O distances, Au, remains essentially
constant, and that for eight, Ar, decreases slightly from
0.40 A to 0.37 A. If one considers Mg to be eight-coor-
dinated, which is reasonable in light of the jump of 0.2-
0.4 A (depending on pressure) between the eighth and
ninth shortest Mg-O distances, the coordination polyhed-
ron appears not to become signiflcantly more distorted
with increasing pressure; the distortion ofthe entire cav-
ity, considering 12 Mg-O distances, clearly does, how-
ever. Wall et al. (1986) report inconclusive results using
a variety of empirical short-range potentials determined
by fittings to the experimental perovskite structure at 0
GPa (Yagi et al., 1982). One set of potentials yields model
structures for which O remains roughly constant with
pressure, whereas two other sets yield structures exhib-
iting a decrease of(D with increasing pressure, in disagree-
ment with the MEG results. The previously discussed
calculated lattice dynamical behavior (Hemley et al., 1987)
is consistent with distortions that increase, rather than
decrease, with increasing pressure. Nevertheless, all mod-
eling results strongly imply that the stable MgSiO, perov-
skite under lower mantle conditions is orthorhombic, al-
though the degree of distortion may be similar to that of
the zero-pressure structure.

Forsterite and MgrSiOo polymorphism

Forsterite has been modeled by a number of workers
using a variety of strategies with both empirically deter-
mined and MEG-derived short-range potentials. Table 4
compares several model structures with the observed
structure. The two SSMEG models (Table 4, columns 4
and 5) differ somewhat in the way minimizations were
carried out, yet both have polyhedral distortions similar
in character to those observed. Therefore it is fair to say
that those distortions are an inherent feature ofthe oliv-
ine structure and do not arise from subtleties of bond
character. Whereas the Jackson and Gordon (1988a)
model reproduces observed distances and cell dimen-
sions less well than the Post and Burnham (1986a) model,
it better matches the observed bulk modulus; thus it is
likely to be a better predictor of structural changes with
pressure and of elastic properties.

The Gilbert * Morse empirical potentials (Table 4,
column 2) were derived by fitting to the forsterite struc-
ture and include charge variation (Price and Parker, I 984).
The fitted potential, with a Morse term for Si-O, has
charges of + I .73 for Mg and - 1.21 for O; the Si charge
was fixed at + 1.38 to preserve electrical neutrality. These
can be compared with observed residual charges for for-
sterite of +1.75 for Mg and -1.40 for O (Fujino et al.,
l  98 1) .

More recently Price et al. (1987a, 1987b) have used
empirically determined potentials, labeled THBI, to car-

3 0 3 5 _ 4 0 4 - 5
V (A'per 3 O)

Fig. 8. Pressure-volume relations for orthorhombic MgSiO,
perovskite. Calculated equations of state: PIB (Cohen, 1987);
SSMEG (Hemley et al., 1987); rigid ion MEG (Wolf and Bu-
kowinski, 1987). Experimental data from Knittle and Jeanloz
(1987) and Yagi et al. (1982). From Cohen (1987).

ry out extensive calculations of forsterite lattice dynam-
ical and thermodynamic properties. The Mg-O potential,
described in the Born-Mayer form, was determined by
fitting to periclase (Lewis, 1985). The O-O interaction
was described in the Buckingham form (8q.22) (Catlow,
1977). The Si-O interaction was described in the Buck-
ingham form with additional terms for O-Si-O bond
bending and a further shell model to describe the polar-
izability of oxygen; these were determined by fitting to
the structure and elastic parameters of quartz (Sanders et
al., 1984). This THBI potential tests the transferability
of empirical potentials, in this case from periclase and
qtrarlz to forsterite and its B-spinel (beta-phase, wadsley-
ite) and 7-spinel (true spinel, ringwoodite) polymorphs.
Results listed in column 3 of Table 4 demonstrate that
the forsterite structure and bulk modulus are modeled
better by this potential than any other at the present time.

The density-of-states histogram for forsterite (Fig. 9)
was constructed by calculating vibration frequencies for
84 normal modes on a grid of 27 equally spaced points
in the irreducible portion of the first Brillouin zone (Price
et al., 1987b). An important feature of the vibrational
characteristics offorsterite, reproduced by the lattice dy-
namics calculations, is the 100 cm ' wide gap separating
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TABLE 4, Comparison of observed and minimum-energy forsterite structures

455

Empirical short-range potentials- SSMEG potentials

Observed-' Gilbert + Morset Mixed THBIf Born-Mayer form$ "Compiled" lCll

Unit cell
a (A)
b

v(41
Si Tetrahedron

si-o1 (A)
si-o2
Si-O3 ( x 2)
(si-o)

M1 Octahedron
Mgl-O1 (x2) (A)
Mgl-O2 (x2)
Mg l -O3  ( x2 )
(Mg1-O)

M2 Octahedron
Ms2-o1 (A)
Mg2-O2
Mg2-O3 (x 2)
Mg2-O3' ( x 2)
(Mg2-o)
o2-O3 (sh)
K (GPa)

4.7s35(41
1 0.1 943(5)
5.9807(4)

289.80(s)

1 .615(3)
1.640(3)
1.633(2)
1.630

2.083(2)
2.O74(21
2.1 4s(3)
2.101

2.166(3)
2.04s(5)
2.064(4)
2.208(4)
2.126
2.558(s)

140

4.643 (-2.3)
10.416 (+2.2)
6124 (+2.4)

296.17 (+2.2)

1.608 (-0.4)
1.645 (+0.3)
1 .634 (+0.1)
1 .629 (-0.1)

2.079 (-0.2)
2.087 (+0.21
2.135 (-0.5)
2 .100 ( -0 .1 )

2.214 (+2,21
2.065 (+1.0)
2.105 (+2.0)
2.239 (+'t.4)
2 .161 (+1 .7)
2.s39 (-0.7)

150

4.791 (+0.8)
10.29 (+0.9)
5.983 (+0.0)

294.96 (+1.8)

1.622 (+0.4)
1 .641 (+0 .1)
1.638 (+0.3)
1.63s (+0.3)

2.051 (- 1 .5)
2 .097 (+1 .1)
2 209 (+3.0)
2 .1  19  (+0 .9)

2.217 (+2.4)
2.026 (-0.9)
2.038 (- 1 .3)
2.273(+2.91
2.144 (+0.81
2.523 (-1.4)

154

4.874 (+2.5)
10.322(+1.2)
5.977 (-0.1)

300.55 (+3.7)

1.560 (-3.4)
1 .606 (-2.1)
1.586 (-2.9)
1.s8s (-2.8)

2.076 (-0.3)
2.119 (+2.21
2.251 (+4.91
2.149 (+2.3)

2.332 (+7 .7)
2.08s (+2.0)
2.035 (-1.4)
2.3s3 (+6.6)
2.199 (+3.4)
2.604 (+ 1 .8)

(188)l l

4.927 (+3.6)
10.330 (+1.3)
6.181 (+3.3)

314.59 (+8.6)

1 .571 ( -6 .1 )
1.549 (-5.5)
1.521 (-6.9)
1.s27 (-6.3)

2.137 (+2.6)
2.188 (+5.5)
2.360 (+ 1 0)
2.228(+6.01

2.358 (+8.9)
2.132(+4.3)
2.062 (-0.1)
2.474 (+12)
2.260 (+6.3)
2.334 (-8.8)

144
' Numbers in parentheses are 70 deviations from observed values.

