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Error propagation in calculations of structural formulas
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AssrRAcr

We have derived the algorithms for propagating analytical uncertainty through calcu-
lations of structural formulas including relative formula proportions of Fe2* and Fe3*, the
distribution of cations among structural sites, and relevant cation sums. We analyzed
approximately 50 spots each on a standard augite, bytownite, and hornblende and prop-
agated the uncertainties in the measured oxide concentrations through the calculation of
structural formulas of each mineral.

The analytical uncertainty of the oxide weight percent of an element severely underes-
timates the true uncertainty in the formula proportions of multivalent cations and cations
that are assigned to more than one structural site. Ifthe contributions ofcovariance to the
total uncertainty are neglected, however, the uncertainty in the formula proportions of Si
and of multivalent or multisite cations may be overestimated by as much as 25o/o. Co-
variance makes a relatively small contribution to the observed standard deviations of
other cations except for data sets in which a few "bad" analyses are present. Whether
uncertainties in formula proportions are magnified or reduced, compared to the uncer-
tainties in the corresponding oxide weight percent, depends not only on the composition
of the mineral, the structural formula to which the cations are assigned, and the type of
normalization used in the calculation, but also on the relative sizes of the uncertainties in
the oxide weight percent and the magnitude of the covariance terms.

For the bytownite, augite, and hornblende we studied, the propagated uncertainties of
formula proportions of cations of major elements generally are less than l-3o/o. However,
they range as high as 360/o for calculated Fe3* and 25o/o for cations that lie in more than
one structural site.

INrnooucrroN

The electron microprobe yields chemical data in the
form of weight percents of the oxides from which struc-
tural formulas of minerals are calculated. Anall.tical un-
certainties in the oxide concentrations can be determined
by standard statistical methods, but determining the pre-
cision associated with cation proportions is not as simple.

Understanding the effect of analytical uncertainty on
calculations of structural formulas is especially important
for two reasons. First, we commonly want to know
whether a microprobe analysis conforms to stoichiomet-
ric constraints. Unless uncertainties in calculated num-
bers of cations can be determined, it is not clear whether
cation sums are significantly different than those required
by stoichiometry. The smallest uncertainties that can be
expected are derived by propagating counting errors
through the calculation of the structural formula.

Second, there are certain petrologically important pa-
rameters derived from a calculated structural formula for
which a corresponding oxide cannot be analyzed directly.
Examples of these include the distribution of cations
among sites in a mineral structure and the relative abun-
dances of multivalent cations such as Fe. The uncertain-
ties associated with these parameters cannot be estimated
directly by using the uncertainty of a measured oxide con-
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centration; they must be determined by propagating the
errors in all the oxide concentrations through the calcu-
lation.

In this paper, we evaluate several methods of deter-
mining the uncertainties in structural formulas and the
principal controls on error magnification. Our results
demonstrate that complete elror propagation including
covariance terms is advisable for precise work. For many
routine applications, however, there is little difference be-
tween measured uncertainties of oxide concentrations and
the propagated uncertainties ofthe corresponding calcu-
lated cation proportions, except for multivalent cations
and cations assigned to more than one structural site.

The basic equation

If some calculated value Yis a function of several mea-
sured variables, Y: flxr, xz, '" xn), then the uncertainty
of I is given by the basic equation for error propagation
(Bevington, 1969):

o,r: o,.r(0Y/6xt)2 + o2,2(dY/dx)2
* 2o,r-r(0Y/6xr) (0Y/0xr) + "'

or (Hahn and Shapiro, 1967)

o'": f f, o*,,,(dY/6x,)(0Y/0x,) (l)
i : r  j : l
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Table 1 contains the definition of all variables. Two as-
sumptions underlie the derivation of these expressions:
(l) The measured variables and calculated parameters are
derived from approximately normally distributed popu-
lations, and (2) the error-propagation equation is an ap-
proximation based on a Taylor series expansion about
the point where each of the variables takes on its mean
value. The contribution of terms of higher order than the
first partial derivatives is assumed to be negligible (Rod-
dick, 1987).

Both of these assumptions are satisfied by calculations
of structural formulas based on microprobe analyses.
Measured oxide concentrations are likely to be normally
distributed because, if a series of replicate measurements
are subject only to random errors, the frequency distri-
bution of those values will be Gaussian or normal (Bertin,
1980). In addition, instrumental error often is normally
distributed (Hahn and Shapiro, 1967), and a major source
of uncertainty in microprobe measurements is the count-
ing error, which also has a normal distribution (Bertin,
1980). Finally, the mean of a parameter dependent on
four or more variables from different populations tends
to be normally distributed even for small values of n
(Roddick, 1987, who credited Eisenhart, 1963, and Hahn
and Shapiro, 1967).

Roddick (1987) also pointed out that the omission of
the higher-order terms of the Taylor expansion produces
exact errors for linear functions and is usually valid for
other functions. It is necessary to verifu that the functions
employed in calculations of structural formulas are linear
within the limits of analytical uncertainty of the mea-
sured variables. We examined this problem by calculat-
ing the contribution ofthe next-higher-order term in the
error-propagation equation to the uncertainties associ-
ated with the calculated structural formulas of the three
examples below. The worst case we found was a higher-
order contribution equal to 0.530/o ofthe value calculated
by the basic equation. Therefore, we concluded that the
functions for calculating structural formulas from oxide
data are linear within the regions of interest.

Previous work

Several approaches to error propagation appear in the
geological literature (Dalrymple and Lanphere , 197l1' An-
derson, 1976; Ludwig, 1980; Rees, 1984; Hodges and
Crowley, 1985; Hodges and McKenna, 1987; see Rod-
dick, 1987, for a complete summary), but, to our knowl-
edge, analysis of uncertainties in calculated structural for-
mulas in minerals has not been reported. The Monte Carlo
method (e.g., Anderson, 1976) simulates an error distri-
bution in the calculated value by large numbers of re-
peated calculations. The input parameters for each cycle
are derived from random variations in the measured val-
ues within the limits of their measured uncertainties.
Roddick (1987) presented a standard numerical method,
derived from the basic error-propagation equation, that
takes correlation oferrors among variables into account
and incorporates a test for linearity.

TABLE 1. Definition of variables

oi,

cation basis for structural-formula calculation
oxygen basis for structural-formula calculation
number of cations of the fth element in a structural for-

mula
number of cations of the ith element in cation-basis strue

tural formula
number of cations of the ith element in oxygen-basis

structural formula
number of cations in the oxide of the ith element
counting error: (4)'2
formula weight of the oxide of the fth element
total Fe
: elt'
: qlt'
number of cations of the last element (D to fill a structural

site
number of measurements
number of counts

2 *'no'
= t:-, total number of oxygens on a cation basis

2*'n
number of oxygen anions in the oxide of the fth element
number of cations of element i remaining after element i is

last to fill a site
number of cations that can be accommodated in a struc-

tural site

:2 *,tC, sum of mole numbers of cations
-".