.. Hazen (1976b); esd's are in parentheses
t Price and Parker (1984); Morse potential for Si-O; charges varied.
+ Price et al. (1987b); Born type for Mg-O, Buckingham type for Si-O and O-O, shell model for O, bond bending term for O-S|-O; room temperature

structure.
$ Post and Burnham (1986a); OF shett radii are: 01 : 1.03 A, 02 : 1.05 A, Og : 1.08 A.
ll Jackson and Gordon (1988a); anion self-energy included in minimization.

higher frequency modes involving internal vibrations of
the SiOo tetrahedra from the lower frequency "lattice"
modes; Kieffer (1985) has pointed out how important this
feature in the density-of-states function is for proper cal-
culation of thermodynamic properties. This calculated
density-of-states function compares. favorably with one
determined experimentally by inelastic neutron scattering
(Rao et al., 1987). Figure 10 (Price et al. (1987b) is a plot
of the heat capacity, C. as a function of temperature
calculated using Equation 17 and the density-of-states
function, G(,t) dl":., shown in Figure 9; both that density-
of-states function and a cruder one obtained using only
eight sampling points in the Brillouin zone reproduce the
experimentally observed heat capacity almost exactly.
However, note that when frequencies are obtained only
at the origin of the Brillouin zone, with one grid point
corresponding to zero-wave vector, such as would be ob-
tained from analysis of infrared- and Raman-active
modes, divergence of the calculated heat capacity from
the observed increases with increasing temperature.

To obtain the constant-pressure heat capacity C, and
entropy using Equations 18 and 19, the thermal Griine-
isen parametor, Ttr,, must be obtained. This is assumed
equal to the average mode Griineisen parameter, 7, giv-
en by Equation 20. Since frequencies are related to the
second derivatives of interionic potentials, it is clear that
Griineisen parameters are related to their third deriva-
tives. Comparison of "y, calculated using the THBI po-
tentials (Price et a1., 1987b) with that determined exper-
imentally (White et al., 1985; Figure l l), shows

discrepancies undoubtedly related to limitations of the
quasiharmonic approximation at higher temperatures.
Furthermore, Price et al. (1987b) point out that the THBI
Si-O potentials yield mode 7's for Si-O stretching that are
too low, perhaps by factors of 2 to 3, in spite ofthe fact
that the frequencies themselves are well modeled (Price
et al., 1987a). The calculated coefficient of volume ex-
pansion, B, matches the observed value well to 100 K
through an increase of two orders of magnitude. Above
that temperature the errors in the calculated Gruiieisen
parameters propagate to yield values for B that are low
by about 35o/o at 1000 K (Price et al., 1987b). Neverthe-
less, calculated values for Q and S agree wtih observed
ones to better than lolo at 100 K and 3.50/o (for C) and
l.2o/o (for S) at 1000 K.

One of the important long-term objectives of ionic
modeling is to develop the ability to predict stability re-
lations. Price et al. (1987b) have used their empirical
THB1 potential to carry out calculations, similar to those
just reviewed, on the wadsleyite and ringwoodite poly-
morphs of forsterite. In general the calculations yield val-
ues for thermodynamic properties in agreement with ob-
servation to approximately the same extent as for
forsterite. Consequently the calculated AS,*0" values for
forsterite-wadsleyite, wadsleyite-ringwoodite, and for-
sterite-ringwoodite agree rather well with petrologically
and calorimetrically determined values; Clausius-Clapey-
ron slopes (AS/AV) calculated for 1000 K and 14 GPa
(using calculated values for V at P : 0, T : 0, 0, and K,
together with an estimated value of 4 for K' (Price et al.,
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Fig. 9. Density-of-states histogram for forsterite; calculated
from normal-mode frequencies sampled on a 27-point grid in
the first Brillouin zone. From Price et al. (1987b).

1987b) are close to previously reported values for wad-
sleyite-ringwoodite but slightly lower than those for for-
sterite-wadsleyite and forsterite-ringwoodite.

Price et al. (1987b) took an additional step toward a
predicted phase diagram for the MgrSiOo polymorphs by
calculating Gibbs free eneryies as functions of pressure at
0 K for the three phases. They predict the forsterite -

wadsleyite transition at 3.5 GPa, several GPa too low,
and the wadsleyite - ringwoodite transition at 15.5 GPa,
probably about 7 GPa too high. It is well known that
curves of Gibbs free energy versus pressure for poly-
morphs with similar structures intersect at shallow an-
gles, and thus that the pressure ofintersection is strongly
sensitive to very slight errors in energy. Price et al. (1987b)
point out that just a 0.lo/o reduction in the calculated
structure energy of wadsleyite will remove these pressure
errors almost completely; they further suggest that such
error is likely because the SirO, goups in wadsleyite make
that structure relatively more difficult to model than the
others. Under the assumption of constant Clausius-Cla-
peyron slopes, phase boundaries for these transitions are
plotted in Figure 12, where they are compared with other
phase boundaries estimated from experiment.

It is worth reiterating that these calculations on the
structures and properties of forsterite and its polymorphs

Fig. 10. Forsterite heat capacity, C, calculated using poten-
tial THBI. Experimental points from Robie et al. (1982) and
Berman and Brown (1985). From Price et al. (1987b).

are based on interionic potentials derived from periclase
and quartz, and that they were carried out under the as-
sumptions of a pairwise additive ionic model behaving
dynamically in a quasiharmonic fashion. Whereas they
illustrate well the present capabilities of modeling for
simulating important thermodynamic properties, they also
demonstrate the need for more highly accurate interionic
potentials.

Quartz
Because of the nature of Si-O bonds, well known to

have significant covalent character (e.g., Gibbs, 1982),
one might properly anticipate that a purely ionic model
would not be appropriate for their modeling. We have
already seen the introduction of empirical bond-bending
terms and shell models in attempts to account for what
are generally termed nonionic effects, or anisotropic an-
ion polarizations. The tetrahedral silica frameworks are
thus severe tests of the ionic model, and straightforward
MEG procedures (Tossell, 1980; Post and Burnham,
1986a) fail to model quartz correctly. As column 3 of
Table 5 indicates, the two distinct tetrahedral distances
are simulated to be equal incorrectly, and the Si-O-Si
angle is too straight by l8'. The model structure resem-
bles high quartz more closely than it does low quar1rz.

I

-
i
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Fig. I l. Predicted and observed mean Gri.ineisen parameters
for forsterite as a function oftemperature. Calculated values based
on THB1 interionic potential (Price et al., 1987b); experimental
data from White et al. (1985). From Price et al. (1987b).

A first attempt to include anisotropic polarization in
the MEG formalism has been made by Jackson and Gor-
don (1988b). They separate the O ion in quartz into a
core with *6 charge and two shells each having charge
-4. During minimization, the shells may move with re-
spect to the core, subject to the constraint that the shell
centers remain in the plane defined by the core and the
two closest Sia+ ions. An internal shell-core potential is
defined in terms of the O'?- dipole polarizability, and the
associated shell-shell potential is defined from estimates
of quadrupol ar polaizabllity. Interionic short-range po-

TaBLE 5. MEc-based minimum energy structures of quartz

o 500 1000

T(K}

Fig. 12. Calculated and estimated phase boundaries in the
MgrSiOo system. Calculated phase boundaries (solid lines) are
based on THBI interionic potentials (Price et al. (1987b)); esti-
mates from experimental data are from Akaogi et al. (1984) (dot-
dash lines), Kawada ( I 977) (dashed lines), and Sawamoto ( 1986)
(dotted line). From Price et al. (1987b).

tentials for Sia+-O|;u, O3;"-O3;,,, and Ofi;,,-Ofu;r were
compiled by MEG methods. By allowing the O electron
density to polarize anisotropically in this admittedly ad
hoc manner, the quartz structure is modeled quite well

MEG models
Observed

Low quartz' High quartz-
Shell stabilized
r* :  0.93 A-- Two-shell polarizationt

Unit cell
a (A)

v(A')
Interatomic distances

slo (A)
DI-U
(o-o)

O-Si-O angles
Range (')
Variance (")
si-o-si f)

4.91
5.40

112.74

1.594
1  . 613
2 .618

108.6-1 1 1 .4
1 . 4

144.6

5.01
c.+ I

1 18.90

1.609
1.609
2.626

103.0-1 14.7
28.6

148.7

4.97
a-az

1 18.00

1.564
1.564
2.553

104.4-1 1 6.3
29.3

162.6

4.85
5.32

108.4

1.595
1  . 614
2.620

107.5-1 10:6
1 . 5

140.1

. Megaw (1973, pp. 263-265).
'* Post and Burnham (1986a)
tJackson and Gordon (1988b); Si-O distan@s are to oxygen cores; oxygen-core-shell :0.15 A, shell-shell : 0.28 A, shell+ore-shell : 141.4';

charges: core +6, shells -4 each.
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Trele 6. Observed and minimum-energy diopside structures

Chain stretching
Observed' variable charge'* SSMEG repulsionst

SSMEG split
shell model{

Mixed THBI
and MEGII

Unit cell
a (A)
b

B f )
v(tu)

Si Tetrahedron
si-o1(c1) (A)
si-o2(c1)
si-o3(c1)
si-o3(c2)
(slo)

Chain angle:
o3c1-o3c2-o3c1'

Mg (M1) polyhedron
Ms-o1 (A1 ,81) (A)
Mg-O1(A2,82)
Mg-o2(c1,D1)
(Mg-O)
Mg-Mg

Ca (M2) polyhedron
Ca-O1(A1,81) (A)
Ca-O2(C2,D2)
Ca-O3(C1,D1)
Ca-O3(C2,D2)
(Ca-O)

9.75
8.90
5.25

105.6
438.6

1 .60
l R o

| .oo

1.69
1.63

166.4.

2 . 1 2
2.06
2.05
2.08
3.10

2.36
2.35
2.s6
2.72
2.50

s.60 (-1.5)
9.43 (+6.0)
5.28 (+0.6)

106.2 (+0.6)
458.2 (+4.5)

(1.60)
(1.59)
1 .68 (+ 1 .2)
1 .67  ( -1  .21
1.63  (+0)

$

2.24l+5.7)
2.02 (- 1 .9)
2.09 (+2.0)
2.12(+3.4)
3.23(+4.2)

2.43 (+3.0)
2.32(-1.3)
2.70 (+5.5)
2.77 (+1.8)
2.55 (+2.0)

10.0s (+3.1)
9.23 (+3.7)
5.20 (-0.9)

106.5 (+0.8)
462.4 (+5.4)

1.59 (-0.6)
1.59 (+0)
1.62 (-2.4)
1.63 (-3.6)
1 .61  ( -1 .2 )

157.3" (- 5 5)

2.32(+9.4\
2.06 (+0)
2.17 (+5.9)
2.18 (+4.8)
3.19 (+2.9)

2.25 (-4.7)
2.22(-5.5)
2.92 (+14)
3.06 (+12)
2.61 (+4.41

9.58 (- 1 .7)
8.64 (-2.e)
s .14  ( -2 .1 )

104.0 (-1.5)
412.5 (-6.0)

1.59 (-0.6)
1 .57 (- 1 .3)
1 .68 (+ 1 .2)
1.70 (+0.6)
1.64 (+0.6)

166.6'(+0.1)

2 .11  ( -0 .5 )
2.05 (-0.5)
1.e9 (-2.9)
2.05 (- 1 .4)
3.03 (-2.3)

2.26(-4.21
2.32 (-1.31
2.45 (-4.3)
2.57 (-5.5)
2.39 (-4.4)

1 1 . 3 4 ( + 1 6 )
1 1.00 (+24)
5.41 (+3.0)

118.7 (+12)
s92.3 (+35)

1.60 (+0)
1.60 (+0.6)
1.58 (-4.8)
1.59 (-5.9)
1.ss (-2.5)

179.5. (+7.9)

4.87 (+130)
1.96 (-4.s)
1.96 (-4.4)
$$
4.98 (+60)

2 .16  ( -8 .s )
2 .16  ( -8 .1 )
3.72(+45)
4.50 (+65)
$$

Note.'Numbers in parentheses are 7o deviations from observed values.
* Cameron et al. (1973); atom notation from Burnham et al. (1967).

-- Matsui and Busing (1984); Gilbertlype potentials with variable charges; q*,o fixed at +2.0, qo,,o" fitted at -1.26, q@ fitted at 0.905, qs set to
+1.425 to maintain neutrality; see reference for other potential parameters. -

f  Post  and Burnham (1986a);  O. shel l  radi i :  01,2:  1.11 A;  03:0.93 A.
t Abbott (unpublished); split shells on 03 with quartz configuration (Jackson and Gordon, 1988b).
ll Dove (1989); THB1 Mg-O and Si-O potentials (Price et al., 1987a); MEG potential for Ca-O (Post and Burnham, 1986a).
$ Value not available.

$$ Value of no significance.

(Table 5, column 4). The minimum-energy configuration
places the centers of the O shells 0. 15 A away from the
core, approximately along the Si-O-* vectors, with a shell-
shell distance of 0.28 A and a shell-core-shell angle of
141.4, compared with the Si-O**-Si angle of 140.1'. The
model correctly simulates unequal Si-O distances and
softens the structure appropriately to yield a calculated
bulk modulus (55 GPa) too large by a factor of only 1.5,
instead ofthe factor ofabout 8 (300 GPa) derived from
the unpolarized SSMEG model (Jackson and Gordon,
1988b). This split-shell model for O improves the sim-
ulation of low cristobalite to a similar degree (Jackson
and Gordon, 1988b). Although it lacks the theoretical
foundation embodied in MEG formalisms, this explor-
atory treatment of anions exposed to asymmetric poten-
tial gradients that occur in many low-symmetry low-co-
ordination environments merits further serious
development based on its initial successes.