: 
Z 

**, sum of mole numbers of oxygen anions

weight percent of the oxide of the ,th element
: w,lf,lf: fraction of total oxygen anions that reside in

the fth oxide
: wlAl€: fraction of total cations that reside in the fth ox-

ide
kth measurement of the fth variable

: ) x,/n: mean value of the ith variable

partial derivative of xi with respect to v/, evaluated at x4,,
all (v&)i+i constant

: o,*lo,g,,i coefficient of correlation between x' and xt

:tll(n - 1)l > (xr - x,,-)(\r - xrJ: covariance of n
t l

measurements of x and x
: orr: variance, a special case of covariance
: (4)'/2: standard deviation of n measurements x,

e
F

Fe'
la
n
lt

n

oc

r!

SF

wt

n
n
Xu

Xi,^

AxtlAvt

Appr,rclrroN To cArrcuLATIoNs oF
STRUCTURAL FORMUI,AS

The method of propagating errors proposed herein is
to derive analytical formulations that make use of the
basic error-propagation equation (Eq. l). The method
produces errors that are "exact" provided the assump-
tions implicit in the use of the basic equation are valid.

Analytical solutions are specific to individual types of
calculations because they require partial derivatives of
the functions by which desired values are obtained. Such
specific solutions may be desirable for routine procedures
such as the calculation of mineral formulas from chemi-
cal data. Calculations of structural formulas are based on
simple functions having simple derivatives. Consequent-
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ly, the analytical formulation for propagating uncertain-
ties of cation proportions is widely applicable and easily
programmed.

The formula proportion of a cation is a function of the
measured concentrations of all the oxides, or c,: f(w,,
wr, .-. w,).Hence, by Equation I,

n n

o?,:2)o*,*o(0c,/0w,)(Ec,/0w). (2)
j : t  k=l

Equation 2 reveals that determining the uncertainty as-
sociated with a calculated formula proportion of cations
requires only the covariance matrix for the measured ox-
ide concentrations (o,,,o, Table l) and partial deriva-
tives of the functions foi the calculated numbers of cat-
ions (6c,/0w).If the errors in the oxide concentrations are
uncorrelated, the covariance terms can be dropped from
the equation, and the resulting expression is

. {o;,: D o2r(0c,/6y)2. (3)
j : l

The function for calculating the formula proportion of
a particular cation depends upon whether it is normalized
on an oxygen basis (superscript O) or on a cation basis
(superscript c). For an oxygen-basis calculation,

In order to propagate the uncertainties in the measured
oxides through the calculation of structural formulas, the
derivatives and the elements of the covariance matrix
must be substituted into Equation 2.

In addition to the formula proportions of cations of
each element, the relative abundances of Fe2* and Fe3*,
the distribution of cations among sites, and cation sums
are routinely included in calculations of structural for-
mulas. Below, we analyze the functions by which these
parameters are derived and calculate their partial deriv-
atives. In all cases, the functions are simply linear com-
binations of the functions for calculating formula pro-
portions, derived above, and, hence, should also behave
in a linear fashion within the ranges of their uncertainties.

The valence of Fe

The electron microprobe cannot discriminate between
Fe2* and Fe3* and the analyst has the option ofreporting
all the Fe in a sample as either FeO or FerOr. If total Fe
(Fe*) is reported as FeO, the abundances ofFe2* and Fe3*
cations can be calculated from the oxygen deficiency that
arises from the attempt to normalize the structural for-
mula to a fixed number of oxygens and fixed number of
cations. The oxygen deficiency is the difference between
bo, the number of oxygens to which the structural for-
mula is normalized, and o., the number of oxygens cal-
culated on a cation basis. For each missing oxygen, 2
FeO's are converted to FerOr, and the extra oxygen "cre-
ated" balances the deficiency.

The function for calculating the number of Fe3* cations
is c."r* : 2(bo - o 

") 
(Table I ). Expanding o", this expression

can be written as

The partial derivatives of this function with respect to
the oxide weight percents have the form 

.

dcp,,, / 6 w i: za"{t"c#"e)

The number of Fe2* cations is calculated by the difference

CF;2+ : CFe, - Cp&+1 Q)

and the partial derivatives by

6cr.*/0w,: )cr.Jdw, - 6cp"t*/0w,.

The terms on the right-hand side of the derivatives of
Equations 6 and 7 have the form of the derivatives of
Equation 5. The uncertainties associated with the for-
mula proportions of Fe2* and Fe3* can be calculated by
substituting the partial derivatives of Equations 6 and 7
and the elements of the covariance matrix of oxide con-
centrations into Equation 2.

w,(c7*/f,)bo w,lCbo
cp :  _ - " : :  _ *  (4 )

The partial derivative of cf with respect to the weight
percent of the oxide of the same cation is given by

)cf/0w,
solebo - w,lel€b"

(so)' '

(6)
whereas the partial derivative of cf with respect to the
weight percent of an oxide of a different cation is given
by

(0cl/0w,),*,: -W

The function for the formula proportion of a particular
cation normalized to a cation basis is

w,(cy/f,)b' w,hb.c r :  
s= : ; .  

( 5 )

The two forms of the partial derivatives of this function
are

1ci/0w,:
s.lcb" - w,(lt),b"

and

(6q/0w1),*1: -W



GIARAMITA AND DAY: CALCULATIONS OF STRUCTURAL FORMULAS t73

Site assignments

The uncertainties associated with formula proportions
before assignment of the total Fe to Fe2* and Fe3+ cations
and cations to structural sites are the same as for the
general structural-formula calculations described previ-
ously. However, major differences arise as a result of dis-
tributing cations of a single element between two struc-
tural sites. For example, Al is distributed between
tetrahedral and octahedral sites in many minerals.

Cations are assigned to sites in three possible ways. If
all of the cations of a particular element are assigned to
a single site, for example, c5i : c1a1s;, then the derivatives
required are simply those of Equations 4 or 5.

Ifa cation is the last to fill a site, but the site is filled
without using all the cations of that element, the function
for calculating the number of cations of the last species
assigned to the site is

l , : s - ) c ;  ( 8 )

where { is the number of cations of the last species to fill
the site, s is the total number of cations the site can ac-
commodate, the cre vzlus5 are numbers of cations calcu-
lated on a cation basis, andT includes only species in the
site besides {. The partial derivatives ofthis function are
given by

01,/0wo

where theT again refers only to cations in the site other
than 1,. Note that similar functions would also apply to
structural formulas normalized to an oxygen basis, in
which case c! would be the appropriate term in the pre-
vious two equations. These derivatives commonly imply
that o1+1a1 : o' for minerals in which all Si is tetrahedrally
coordinated and that durpa: oM4c"in those normalization
schemes that exclude transition-metal cations from the
M4 site of amphiboles.