Diopside

This prototypical single silicate chain structure stands
as a strong challenge to the ionic model because, in ad-
dition to its monoclinic symmetry, the Si tetrahedra and
eight-coordinated Ca polyhedra are significantly distort-
ed, and, more importantly, all three O atoms in its asym-
metric unit lack Pauling local electrostatic charge balance.

The chainlinking O atoms, 03, bonded to two adjacent
Si ions plus two Ca ions, have bond-strength sums of 2.5,
whereas Ol, coordinated by one Si, two six-coordinated
Mg and one Ca, has a bond-strength sum of 1.9, and 02,
coordinated by one Si, one Mg, and one Ca, has a bond
strength sum ofonly 1.6. The consequences ofthese local
charge imbalances to bond distances and polyhedral dis-
tortions are well documented (e.g., Cameron et al., 1973).

Matsui and Busing (1984) developed an empirical
model for diopside (Table 6, column 2) that reproduced
elastic constants reasonably well, with maximum and
minimum deviations from observation of 57o/o and 3o/o,
and a mean deviation of only l8o/0. Their model simu-
lated the silicate chain in terms of bond-bending potential
terms for Si-O-Si and O-Si-O angles and a bond-stretch-
ing term for Si-O3; Si-Ol and Si-O2 distances were not
varied. Charges on Ol (:O2) and 03 were varied, the Si
charge was adjusted (to +1.425) to preserve neutrality,
and Mg and Ca charges were fixed at +2. Empirically
determined Gilbert-type repulsion terms (Eq. 2l) were
used for Mg-O and Ca-O.

Post and Burnham (1986a) showed that SSMEG pro-
cedures fail to reproduce the diopside structure but, curi-
ously, yield a different structure having a straight silicate
chain, Si tetrahedra with distortions opposite of those
observed (short instead of long Si-O3 distances), and four-



coordinated Mg and Ca ions (Table 6, column 3)l this
incorrect structure exhibits, however, total local electro-
static charge balance on all oxygens. We suggested that
the purely ionic MEG pair potentials simulate the struc-
ture diopside would assume if it were completely ionic
and that the observed departures from this model struc-
ture arise from nonionic bonding effects.

Abbott (personal communication) has cleverly dem-
onstrated that if anisotropic polarization effects on the
chainJinking 03 are taken into account, a substantially
improved structure can be simulated by SSMEG methods
(Table 6, column 4). He modeled 03 with a fixed split-
shell configuration taken from that determined by Jack-
son and Gordon (1988b) for low quartz. The shell-core-
shell arrangement, whose details are given above, was
permitted to rotate and translate as a rigid body in the
diopside minimization. The resulting structure has the
correct coordinations, qualitatively correct polyhedral
distortions, and a reasonable silicate chain, slightly more
bent than the observed one. The success ofthis procedure
suggests that what may be nonionic bonding effects can
be effectively treated within the ionic modeling frame-
work as anisotropic polarizations.

Very recently Dove (1989) reported an excellent sim-
ulation of the diopside structure using the same THBI
empirical potentials for Mg-O, Si-O, and O-O that Price
et al. (1987a, 1987b) applied so successfully to MgrSiOo
polymorphs, combined with the MEG-determined Ca-O
potentials given by Post and Burnham (1986a). His mod-
el structure (Table 6, column 5) reproduces the observed
chain conflguration and all polyhedral distortions quite
well, further extending the apparent transferability of
periclase-fitted Mg-O and quartz-fitted Si-O pair poren-
tials. Elastic moduli calculated with these potentials match
observed values less well than those of Matsui and Busing
(1984), with maximum, minimum, and mean deviations
of ll4o/o,3o/o, and 350/0, respectively. However, this model
permitted complete structure adjustment, which the Mat-
sui and Busing (1984) model, specifically designed to re-
produce elastic moduli, did not.

I anticipate that in the near future a variety of inter-
esting pyroxene crystal-chemical problems will be pur-
sued using modeling now that both empirical and MEG
strategies for obtaining pair potentials show promise. It
is abundantly clear, however, that future success follow-
ing the nonempirical MEG avenue hinges on suitable
handling of anisotropic anion polarizations. The empir-
ical route requires suitably transferable potentials for a
number of cation-anion pairs beyond Mg-O and Si-O to
begin to range over the wide compositional realm of py-
roxenes; whether these can be obtained has yet to be de-
termined.

Albite

In my final example, I want to illustrate how ionic stat-
ic structure-energy calculations on a complex low-sym-
metry structure can provide substantial insights on crys-
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Fig. 13. Projection of the monoclinic(C2/m) albite structure
down a, showing four crystallographically distinct T sites and
the nine-coordinated Na atom (solid circle). From Post and
Burnham (1987).

tal chemical behavior related to order-disorder
phenomena.

Ordered low albite. Full energy minimizations on the
ordered triclinic low-albite structure, carried out by Post
and Burnham (1987) using SSMEG short-range poten-
tials, confirm that the driving force for Al ordering into
the T,0 tetrahedral sites (see Fig. 13) is provided by the
triclinic lattice distortions. Separate energy minimiza-
tions on the low-albite structure with Al ordered in turn
into each of the crystallographically distinct T sites led to
unit cells and energies given in Table 7. Since, apart from
chemical occupancy, T,0 and T,m are equivalent in the
monoclinic structure, as are Tr0 and T2m, we would an-
ticipate that, as atomic coordinates and lattice parameters
relax, the triclinic minimum-energy structures with Al in
T,0 and T,m would be related as are albite twins, by
reflection through the monoclinic (010). Relaxed struc-
tures with Al in Tr0 and Trm ought to be related simi-
larly. The cell parameters in Table 7 show such relation-
ships, more precisely for T,0 and Tlm structures than for
Tr0 and Trm. Likewise the relative energies of twin-re-
lated ordered structures ought to be the same, as Table 7
shows they are exactly for T,0 and T,m, and nearly so
for Tr0 and Trm. The relative energies for T, versus T,
differ by a rather small amount: Al is favored in T,(0 or
m) over Tr(0 or m) by only about 9.6 kJ/mol. A critical
result is that the relaxed triclinic cells for Al in T, are
more distorted from monoclinic geometry than are those
for Al in Tr. When the minimizations are repeated under
constraints of monoclinic lattice geometry, structures with
Al in T, yield slightly lower energies. Thus the driving
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TABLE 7. Low albite energy minimizations

Aluminum in

Energy (kJ/anion) -5054.8 -5054.8 -5053.5 -5053.8

unit ceil: a (A) 8.40 8.38 8.19 8.20
b 12.98 12.98 13.30 13.24
c 7 .22 7 .22 7.13 7 .11
d (") 95.3 U.7 90.7 93-2
p 116.5 116.5 115.7 115.7
t 87.4 92.6 90.5 89.6

Minimizations under monoclinic constraints (a :'y : 90):
Energy (kJ/anion) -5052.8 -5054.0 -5054.5 -5054.5

force for Al to order into T'0 (or T'm) derives from the
energetically favorable lattice distortions that result from
that choice.

Disordered high albite and the behavior of Na. Strate-
gies for carrying out structure-energy calculations on dis-
ordered structures are not well developed. Use ofaverage
charges for sites with disordered occupancies by cations
with diferent valences is known to be incorrect (Giese,
1975; Jones et al., 1990), since the average pair potential
is correct for neither cation-anion interaction. It would
thus appear that simulation of a disordered structure re-
quires an approximation made as some kind of average
of many different ordered states, even including some
with reduced symmetry and supercells. Jones et al. (1990)
suggest, however, that judicious splitting of sites may per-
mit direct simulation of structures containing disordered
cation occupancies in polyhedra whose anions take up
different positions depending on specific local cation
specres.

To examine the response of Na atoms to different local
tetrahedral Al/Si cation distributions in the high-albite
framework, Post and Burnham (1987) carried out partial
structure-energy minimizations using fixed observed
frameworks (tetrahedral cation and oxygen positions) with
a variety of specific local Al/Si distributions, and varied
the positions of the Na atoms. Taking observed frame-
work atom positions from structure analyses of high al-
bite at room temperature and 1090 'C (Prewitt et al.,
1976), we calculated structure energies and Na positions
for the 55 arrangements of 4 Al and 12 Si over 16 tet-
rahedral sites per unit cell that obey aluminum-avoidance
(i.e., that have no two adjacent tetrahedra containing Al).
These calculations demonstrated that the minimum-en-
ergy Na position is sensitive to the surrounding local tet-
rahedral Al/Si distribution. We further showed that the
Na quarter-atoms used in high-albite structure refine-
ments (Prewitt et al., 1976; Ribbe et al., 1969) constitute
an approximation to an electron density in the feldspar
cavity that is effectively a superposition of many slightly
different Na positions, each of which is fixed by the par-
ticular local Al/Si distribution in the immediately sur-
rounding tetrahedra (Post and Burnham (1987), Figs. 3
and 5).

Similar calculations on hollandite (Post and Burnham,
1986b) and on amphiboles (Docka et al., 1987) have
shown a broadly demonstrable phenomenon that rela-

tively large low-charge cations occupying sites with rela-
tively high and somewhat ill-defined coordinations will

respond to changes in distributions of cations with dif-
ferent valences in the surrounding tetrahedral or octahe-

dral sites. As the local distribution ofcations changes, the
precise configuration of electrostatic potential also
changes, thus moving the potential minimum in the cav-
ity. The characteristically large thermal parameters and

smeared electron densities exhibited by tunnel cations in

some hollandites and by A-site occupants in chemically
complex amphiboles are readily explained as positional

variations that can be quantitatively evaluated by ionic
modeling in this manner. Since the minimum-energy
cavity positions are dictated by local framework cation
distributions, positional "disorder" of cavity cations will
not add to configurational entropy unless particular

framework cation distributions yield multiple equal-en-
ergy cavity minima.

Tetrahedral site energetics Yersus temperature and All
Si disordering. Our high-albite calculations provide ad-
ditional insights regarding order-disorder relationships.
Using the observed high-albite frameworks from six
structure analyses from room temperature to 1090'C, we

calculated the energies of hypothetical ordered structures
with Al in each of the four distinct sites, plotted in Figure
14. At 1090 'C the energies of structures with Al in T'0
and T,m are nearly equal as are those with Al in Tr0 and
Trm; this is expected, since the framework of high albite
at that temperature is nearly, but not quite, monoclinic
(monalbite). Al favors T, over T, by some 5 kJ/anion, or
40 kJ/mol, substantially more than in the fully mini-
mized low-albite structures (Table 7), but this diference
is likely an artifact of using the fixed frameworks in the
high-albite calculations. In the room-temperature high-
albite framework, Al is strongly favored in T,0' even over
T,m, since the fixed framework has a particular triclinic
distortion developed with decreasing temperature along
a path dictated by the real disordered, but unchanging,
Al/Si distribution. Finally, it is particularly instructive to
note that essentially all of the energetic favorability Al

achieves for concentration into T,0 has been gained by
framework distortions between 1090 "C and about 700
'C. This observation is entirely consistent with, and rein-
forces, the conclusion, reached theoretically by Salje et
al. (1985) and experimentally by Goldsmith and Jenkins
(1985), that most of the ordering in albite takes place over
this limited temperature range.

Having calculated static structure energies for 55 Al/Si
arrangements using the observed 1090 'C high-albite
framework (Fig. 15), it is now possible to estimate the
energy of disorder, which, neglecting the small pAZterm,

is equivalent to the static contribution to the disordering
enthalpy. Assuming that the actual disordered AllSi dis-
tribution will follow a Boltzmann distribution, the Boltz-
mann-weighted average energy will be (Binder, 1976):
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TzmT.0TrfiT,0

(28)



BURNHAM: IONIC MODEL 46r

3672

' 

;:., 

8m Doo r2m

Fig. 14. High albite structure energy versus temperature.
Calculations based on fixed observed tetrahedral frameworks
(Prewitt et al., 1976) and minimized Na positions. Al ordered
into T,0 (solid circles), T,m (open circles), Tr0 (xs), and T2m
(+s). From Post and Burnham (1981.

where the summation is over all possible Al/Si distribu-
tions. Our sum is over the 55 distributions investigated,
which is a small fraction of the total number, all the rest
of which violate aluminum avoidance to some degree.
Assuming the aluminum-avoidance principle (Loewen-
stein, 1954) has a valid energetic basis, which appears to
be the case (e.g., Cohen and Burnham, 1985)" our 55
configurations will be the most significant contributors to
the Boltzmann distribution. For the 1090 .C (1363 K)
high-albite framework, (W) is +12.3 kJ/mol relative to
the lowest-energy ordered configuration, with Al in T,0.
Thus our estimate is that AH*u = 12.3 kl/mol at 1363
K. Carpenter et al. (1985) has determined from calorim-
etry that AHo_o = 12.6 + 1.3 kJ/mol at973K, of which
he estimated that about 1.3 kJlmol is due to AC,. Thus,
the static A.[I.-u at 973 K would be about + I 1.3 kJlmol,
to which our estimate, calculated for 1363 K with the
static ionic model, compares remarkably well. At the very
least it confirms that the many Al/Si configurations that
violate aluminum avoidance are not significant contrib-
utors to the Boltzmann distribution.