The cations of an element remaining after previous as-
signment to another site are usually allocated to only one
other site. For example, the Al cations remaining after
assignment to the tetrahedral site are usually allocated to
a single, octahedral site. The function for calculating the
number of cations assigned to a second site in this man-
ner is

r,: c1 - 1,, (9)

where r, is the remaining number of cations of element i.
The panial derivatives necessary for error propagation
are then

0r,/0wn: )ci/dwr - 01,/6w0.

The terms on the right-hand side of the derivatives of
Equations 8 and t have the form ofone ofthe derivatives
of Equations 4-9. Substitution of the appropriate deriv-
atives and the covariance matrix of the oxide analvses

into Equation 2 permits the calculation of uncertainties
in { or r,.

Cation sums

Cation sums commonly are used to judge the quality
of a microprobe analysis and to examine petrological be-
havior in discriminant diagrams (e.g., Laird and Albee,
l98l). In order to calculate the uncertainty associated
with a cation sum, it is necessary to calculate the partial
derivatives of the function by which the sum is calculat-
ed. The partial derivative of the sum is given by dc",-/
0w,: 6r"1U*, * 0cr/0w, I 0c"/0w,"' . The terms on the
right are the derivatives of one or more of the Equations
4-9, and the uncertainty of the cation sum is calculated
by inserting this expression into Equation 1.

MnrHoos

In order to test the eftciency and applicability of these
uncertainty calculations, we analyzed three natural min-
erals using the automated wns Cameca sxso electron mi-
croprobe at the University of California, Davis. Analyses
of 30 s for between 50 and 60 spots were performed on
each ofthree standard natural minerals using other ana-
lyzed natural minerals as standards. The operating con-
ditions were 15 keV accelerating potential, a spot size of
approximately 3 pm, and a beam current of 20 nA for
both hornblende and augite analyses and l0 nA for by-
townite. Matrix conections were done using a ZAF
scheme.

Three standards were analyzed as unknowns: Kakanui
hornblende and augite (Jarosewich and others, 1980) and
a bytownite collected from a gabbro sill in Crystal Bay,
Minnesota. Structural formulas for bytownite were nor-
malized to eight oxygens assuming all Fe to be Fe3*. Au-
gite structural formulas were normalized to four total cat-
ions and six oxygen anions. Hornblende formulas were
calculated on a 23-oxygen basis and by three cation nor-
malization schemes as discussed below. Analyses in which
any of the oxides differed by three or more standard de-
viations from the mean were discarded as "bad" analv-
ses. Average analyses are presented in Table 2.

Rrsur-rs
Comparison of propagated and rneasured uncertainties

Tables 3. 4. and 5 contain the structural formulas of
bytownite, augite, and hornblende calculated from the
mean oxide analyses in Table 2 and the uncertainties in
the cation proportions calculated in four ways. Column
I in each table contains the standard deviations of the
cation proportions calculated by a complete error prop-
agation (Eq. 2) ofthe uncertainties in the weight percent
oxide analyses (Table 2). We tested the validity of the
complete error propagation by calculating structural for-
mulas for each individual spot analysis and determining
the standard deviations ofthe -50 such cation propor-
tions. These estimates (column 4, Tables 3, 4, and 5) are
virtually identical to uncertainties obtained by complete
propagation ofthe uncertainties in the weight percent ox-
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TrEle 2. Average microprobe analyses of bytownite, augite, and hornblende

Bytownite'
n :  5 9

Augite-'
n : 5 2

Hornblende.-
n : 5 4

E ("/4 1%) 1(W
sio, 48.94
TiO, n.d.
Alro3 32.13
FerO3 0.43
CrrO. n.d.
FeO n.d.
MnO n.d.
MgO n.d.
CaO 15.22
NarO 2.76
K,O 0.07

99.29

0.26

0.22
0.09

o.23
0.09
0.02

0.53

0.68
20.14

0.16

0.18
0.35

0.40
0.83
4.56

50.16
0.84
8.04

0 .15
6 .18
0 .15

16.59
15.97
1 .20
n.o.

99.12

0.45
5.92
0.98

36.28
2.57

27.49
0.83
0.96
2.96

0.08
o.87
0.18

2.98
0.54
2.40
0.14
0.19
0.59

40.20
4.93

15.02

n.o.
10.54
0.10

12.96
9.74
2.40
2.03

97.92

0.30
0.15
0.18

1 .49
3 . 1 1

32.83

0.45
0 . 1 1
0.32
0.25
0.09
o.o7

0.23
0.05
0.08

0.0s
0.16
0.04
0.14
0.15
0.04

0.76 0.15
3.07 0.59
1.21 0.25

4.28 0.42
102.92 3.50

2.49 0.17
2.54 0.23
3.83 0.60
3.47 0.38

Note: E"(%) : percent counting error: 100(y'n")/n", where 4: counts; n: number of analyses; n.d. : not determined; ry: weight percent ot
the oxide; o : standard deviation; 6o/e: pa(@nl standard deviation.

- Total Fe as FerO..
-- Total Fe as FeO.

ides (column l, Tables 3, 4, and 5). We conclude that our
analytical formulations of the error propagation yield a
correct estimate of the true dispersion of the structural
formulas due to analytical uncertainty.

It might be proposed that the uncertainty in the oxide
weight percent (Table 2) is an adequate measure of the
uncertainty in a cation proportion. Our results show that
this can be a dangerous assumption in cases for which
the proportion of multivalent cations must be estimated
or cations must be distributed among structural sites, but
otherwise the estimate is very good. The relative uncer-
tainties in many cations (column l, Tables 3,4, and 5)
are very similar to the relative uncertainties in the cor-
responding oxides (Table 2; column 3, Tables 3,4, and
5). However, the relative uncertainties of the oxide con-
centrations of Al2O3, FeO, and NarO (Table 2) severely
underestimate the relative uncertainties of tolAl,, tolf, p"z+,

and Fe3* in augite and hornblende and MaNa and ̂ Na in
hornblende. Thus, our calculations show that uncertainty
in multisite and multivalent cations cannot be estimated

directly from the uncertainty in the corresponding oxide
concentrations.

Correlation effects

Complete error propagation (Eq. 2) is time consuming,
and it would be useful to know if comparable results could
be obtained by partial error propagation (Eq. 3). Com-
plete error propagation (colurnn l, Tables 3, 4, and 5)
requires a covariance matrix and takes correlation ofan-
alytical errors into account, whereas partial error propa-
gation (column 2; Tables 3, 4, and 5) requires only stan-
dard deviations of the measured variables and is valid
only ifthe analytical errors are uncorrelated.

The uncertainties estimated by partial error propaga-
tion are, generally, somewhat higher than those estimated
by including covariance terms (Tables 3, 4, and 5), but a
few values are actually slightly lower. If covariance is
neglected, the standard deviation of Si is overestimated
by l0-l5o/o (relative), the standard deviations of the Fe3*
and Fe2" contents of augite and hornblende are overes-

TABLE 3. Average structural formula* and various measures of analytical uncertainty for bytownite

cations
(e) oYo

0.53
0.68

20.14

Si
AI
F€F*-.

Na
K
Ca

2.2476
1.7392
0.0147
4.0015

o.2458
0.0040
0.7490
0.9988
5.0003

0.0069
0.0091
0.0030
0.0064

0.0073
0.0013
0.0098
0.0124
0.0070

0.31
0.52

20.41
0.17

2.97
32.50
1.31
1.24
0.14

0.0080
0.0099
0.0030
0.0067

0.0076
0.0013
0.0105
0.0128
0.0075

0.36
0.57

20.41
o.17

3.09
32.50
1.40
1.28
0.15

0.0119
0.0118
0.0030

0.0076
0.0013
0.01 12

3.11
32.83
1.49

0.0069 0.31
0.0091 0.52
0.0030 20.41
0.0060 0.1s

0.0073 2.79
0.0013 32.50
0.0098 1.31
0.023 1.23
0.0070 0.14

Notej (1) complete error propagation (Eq.2); (2) partial error propagation (Eq.3); (3) product of fractional standard deviation of oxide and ci; (4)
standard deviations of cation proportions calculated from individual spot analyses.

'Cations normalized to 8 oxygens.
't Fe reported as Fe.O".
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TABLE 4. Average structural formula. and various measures of analytical uncertainty for augite

t75

cations
(e) o"/o

0.38
4.04

Si
{arAl

16rAl
Ti
Fe3+i*

Cr
Mn
Mg
Fe2*
Ca
Na

1.8264
0.1 736
2.0000

0.1716
0.0231
0.0363
0.0043
0.0048
0.9002
0.1 520
0.6230
0.0848
2.0001

0.0061
0.0061

0.0070
0.0014
0.0130
0.0015
0.0013
0.0061
0.01 17
0.0052
0.0024

0.33
3.50

4.07
6.01

35.90
36.23
27.53
0.67
/ .oY
0.84
2.84

0.0070
0.0070

0.0074
0.0014
0.0145
0.0015
0.0013
0.0064
0.0139
0.0054
0.0025

4.29
5.90

40.11
36.25
27.46
o.71
9 . 1 2
o.87
2.92

0.0083
0.0017

0.0017
0.0014
0.0009
0.001s
0.0013
0.0075
0.0039
0.0060
0.0025

0.45
0.98

0.98
5.92
2.57

36.28
27.49
0.83
2.57
0.96
2.96

0.0061 0.33
0.0061 3.50

0.0070 4.07
0.0014 6.02
0.0130 35.94
0.0010 36.29
0.0013 27.52
0.0061 0.67
0.01 17 7 .69
0.0052 0.84
0.0024 2.84

Note: (1) complete error propagation (Eq. 2); (2) partial error propagation (Eq. 3); (3) product of fractional standard deviation of oxide and c/; (4)
standard deviations of cation proportions calculated from individual spot analyses.- Cations normalized to 4 total cattons.

*'Fe3* calculated as described in text.

timated by l2-25o/o, and the uncertainty in ANa of horn-
blende is overestimated by l7ol0. With the exception of
Si, cations assigned only to one site and having only one
valence state show little difference between the complete
and partial error propagations.

If covariance terms are neglected, a small number of
"bad" or "outlying" data may lead to either overesti-
mates or underestimates of the uncertainty. The bytown-
ite data in Table 3 are based on 59 analyses. We repeated
the error analysis including a single "bad" analysis that
originally was excluded because it had a low oxide total
and because the concentrations of many of the oxides
were greater than three standard deviations from the
mean. The resulting differences between the complete and
partial propagation oferrors are larger when the bad anal-
ysis is included than when it is not (Table 3). The single
bad analysis imparts a greater correlation among errors
in the oxides that results in the covariance terms having
a greater contribution to the uncertainty.

The differences between complete and partial error
propagation are not large, but the relative differences may
be as high as 25o/o. Partial error propagation (Eq. 3) is a
better estimate of the complete uncertainty than the per-
cent uncertainty in the oxide concentration for all cations
except Si in hornblende (Table 5). Clearly, it is advisable
to include the covariance terms (Eq. 2) where high pre-
cision is necessary.

Evaluating the quality of microprobe analyses
Bytownite. A problem facing any microprobe user is

determining what constitutes a good analysis. Obviously,
oxide totals for an anhydrous mineral should be near
l00o/0. In addition, stoichiometric constraints on some
minerals are well understood. For example, a feldspar
analysis calculated with 8 oxygens should have 5 cations.
Moreover, the sum of the trivalent and tetravalent cat-
ions in the tetrahedral sites should be 4, the sum of the

divalent and univalent cations should be l, and the num-
ber of trivalent cations in the tetrahedral site should be
equal to one more than the total number of divalent cat-
10ns.

It is possible to decide whether the cation sums are
consistent with stoichiometric constraints by propagating
the errors in the oxide concentrations through the cal-
culation of the structural formula. These uncertainties are
shown in Table 3. Within analytical uncertainty, by any
of the methods of propagating it, the sum of the tetra-
hedrally coordinated cations is 4, the sum of univalent
and divalent cations is l, and the total number of cations
is 5. Furthermore, the diference between total trivalent
cations and I plus the number of Ca is only 0.0049, well
within the uncertainties of both the sum and the differ-
ence either by partial or complete error propagation.
Therefore, the plagioclase analysis is consistent with stoi-
chiometric constraints within analytical precision.

Commonly, it is necessary to evaluate the quality of
published microprobe analyses for which standard devia-
tions ofcation proportions are given, but covariances are
not. Partial error propagation (Eq. 2) does not require the
covariance among the oxide concentrations and for cat-
ion sums in bytownite yields very good approximations
of the uncertainty. For example, Equation 2 yields an
uncertainty of 0.0064 for the sum of Al + Si + Fe3+
cations, and Equation 3, 0.0067 (Table 3). Partial error
propagation also provides good approximations of the
uncertainty for the sums Na + K + Ca and the total
number of cations in bytownite (Table 3). Consequently,
in the absence of covariance information, we recommend
using partial error propagation to obtain the uncertainties
associated with cation sums in plagioclase.