CoNcr,unrNc REMARXS

These results demonstrate that the ionic model is quan-
titatively useful even for structures in which electronega-
tivity differences indicate that the ionic character of the
bonding is not high and in which residual charges on ions
are known from observation to be significantly less than
their formal charges. Pair potentials determined from fit-
ting to simple structures appear to have reliable transfer-
ability into an encouragingly wide spectrum of complex
structures. Theoretically determined MEG pair potentials
can be used productively to simulate a variety of complex
structures, and the breadth ofsuccessful structure simu-
lations continues to grow rapidly. In sites where potential
field gradients are substantial and anion electron densities
are polarized, successful modeling requires that pair po-

W(kJ/mole)

Fig. 15. Histogram of calculated stmcture energies for the
1090 'C high albite framework, with minimum-energy Na po-
sitions, for 55 Al/Si configurations. Confrgurations correspond-
ing to Al ordered into particular crystallographic sites are indi-
cated. Energies are relative to the lowest energy configuration,
with Al in T,0.

tentials be modified to account for these anisotropic ef-
fects. The development of improved techniques for han-
dling anisotropic anion polarizations is imminent.

Calculation and prediction ofthose properties that de-
pend on derivatives ofpair potentials higher than the first
are less precise and reliable. This is particularly true of
elastic moduli and Griineisen parameters, where differ-
ences between calculated and observed values of factors
of two or more are not uncommon. There may, in fact,
be impenetrable barriers; Hemley (personal communi-
cation) suggests, for example, that it may be impossible
with MEG or other nonempirical models to simulate well
both a complex structure and its elastic properties si-
multaneously with full formal ion charges.

Even for complex low-synmetry structures, our pres-
ent ionic modeling techniques let us answer many of the
"Why's" of crystal chemical behavior and let us make
reasonably good structural predictions at levels ofdetail
impossible with earlier semi-quantitative methods. Rel-
ative stabilities of polymorphs and alternative hypothet-
ical structures can be determined with reasonable confi-
dence. But when it comes to predicting phase changes at
elevated temperatures and pressures, the results are far
less reliable. Imprecision in higher derivatives of pair po-
tentials and crudeness in handling polarization effects
generate errors in properties such as thermal expansion,
heat capacities, and compressibilities that have signifi-
cant effects on derived equations of state and critical fea-
tures ofphase diagrams. I am confident that our potential
models will improve, however, and that reliable calcu-
lation ofphase diagrams will become a reality in the fore-
seeable future.

We are close to having the power of a supercomputer
on our desktops and in our classrooms. We have precise
structural data on an extraordinary wealth of mineral
species, provided by literally thousands of structure re-
finements with precisely measured diffraction data over
the past thirty years. These two realities ought to be pow-
erful forces tending to alter fundamentally the way we
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teach mineralogy. As overdue pedagogical transforma-
tions take place, I believe it is important to remember
the value of relatively simple informative models. Sir
Lawrence Bragg was especially lucid with respect to the
place of such models:

Solid bodies consist of atomic nuclei and of electrons,
and the structure assumed by any solid is such that the
whole system of nuclei and electrons takes up a form
of minimal potential energy. The energy of a configu-
ration is to be calculated by applying the principles of
quantum mechanics and no distinction between [the]
various types of [bondine] force appears in the rigid
mathematical expressions. It only appears when we find
it possible to get an approximation to the truth by mak-
ing simplifying assumptions appropriate to the case
considered. (Bragg, 1937, p. 29)

The reality is that bonding in minerals is not purely
ionic. My perception is, however, that the ionic model is
an approximation to the truth appropriate to the case of
many complex silicates and oxides. I hope it will become
the perceptio4 of others as well.

AcxNowr,BocMENTs

I want to thank several collaborators and my former graduate students
and post-doctoral fellows for years of encouragement and stimulation.
David Bish, JeffPost, Ron Cohen, Richard Abbott, Page Chamberlain,
Jan Docka, Linda Pinckney, and Mark van Baalen have all shared my
enthusiasm for the potential of the ionic model to enlighten our percep-
tions of silicate crystal chemistry. I especially thank Yoshikazu Ohashi
for pointing the way back in the early I 970s. Roy Gordon and his students
Carl Muhlhausen, Mark Jackson, and Russ Hemley have generously as-
sisted us with aspects of MEG modeling. I thank the National Science
Foundation for supporting my research through gants EAR 79-20095
and EAR 87 -20666 Finally I thank JeffPost for carefully scrutinizing the
manuscript on very short notice.

RnrnnnNcns crreo
Akaogi, M., Ross, N.L., McMillan, P., and Navrotsky, A. (1984) The

MgrSiOo polymorphs (olivine, modified spinel and spinel)-thermo-
dynamic properties from oxide melt solution calorirnetry, phase rela-
tions and models of lattice vibrations. American Mineralogist,69,499-
st2.

Berman, RG., and Brown, T.H. (1985) Heat capacity of minerals in
the system NarO-K'O-CaO-MgO-FeO-FerO,-AlrO3-SiOr-TiOr-HrO/-
COr: Representation, estimation, and high temperature extrapolation.
Contributions to Mineralogy and Petrology, 89, 168-183.

Bertaut, F (1952) L'energie electrostatique de reseaux ioniques. Le Jour-
nal de Physique et le Radium, 13, 499-505.

Binder, K. (1976) Monte Carlo investigations of phase transitions and
critical phenomena. In K. Binder, Ed., Phase transitions and critical
phenomena, 5b, 1-105. Academic Press, New York.

Bom, M., and Huang, K. (1954) Dynamical theory of crystal lattices.
Oxford University Press, I-ondon.

Born, M., and Land6, A. (1918) Uber die absolute Berechnung der Kris-
talleigenschaften mit Hilfe Bohrscher Atommodelle. Sitzungsberichte
der Preussischen Akademie der Wissenschaften Berlin. 45. 1048-1068.

Born, M, and Mayer, J.E. (1932) Zur Gittertheorie der Ionenkristalle.
Zeitschrift fiir Physik, 75, l-18.

Bouckaert, L.P., Smoluchowski, R., and Wigner, E. (1936) Theory of
Brillouin zones and symmetry properties of wave functions in crystals.
Physical Review. 50. 58-67.

Boyer, L.L, Mehl, M.J., Feldman, J.L., Hardy, J.R., Flocken, J.W., and
Fong, C.Y (l 985) Beyond the rigid ion approximation with spherically
symmetric ions. Physical Review Letters, 54, 194{;--1943.

Bragg, W. L. (1937) Atomic structure of minerals' Cornell Univenity

Press. Ithaca. New York.
Burnham, CW., Clark, J.R., Papike, J.J., and Prewitt, C.T. (1967) A

proposed crystallographic nomenclature for clinopyroxene structures.

Zeitschrift {iir Kristallographie, 125, 109-l 19.
Bumham, C W. (1985) Mineral structure energetics and modeling using

the ionic approximation. Mineralogical Society of America Reviews in

Mineralogy, 14, 347-388.
Busing, W.R. (1981) WMIN, a compuler program to model molecules

and crystals in terms of potential energy functions. U.S. National Tech-

nical Information Sewice, ORNL-5747.
Busing, W.R., and Matsui, M. (1984) The application of external forces

to computational models of crystals. Acta Crystallogaphica, A40, 532-

538
Cameron, M., Sueno, S., Prewitt, C.T., and Papike, J.J. (1973) High-

temperature crystal chemistry of acmite, diopside, hedenbergite, jade-

ite, spodumene, and ureyite. American Mineralogist, 58, 592H18.
Carpenter, M.A., McConnell, J.D C., and Navrotsky, A. (1985) Enthal-

pies of ordering in the plagioclase feldspar solid solution. Geochimica
et Cosmochimica Acta, 49, 9 47 -9 66.