In order for an analysis to be considered acceptable,
each critical cation sum must lie within uncertainty of
the value required by stoichiometry. If there are strong
correlations between two cation sums being used to judge
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TABLE 5, Average structural formula' and various measures of analytical uncertainty for hornblende

cations
(4)

Si
r.tAl

> tet

rqAl
Fe3+'r

Ti
Mg
te.'
Mn
>  M1 ,2 ,3

Ca
Na
> M 4

5.8185
2 . 1 8 1 5
n

0.3800
0.6591
0.5366
2.7952
0.6162
0.0128
J

1 .5101
0.4899

0 .1834
0.3757
0.5591

0.0451
0.0451

0.0606
0.1 281
0.0161
0.0602
0.1202
0.0132

0.0373
0.0373

0.0422
0 0136
0.0453

15.95
19.45
3.00
2.15

19.51
103.13

2.47
/ . o  I

23.01
J-OZ

8 . 1 0

0.0494
0.0494

0.0617
0.1 588
0.0164
0.0573
0.1452
0.0132

0.0402
0.0402

0.0495
0.0134
0.0523

0.85
2.26

16.24
24.09
3.06
2.05

23.56
1 03.13

2.66
8.21

0.0440
0.0264

0.0046
0.0279
0.0165
0.0697
0.0264
0.0132

0.0384
0.0188

0.0070
0.0130

0.76
1 .21

1 .21
4.28
3.07
2.49
4.28

102.92

2.54
3.83

0.78
2.O7

0.0452 0.78
0.0452 2.07

0.0608 16.00
0.1281 19.44
0.0161 3.00
0.0605 2.16
0j204 19.54
0.0132 103.13

0.0374 2.48
0.0374 7.63

0.0421 22.96
0.0137 3.65
0.0452 8.08

3.83
3.47

26.99
3.56
9.3s

Na
K
> A

Notej (1) complete error propagation (Eq.2); (2) partial error propagation (Eq.3); (3) product of fractional standard deviation of oxide and c/; (4)

standard deviations of cation proportions calculated from individual spot analyses.
. Calculated on a basis of 23 oxygens with cations normalized to 13 excluding Na, K, and Ca'

't Fe3* calculated as described in text.

the analysis, the two criteria are not independent and the
former statement may be a necessary, but not sumcient,
criterion for acceptability at a given level ofconfidence.
For example, a strong negative correlation between the
sum of Na + K + Ca and the sum of Al + Si + Fe in
bytownite must exist because the two sums contain all
cations and the total cations are approximately constant.
For the bytownite we studied,

D -  - 0 . 9 1 .
" A l + S i + F e ' N a  l  K  f  C a

where p is the correlation coefficient. Because of the strong
correlation, calculation of the probability that both cat-
ion-sum criteria are satisfied simultaneously requires not
only the variance of the two sums, but the covariance as
well. The derivation of the such probability functions is
beyond the scope ofthis paper, but the necessary covari-
ance terms for the minerals we studied can be calculated
by using the covariance matrices ofthe oxide concentra-
tions given in Appendix I, the derivatives of Equation
4-9, and Equation 8 of Roddick (1987).

Augite. The stoichiometry of the augite (Table 4) can-
not be judged in the same way as that of the bytownite
because we have chosen to normalize both the oxygen
and the cations in the formula unit and all sites are filled
with a specified number of cations. Because the formula
unit was normalized to 4 cations, after allocating enough
Si and Al to fill 2 tetrahedral sites, the remaining 2 oc-
tahedral sites must necessarily contain 2 cations.

The calculated number of Fe3* cations (Table 4) is the
only available stoichiometric test of the quality of the
augite analysis. Notice that the calculated number of Fe3'
cations is significantly different from zero, despite being
very small. The calculated value is about 200lo higher than

the value obtained by wet-chemical analysis (Jarosewich
and others. 1980; P. Schiffman, 1986, personal commu-
nication), but the uncertainty associated with the calcu-
lation is about 360/0. The uncertainty is large, in part,
because the amount of Fe3* is small, but the method of
estimating Fe3* content is accurate within the limits of
analytical precision.

Charge-balance criteria that might be used to test the
quality of the augite analysis are not independent of the
Fe3* calculation. For example, the criterion

t't12Tia* + Al3* + Fe3+ + Cr3*l - ['Na + t41Al] : 0

requires that the charge excess created by the substitution
of trivalent and tetravalent cations in the M sites must
be balanced by substitutions of univalent cations in the
M sites and trivalent cations in the tetrahedral sites. This
criterion is satisfied exactly for the mean augite compo-
sition because either positive or negative Fe3* was cal-
culated from each spot analysis in order to achieve charge
balance. Unless the amount of Fe in an analysis is very
small, it generally will be possible to balance the charge
exactly for all spots, and both the mean and standard
deviation of the charge-balance criterion will be zero.
Consequently, the criterion is not a very stringent test of
the quality ofthe analysis because such charge balance is
required by the calculation of the structural formula.

For many Fe-rich minerals, failure to meet such charge-
balance criteria may imply that negative Fe3* was not
permitted by the calculation procedure. Failure to allow
negative Fe3* contents in structural formulas may pro-

duce a systematically biased mean and standard devia-
tion of the apparent Fe3*. Consider, for example, an au-
gite that contains no Fe3*. Analytical error in the weight



percent of each oxide should lead to a dispersion of the
calculated Fe3* to values slightly above and below zero.
Failure to include negative values will bias the mean val-
ue of calculated Fe3* to a small positive value and will
bias the standard deviation to lower values in such a way
that the small positive mean may appear to be signifi-
cantly different than zero. If the mean of several analyses
leads to a negative Fe3+ content that is significantly dif-
ferent from zero, there is serious, systematic error either
in the analyses or the assumptions on which the calcu-
lation is based. Consequently, it is important to permit
negative Fe3* in the calculations in order to evaluate
properly the significance ofthe Fe3+ calculation.

Hornblende. The hornblende analyses also cannot be
treated in the same way as the bytownite analysis because
all sites except the A site are filled with a specified num-
ber of cations. Many normalization schemes have been
devised to calculate structural formulas in amphiboles
(see Robinson et al., 1982, for a detailed review), but we
examined only three schemes. In the 13eNI(C scheme,
the sum of all cations excluding Na, K, and Ca are nor-
malized to 13. This scheme excludes Fe and Mg from
and maximizes Na in the M4 site (Stout, 1972). In the
15eNK scheme, the sum of all cations excluding Na and
K is normalized to 15. Of the three schemes considered,
this one provides the minimum number of Fe3* cations
and forces all the Na into the A site (Stout,1972).

For each normalization scheme, the cations were as-
signed to structural sites in the order Si, Al, Fe3*, Ti4*,
Mg, Fe2*, Mn, Ca, and Na (Robinson et al., 1982). When
a site was filled, the remaining cations were placed in the
next available site. The eight tetrahedral sites were filled
first with Si, Al, Fe3*, and Tia* if necessary. The remain-
ing cations were placed first into the five Ml, M2, and
M3 sites and then into the two M4 sites. All the remain-
ing cations were assigned to the A site.

A poor analysis or poor choice of calculation scheme
is indicated by more than eight Si cations, fewer than
eight tetrahedral cations or two M4 cations, or by more
than one cation in the A site. A negative number of Fe3+
cations is unacceptable, and Robinson et al. (1982) sug-
gested that a normalization resulting in Ca in the Ml,
M2, and M3 sites is also unacceptable.

The l3eNKC normalization was the only scheme that
yielded an acceptable structural formula for the horn-
blende analysis. Notice that the calculated Fe3* (Table 5)
is significantly different than zero and that other stoichio-
metric constraints mentioned above are met. Moreover,
the calculated proportion of Fe3* exceeds the reported
value (Jarosewich and others, I 980) by less than one stan-
dard deviation of the calculated value. The I 5eNrK scheme
yielded -0.88 t 0. 16 Fe3* cations, demonstrating that
the negative value for Fe3* was not entirely the result of
analytical uncertainty. Likewise, the I 5eK normalization
scheme required 0.16 + 0.04 Ca cations in the Ml, M2,
and M3 sites, and the propagated uncertainty demon-
strates that the Ca in these sites is not merely an artifact
ofanalytical error.

t77

The site charge-balance criterion (Papike et aI., 1974),

["(Na + K) +_r5r(Al + Fe3+ + 2Ti + Cr)
(tujAl + *oNa;1 :6,

also is not independent ofour treatment ofthe calculated
Fer*. The mean value of the site charge-balance criterion
and its uncertainty are zero because all spots analyzed
achieved charge balance by means of calculated Fe3*.
Consequently, the site charge-balance criterion provides
no information that is independent of the Fe3* calcula-
tion.

Application to discrirninant diagrams

The structural formulas of minerals are commonly used
as discriminators of petrologic behavior. For example,
the covariation of MaNa and t6lAl + Fe3* + Ti + Cr in
amphibole was used to discriminate among metamorphic
grades in mafic schist from Vermont (Laird and Albee,
I 98 1). Although the data upon which such plots are based
seldom contain rigorous estimates ofthe errors associated
with the cation sums, the information is critical for eval-
ualing their signifi cance.

The microprobe data and uncertainties reported in Ap-
pendix I ofLaird and Albee (1981) are an unusual ex-
ample of data that permit a detailed analysis. We prop-
agated the errors (Eq. 3) in the oxide concentrations
through the calculation of the number of MaNa cations
and the sum of t6lAl + Fe3* * Ti + Cr cations for one
sample each from the biotite zone, the garnet zone, and
the kyanite-staurolite zone of Laird and Albee (1981).
Although the uncertainties generally are larger than the
symbols published in Figure 2 of Laftd and Albee (1981),
our analysis demonstrates that analytical error is not a
significant source of scatter on this graph (Fig. l) and
supports the conclusion that the observed variations of
amphibole chemistry reflect real variations in metamor-
phic conditions.

Laird and Albee (1981) reported no information about
correlation among the oxides analyzed. Using the data
from the hornblende analyzed in this study, we attempted
to evaluate the validity of error propagation in the ab-
sence of this information by examining uncertainty in the
sum. The estimated uncertainty of the sum Al + Fe +
Ti + Cr is 0.1120 by Equation 3, without covariance
terms, and 0.0899 by Equation 2, with all covariance
terms. Considering the purposes for which these diagrams
are commonly used, the differences in the uncertainties
calculated by the two methods are very small.

For some applications, such as regression analysis (e.g.,
Ludwig, 1980; Roddick, 1987), it is advisable to evaluate
correlation between calculated parameters. We used the
covariance matrix for our hornblende analyses (App. l)
to examine correlation between the number of MaNa cat-
ions and the cation sum t6lAl * Fe3+ + Ti + Cr (Eq. 8 in
Roddick, 1987). The strong positive correlation between
the calculated parameters in this single sample (p : 0.69)
might pose a problem for curve fitting or discrimination
between very similar samples. However, the analytical

GIARAMITA AND DAY: CALCULATIONS OF STRUCTURAL FORMULAS
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Trele 6, Structural formula, counting errors, and error magnifications for bytownite

Uncertainties based on counting errors Magnifications.

7
E (%l
(hvp.)

5
1%)
(hvp.)

4

(hyp)

2
E.

(meas.)

6
flo

(meas.)

3
E (%)
(meas.)

'|

(cations)

Si
AI
Fe3*

Na
K

2.2476
1.7392
0.0147
4.0015

0.2458
0.0040
0.4790
0.9988

5.0003

0.0022
0.0027
0.0001
0.0018

0.0020
0.0002
0.0028
0.0034

0.0020

0.10
0 . 1 6
0.37
0.04

0.81
4.88
0.37
0.34

0.04

0.0040
0.0049
0.0001
0.0018

0.0009
0.0000
o.oo27
0.0030

0.0021

0.18
0.28
0.39
0.04

0.58
0.76
1 . 0

0.s6
0.87
1 . 2

1 . 2
1 . 1
1 . 1

Total

0.95
0.99
0.88

0.37
0.35
0.36
0.30

0.04

Notei (1) 8-oxygen basis structural formula; (2) absolute uncertainty obtained by propagating measured counting error (Table 2; Eq. 3); (3) column
2 as percent of column 1; (4) absolute uncertainty obtained by propagating a hypothetical counting enor ol 0.32oh (Eq. 3); (5) column 4 as percent of
column 1 ; (61 o"h trom column 1 , Table 3, based on complete error propagation (Eq. 2), oxide uncertainty from Table 2l (ll E" fA from column 5, 4
(o/d in oxide = 0.32.

. Error magnifications calculated as (uncertainty% cation)/(uncertainty% oxide).

uncertainties attached to a single sample are clearly much
smaller than the size of the fields in which they are en-
closed (Fig. 1), and the differences between fields must be
real. Assuming our correlation data (App. l) apply in
general, they might be used to estimate correlation among
parameters derived from microprobe analyses of other
plagioclase, augite, or hornblende samples.

Error magnification

The uncertainties obtained by propagating counting
error through the calculations of structural formulas might
be considered a measure ofthe unattainable "best" struc-
tural formula for a perfectly homogeneous mineral grain
analyzed under perfectly stable analltical conditions. Even
if the only source of uncertainty in an oxide analysis is
counting statistics, however, uncertainties in the struc-

tural formula are commonly magnified by factors of up
to 10 or 15. For example, counting errors of about 0.50/o
ofthe concentration ofiron oxide (Table 2) are magnified
to 2.25o/o and7.260/o of calculated Fe3t in hornblende and
augite, respectively (column 3, Tables 7 and 8).

The way in which uncertainties are magnified depends
primarily on the composition of the mineral and the nor-
malization scheme by which the structural formula is cal-
culated. In order to isolate the effects of mineral com-
position from other contributions to error magnification,
we considered counting errors for a hypothetical analysis
in which each element was analyzed for 105 counts. This
value is intermediate between the number of counts com-
monly accumulated for major and minor elements and
yields a counting error of 0.32010. The hypothetical count-
ing errors in the oxide analyses were propagated using

TABLE 7. Structural formula, counting errors, and error magnifications for augite

Unc€rtainties based on countino errors Magnifications'

7
E"(1")
(hyp.)

6
6-/0

(meas.)

c

1%)
(hypJ

3
E"(/"1
(meas.)

2

(meas.)