Catlow, C.R.A. (1977) Point defect and electronic properties ofuranium

dioxide. Proceedings ofthe Royal Society London, A353, 533-561.

Clugston, M J. (1978) The calculation ofintermolecular forces: A critical

examination ofthe Gordon-Kim model. Advances in Physics, 27,893-

912.
Cochran, W. (1973) The dynamics of atoms in crystals. Edward Arnold,

London
Cohen, A.J., and Gordon, R.G. (1975) Theory of the lattice energy, equ-

librium structure, elastic constants, and pressure-induced phase tran-

sitions in alkali-halide crystals. Physical Review, Bl2,3228-3241'
Cohen. A.J., and Gordon, R.G. (1976) Modified electron gas study of the

stability, elastic properties, and high pressure behavior of MgO and
CaO crystals. Physical Review, B14, 45934605.

Cohen, R.E. (1987) Elasticity and equation ofstate ofMgSiO. perovskite.

Geophysical Research I-etters, 1 4, 1 05 3-l 056.
Cohen, R.E, Boyer, L.L., and Mehl, M.J (1987) Theoretical studies of

charge relaxation effects on the statics and dynamics ofoxides. Physics
and Chemistry of Minerals, 14, 294-302.

Cohen, R.E., and Burnham, C W. (1985) Energetics of ordering in alu-
minous pyroxenes. American Mineralogist, 70, 559-567.

Cowley, R A ( I 964) Lattice dynamics and phase transitions of strontium
titanite. Physical Review, 134, A981.

Docka, J.A., Post, J.E., Bish, D.L., and Burnham, C.W. (1987) Positional
disorder of A-site cations in C2/m amphiboles: Model energy calcu-
lations and probability studies. American Mineralogist, 7 2, 949-958.

Dove, M.T. (1989) On the computer modeling of diopside: Toward a
transferable potential for silicate minerals. American Mineralogist, 74,
774-779.

Evans, R.D. (1966) An introduction to crystal chemistry, 2nd edition.
Cambridge University Press, New York.

Ewald, P.P (l 92 l) The calculation of optical and electrostatic lattice po-

tentials. Annals of Physics (Leipzig), 64, 253-287 .
Fujino, K., Sasaki, S., Tak6uchi, Y., and Sadanaga, R. (1981) X-ray de-

termination ofelectron distribution in forsterite, fayalite and tephroite.
Acta Crystallographica, B37, 51 3-5 18.

Gibbs, GY. (1982) Molecules as models for bonding in silicates. Amer-
ican Mineralogist, 67, 421450.

Giese, R.F., Jr (1975) Electrostatic energy ofcolumbite/ixiolite. Nature,
256,3t-32.

Gilbert, T.L (1968) Soft-sphere model for closed-shell atoms and ions'

Journal of Chemical Physics, 49, 2640-2642.
Gillespie, C.C. (Editor-in-chief) (1970) Dictionary of Scientific Biography,

2, 32G332. Scribner, New York.
Goldsmith, J.R., and Jenkins, D.M. (1985) The highJow albite relations

revealed by reversal of degree of order at high pressures. American
Mineralogist, 7O, 9 | l-923.

Gordon, R.G., and Kim, Y S. (1972) Theory for the forces between closed-
shell atoms and molecules. Joumal of Chemical Physics, 56, 3122-
3r33 .

Hazen, R.M. (1976a) Etrects oftemperature and pressure on the cell di-
mension and X-ray temperature factors of periclase. American Min-
eralogist, 61, 266-27 l.

BURNHAM: IONIC MODEL



BURNHAM: IONIC MODEL 463

- (1 976b) Efects oftemperature and pressure on the crystal structure
of forsterite. American Mineralogist, 61, 1280-1293

Hemley, R.J., and Gordon, R.G. (1985) Theoretical study of solid NaF
and NaCl at high pressures and temperatures. Journal ofGeophysical
Research. 90. 7803-78 I 3.

Hemley, R.J., Jackson, M D., and Gordon, R.G. (1985) First-principles
theory for the equations of state of minerals at high pressures and
temperatures: Application to MgO. Geophysical Research I-etters, 12,
247-250.

-(1987) Theoretical study of the structure, lattice dynamics, and
equations of state of perovskite-type MgSiO, and CaSiOr. physics and
Chemistry of Minerals, 14,2-12.

Jackson, M.D., and Gordon, R.G (1988a) A MEG srudy of the olivine
and spinel forms of MgrSiOo. Physics and Chernistry of Minerals, 15,
514-520.

- (1988b) MEG investigation of low pressure silica-Shell model for
polarization. Physics and Chemistry of Minerals, 16, ZIZ-220.

Jeanloz, R., and Thompson, A.B. (1983) Phase transitions and mantle
discontinuities. Reviews ofGeophysics and Space Physics, 21, 51-74.

Jones, I.L., Heine, V., Leslie, M., and Price, G.D. (1990) A new approach
to simulating disorder in crystals. Physics and Chemistry of Minerals,
rn press.

Kawada, K (1977) The system MgrSiOo-FerSiOo at high pressures and
temperatures and the Earth's interior Ph.D. thesis, University of To-
kyo.

Kieffer, S.W (1985) Heal capacity and entropy: Systematic relations ro
lattice vibrations Mineralogical Society of America Reviews in Min-
eralogy, 14,65-126.

Knittle, E., and Jeanloz, R. (1987) Synthesis and equation of state of
(Mg,Fe)SiO, perovskite to over 100 gigapascals. Science,235, 668-670.

Lasaga, A.C. (1980) Defect calculations in silicates: Olivine. Amencan
Mineralogist, 65, 1237 -1248.

kwis, G.V. (1985) Interatomic potentials: Derivation of parameters for
binary oxides and their use in ternary oxides. Physica, l3lB, I l4-l 18.

Loewenstein, W. (1954) The distribution of aluminum in the tetrahedra
of silicates and aluminates. American Mineralogist, 39, 92-96.

Madelung, E. (1918) Das elektrische Feld in Systemen von regelmiissig
angeordneten Physikalische Zeitschrift, 19 , 524-532 .

Matsui, M., and Busing, W.R. (1984) Calculation of the elasric constants
and high-pressure properties of diopside, CaMgSiOu. American Min-
eralogist, 69, 1090-1095.

McMillan, P. (1985) Vibrational spectroscopy in the mineral sciences.
Mineralogical Society of America Reviews in Mineralogy, 14,9-63

Megaw, H.D. (1973) Crystal structures: A working approach. W. B. Saun-
ders Co, Philadelphia.