4

(hvp.)

1

(cations)

0.59
6.4

0.73
3.6

0 . 1 9
2.05

1.92
0.36

18.76
0.38
0.37
0.29
4.37
0.31
0.35

Si
rltAl

rotAl
Ti
Fe3*

Mn
Mg
Fe"

Na

1.8264
0.1736
2.0000

0.1  716
0.0231
0.0363
0.0043
0.0048
0.9002
0.1 520
0.6230
0.0848
2.0001

0.0012
0.0012

0.0013
0.0002
0.0026
0.0001
0.0001
0.0011
0.0025
0.0011
0.0005

0.07
0.72

0.77
0.86
7.26
2.97
2.40
0.12
1.62
o.17
0.58

0.0036
0.0036

0.0033
0.0001
0.0068
0.0000
0.0000
0.0026
0.0066
0.0019
0.0003

4.2
1 . 0

1 4
1 . 0
1 . 0
0.81
3.0
0.88
0.96

6.0
1 . 1

58
1 . 2
1 . 2
0.91

1 4
0.97
1 . 1

Notei (1) 4-cation basis structural formula; (2) absolute uncertainty obtained by propagating measured counting error (Table 2; Eq.3); (3) column 2
as percent of column 1; (4) absolute uncertainty obtained by propagating a hypothetical counting enor ol O.32o/" (Eq. 3); (5) column 4 as percent of
column 1; (6) o% from column 1, Table 4, based on complete error propagation (Eq. 2), oxide uncertainty from Table 2; (7) 4 (%) from column 5, 4 (%)
in oxide : 0.32.

'Error magnifications calculated as (uncertainty% cation)/(uncertainty% oxide).
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Tlele 8, Structural formula, counting errors, and error magnifications for hornblende

t79

Uncertainties based on counting errors Magnifications.

1

(cations)

2

(meas.)

3
E (/4
(meas.)

7
1V"\
(hvp)

5
E (%)
(hvp.)

4
E

(hvp.)

6
ooh

(meas.)

5 l
rrrAl

t tet

r6tAl

Fe$
t l
Mg
F€F+
M n

>  M1 ,2 ,3

Ca
Na
> M 4

5.8185
2.1  815
8

0.3800
0.6591
0.s366
2.7952
0.6162
0.0128
4.9999

1 .5101
0.4899
2.0000

0.1834
0.3757
0.5591

0.0065
0.0065

0.0063
0.0145
0.0031
0.0045
0.0126
0.0005

0.0038
0.0038

0.0057
0.0015
0.0057

0.01 17
0.01 17

0.0096
0.0203
0.0019
0.0082
0.0195
0.0000

0.0054
0.0054

0.0064
0.0014
0.0069

1 3
4.5
0.98
0.86
4.6
1 . 0

7.8
9.8
1 . 1
0.91
9.6
1 . 0

1 . 1
2 R

1 1
1 . 1

0.11
0.30

1.64
2.25
0.58
0.16
2.00
3.49

0.25
0.77

3.09
0.40
1.08

1 . 0
1 . 7

0.20
0.53

o.62
1 . 7

0.97
2.0

6.0
1 . 0

Na
K
> A

2.48
3.12
0.35
o.29
3.06
0.32

0.36
1 . 1 2

3.47
0.36
1.23

/Vote: (1) 13e/VKabasis structural formula; (2) absolute uncertainty obtained by propagating measured counting error (Table 2; Eq. 3); (3) column 2
as percent of column 1; (4) absolute uncertainty obtained by propagating a hypothetical counting enor ol 0.32o/" (Eq. 3); (5) column 4 as p€rcent of
column 1; (6) o% from column 1, Table 5, based on complete error propagation (Eq. 2), oxide uncertainty from Table 2; (7) 4 (%) from column 5, 4 (7d
in oxide : 0.32.' Error magnifications calculated as (uncertainty% cation)/(uncertainty% oxide).

Equation 3, which does not include covariance terms and
assumes that errors are uncorrelated.

Columns 4 and 5 (Tables 6,7, and 8) contain the ab-
solute and relative uncertainties obtained by partial error
propagation (Eq. 3) ofthe "hypothetical" 0.320lo counting
errors in the oxide concentrations. Column 7 lists the
corresponding error magnification, measured by the ratio
of the percent standard deviations in the cation and the
corresponding oxide (cation/oxide). The uncertainties in
most single-site or single-valence cations (e.g., column 5,
Table 6) are comparable to the assumed counting error
of 0.32o/o, and the errors in cation sums are much less
than in the individual cations. On the other hand, the
uncertainty in cations of major elements such as Si com-
monly is smaller than 0.320/0, and the uncertainties of
multivalent and multisite cations are much larger (col-
umn 5, Tables 6, 7, and 8).

For the hypothetical analyses in columns 4 and 5 (Ta-
bles 6, 7, and 8), the magnification of uncertainty in a
single-site, single-valence cation compared to the corre-
sponding oxide (column 9, Tables 6, 7 , and 8) is entirely
the effect of the mineral composition and normalization
scheme. Although covariation and variable uncertainties
in the oxide concentrations affect such magnifications in
a real analysis, the uncertainties reported in columns 4
and 5 and the magnifications in column 7 were calculated
using Equation 3, which contains no covariance terms,
and the same relative uncertainty for all oxides. Conse-
quently, columns 5 and 7 illustrate only the efects of the
relative abundances of the oxides on the error propaga-
tion for the chosen normalization scheme.

Equation 3 can be rewritten to show the dependence of

error magnification on composition for hypothetical
analyses in which the relative uncertainties are the same
in all oxides (See App. 2 for the derivation). For the spe-
cial case in which o./w, : o.,/w, for all i and, j,

,-*@,:lu-x?),*>tnf". (ro)

The first term on the right side of Eq.uation l0 is the
main control on the error magnification. That term is the
proportion of total oxygen that resides in all the oxides 7
not equal to i. The effect ofthis term is best understood

0 . 5  l 0  t 5  2 0  2 . 5

HAI * F"3'* Ti * c,

Fig. l. Propagated uncertainties in graph of MoNa versus I6rAl
+ Fe3+ + Ti + Cr in amphiboles from mafic schist in Vermont.
The dot-dash line encloses samples from the biotite zone; the
solid line, samples from the garnet zone; and the dashed line,
samples from the staurolite-kyanite zone. One-sigma uncertain-
ties obtained by partial error propagation (Eq. 3) of reported
uncertainties in oxide concentrations are shown for a represen-
tative sample from each zone. Modified after Fig. 2b in Laird
and Albee (1981).
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by considering an example. The bytownite (Table 2) con-
tains about 49 wto/o SiOr, which contains about 560/o of
the total oxygen anions in the analysis. IfSi is considered
to be the lth cation, the first term in Equation 10 is about
(0.44)'z: 0. 19. The summation term in Equation l0 is
always a small positive number less than one because the
average value of the five terms (Xre) is about 0.09, which
must be squared, and the sum is about 0.04. Consequent-
ly, the error magnification is commonly less than one for
Si and other cations of major elements.

The uncertainty and error magnification in the formula
proportion ofSi are significantly larger for a fixed-cation
normalization than for a fixed-oxygen normalization. For
formula proportions normalized to a fixed number of cat-
lons,

( l  l )

where the X; terms are the fraction of all cations that are
contributed by the oxide i (Table l). The derivation of
this equation follows from Equations 3 and 5 is parallel
to that presented in Appendix 2.

The larger error magnification for Si arises primarily
because SiO, contains more anions than cations. For ex-
ample, the augite (Table 2) contains about 50 wto/o SiOr,
accounting for about 610/o of the anions and 460lo of the
cations. If Si is the fth cation, the first terms on the right
side of Equations l0 and I I are, respectively, (0.39F :
0.15 and (0.54y :0.29. Because the second terms on the
right tend to be small in both cases, the error magnifica-
tion is larger for the fixed-cation normalization than for
the fixed-oxygen scheme. The formula proportion of Si
in the augite for the fixed-cation normalization scheme is
1.8264 + 0.0061 (Table 4, column l) whereas for a six-
oxygen basis, we calculated 1.8320 + 0.0044, or a differ-
ence in the standard deviations of 30-500/0. For cations
other than Si, the differences in the standard deviations
and error magnifications obtained from fixed-cation and
fixed-anion normalizations are less pronounced and, for
the most part, insignificant.

The error magnification is normally greater than one
for minor elements in the hypothetical analyses (columns
5 and 7, Tables 6, 7, and 8). If the fth oxide is only I
wtolo of the total sample, the proportion of oxygen that
resides in other oxides is commonly more than 990/o so
that the first term on the right side of Equation I I is
about (0.99)'? : 0.98. The summation term is small but
larger than the case for which Si is the fth cation because
the average value of Xr9 now must include contributions
from SiO, that are larger than those from other oxides.
Consequently, the right-hand side of Equation 10 is com-
monly larger than one for minor elements, and the un-
certainty in the oxide is magnified in the formula pro-
portion ofcations.

The error magnification for minor amounts of calcu-
lated Fe3* is very large. FeO is a major oxide in both

augite and hornblende, yet the propagated uncertainties
of Fe3* (columns 5 and 7, Tables 7 and 8) are about 58
and 10 times larger, respectively, than the assumed 0.320lo
error in the weight percent of FeO. The small, calculated
amount of Fe3* and the error magniflcation depend on
the analyses ofall oxides (Eq. 6). From Equations 3 and
6, we find that the error magnification for Fe3* is given
by

o 
"ru-/ 

cr,,,

o nrn/ won

The first term on the right side of Equation l2 dominates
for all silicates poor in Fe3*. From Equation 6, it can be
shown that the ratio so/s" approaches bo/b" as the amount
ofcalculated Fe3* approaches zero and the first term must
become very large. The second term on the right is always
a small number because the mole fractions are between
0 and I and their differences are squared. For example,
the first term for the augite is about 322 and the second
term is about 0.18.

It is widely appreciated that the uncertainty in calcu-
lated Fe3' depends heavily on the silica analysis,but all
major elements and some minor elements may contrib-
ute in a major way depending upon the relative sizes of
the derivatives and variances in Equation 3. For exam-
ple, the observed uncertainty of wto/o SiO' in the augite
studied here (Table 2) contributes

lo'^,o, (lcr.,-/ }lt ,o,)'l
-only about 330/o of the total variance in Fe3*-whereas
MgO, CaO, and FeO contribute 260/o, l7o/o, and I lol0,
respectively, and NarO contributes about l2o/o despite its
low abundance. This large contribution arises, in part,
because the partial derivative ofFe3t cations with respect
to wto/o NarO is about four times larger than the deriva-
tives with respect to other oxides.

These calculations show that whether errors are mag-
nified or reduced is primarily a function of the compo-
sition of the mineral for a given normalization scheme.
With few exceptions, the complete analysis (column 6),
including the measured and variable uncertainties of the
oxides and covariance terms, produced the same direc-
tion of magnification or reduction of errors as column 7,
which included no covariance and constant hypothetical
uncertainties in the oxides. Error magnification for cal-
culated amounts of multivalent cations may be extreme
and may depend in a significant way on oxides other than
sior.

CoNcr,usroNs

The analytical method of propagating uncertainties is
a useful method for calculations of structural formulas
that correctly reproduces the true dispersion of structural
formulas due to analytical uncertainty. For many rouline
applications, our results show that the uncertainties of
measured oxide concentrations can be reasonable esti-
mates of the complete uncertainties for single-valence,

:lf,:- '] 
'[? 

6, - x?Y) (,2)

ffi:[,'-"r' *i,rn'),
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single-site cations. However, partial error propagation (Eq.
3), which omits the covariance terms, is not a difficult
calculation and is a better approximation of the complete
uncertainty for virtually all cations. It is advisable to in-
clude the covariance terms in the calculated uncertainties
of Fe2*, Fe3*, multisite cations, or in any case for which
high precision is needed.

Uncertainties in structural formulas are commonly
magnified or reduced compared to the uncertainties in
the corresponding oxide concentrations. The error mag-
nification depends not only on the composition of the
mineral, the normalization scheme used, and the struc-
tural formula to which the cations are assigned, but also
on the relative sizes ofuncertainties in the oxides and the
contribution of covariance. Error magnifications com-
monly depend on the analyses of all elements. For ex-
ample, the uncertainty of Fe3* in the augite studied here
contains major contributions not only from SiO, but also
from the other major oxides and NarO. Consequently, an
analyst wanting to minimize uncertainties in a particular
application may determine the dependence of the error
magnification on the various elements in order to find an
optimum analytical scheme.

Microprobe analysts commonly use stoichiometric cri-
teria as indicators ofthe quality ofan analysis. The error-
propagation technique outlined here permits a rigorous
evaluation of how well a structural formula meets such
criteria for cases where information concerning correla-
tion is available. The method also establishes a means of
evaluating the quality of microprobe analyses in the lit-
erature for which laboratory reproducibilities are the only
reported uncertainties. Finally, calculated uncertainties of
cation sums can also be used to evaluate the effect of
analytical error on discriminant diagrams. The chemical
variations of calcic amphiboles on the graph of MaNa ver-
sus t6lAl * Fe3+