Mehl, M.J., Hemley, R.J., and Boyer, L.L (1986) Porential-induced
breathing model for the elastic moduli and high-pressure behavior of
the cubic alkaline-earth oxides. Physical Review, B33, 8685-8696.

Muhlhausen, C., and Gordon, R.G. (l98la) Electron-gas theory of ionic
crystals, including many-body effects Physical Review, B23, 900-923.

-(l98lb) Density-functional theory for the energy of crystals: Test
ofthe ionic model. Physical Review, B24, 2147-2160.

Navrotsky, A., and Kleppa, O.J. (1967) Enthalpy of the anatase-rutile
transformation. Journal of the American Ceramic Society, 50, 626.

Nijboer, B.R.A, and DeWette, F.W. (1957) On the calculation of lattice
sums. Physica, 23, 309-321

Ohashi, Y., and Burnham, C.W. (1972) Electrostatic and repulsive ener-
gies of the Ml and M2 cation sites in pyroxenes. Journal of Geophysical
Research. 77. 57 6l-5766.

O'Keeffe, M., Hyde, B.G., and Bovin, J.-O (1979) Contribution to the
crystal chemistry of onhorhombic perovskites: MgSiO, and NaMgFr.
Physics and Chemistry of Minerals, 4,299-305.

Pachalis, E., and Weiss, A (1969) Hartree-Fock-Roothan wave functions,
electron density distribution, diamagneric susceptibility, dipole polar-
izability, and antishielding factor for ions in crystals. Theoretica Chim-
ica Acta. 13. 381-408.

Parker, S.C. (1983) Prediction of mineral crystal structures. Solid Stare
Ionics. 8. 179-186

Pauling, L. (1927) The sizes of ions and the structure of ionic crystals.
Joumal of the American Chemical Society,49, 765-790.

-(1928) The sizes of ions and their influence on the properties of
saltJike compounds. Zeitschrift fiir Kristallographie, 67, 37 7 4O4.

Post, J.E., and Burnham, C.W. (1986a) Ionic modeling of mineral struc-
tures and energies in the electron gas approximation: TiO, polymorphs,
quartz, forsterite, diopside. American Mineralogist, 7 1, 142-150.

- ( 1986b) Modeling tunnel-cation displacements in hollandites using
structure-energy calculations. American Mineralogist, 71, I 178-l 185.

- (1 987) Structure-energy calculations on low and high albite. Amer-
ican Mineralogist, 7 2, 507 -514

Prewitt, C.T, Sueno, S., and Papike, J.J. (1976) The crystal structures of
high albite and monalbite at high temperatures. American Mineralo-
gist,61, 1213-1225

Price, G.D., and Parker, S.C. (1984) Computer simulation of the struc-
tural and physical properties of the olivine and spinel polymorphs of
MgrSiOo. Physics and Chemistry of Minerals, 10,209-216

Price, G.D., Parker, S.C., and Leslie, M. (1987a) The lattice dynamics of
forsterite. Mineralogical Magazine, 5 I, I 5 7- I 70.

- (1987b) The lattice dynamics and thermodynamics of the MgrSiOn
polymorphs Physics and Chemistry of Minerals, 15, 181-190.

Rao, K.R., Chaplot, S.L., Choudhury, N., Ghose, S., and Price, D.L.
(1987) Phonon density ofstates and specific heat offorsterite, MgrSiOn.
Science. 236. 64-65.

Ribbe, P.H., Megaw, H.D., and Taylor, W.H. (1969) The albite structures.
Acta Crystallographica, B25, 1503-1 5 18.

Ringwood, A.E. (1962) Mineralogical constitution of the deep mantle.
Joumal of Geophysical Research, 67, 4005-40 10.

Robie, R.A., Hemingway, B.S., and Takei, H. (1982) Heat capacities and
entropies of MgrSiOo, MnrSiOo and CorSiOn between 5 and 380 K.
American Mineralogist, 67, 470482.

Salje, E., Kuscholke, B., Wruck, B., and Kroll, H. (1985) Thermody-
namics of sodium feldspar, II: Experimental results and numerical cal-
culations. Physics and Chemistry of Minerals, 12, 99-107 .

Sanders, M.J., Leslie, M., and Catlow, C.R.A. (1984) Interatomic poten-
tials for SiOr. Journal of the Chemical Society Chemical Communi-
catio s, 127 l-1273.

Sasaki, S., Fujino, K., Tak6uchi, Y., and Sadanaga, R. (1980) On the
estimation of atomic charges by the X-ray method for some oxides and
silicates. Acta Crystallographica, A36, 904-9 15.

Sawamoto, H. (1986) Single crystal grofih of the modified spinel and
spinel phases of (Mg,Fe)rSiO4 and some geophysical implications. Physics
and Chemistry of Minerals, 13, l-10.

Sherman, J. (1932) Crystal energies of ionic compounds and thermochem-
ical applications. Chemical Reviews, 1 1, 93-17 0 -

Slater, J.C. (1939) Introduction to chemical physics. McGraw-Hill, New
York.

Tossell, J.A. (1980) Calculation ofbond distances and heats offormation
for BeO, MgO, SiOr, TiOr, FeO, and ZnO using the ionic model. Amer-
ican Mineralogist, 65, 163-17 37.

Waldman, M., and Gordon, R.G. (1979) Scaled electron gas approxi-
mation for intermolecular forces. Journal ofChemical Physics, 7 I, I 325-
1329 .

Wall, A., Price, G.D., and Parker, S.C. (1986) A computer simulation of
the structure and elastic properties ofMgSiO, perovskite Mineralogical
Magazine,50, 693-707.

Watson, R.E. (1958) Analytic Hanree-Fock solutions for O-. Physical
Review, I  I  l ,  1108-11 10.

White, G.K., Roberts, R.B., and Collins, J.G. (1985) Thermal propenies
and Gruneisen functions of forsterite, MgrSiOn. High Temperatures-
High Pressures, 17, 6l-66.

Wolt G.H., and Bukowinski, M.S.T. (1987) Theoretical study of the
structural and thermoelastic properties of MgSiOr and CaSiO3 perov-
skites: Implications for the lower mantle composition. In M.H. Mangh-
nani and Y. Syono, Eds., High pressure research in mineral physics, p.
313-331. Terra Scientific, Tokyo.

Wolt G.H., and Jeanloz, R. (1985) Lattice dynamics and structual dis-
tortions of CaSiO3 and MgSiOj perovskites. Geophysics Research Let-
rerc, 12,413416.

Yagi, T., Mao, H.K., and Bell, P.M. (1978) Structure and crystal chem-
istry of perovskite-type MgSiO3. Physics and Chemistry of Minerals,
3,  97- l  10

Yagi, T., Mao, H K., and Bell, P.M. (1982) Hydrostatic compression of
perovskite-t)?e MgSiOr. in S.K. Saxena, Ed., Advances in Physical
geochemistry, 2, 317-325. Springer-Verlag, New York.

MlNuscnrp,r REcETvED Jer.ruenv 23, 1990
MrNuscnrpr AccEFTED Mencn 2, 1990


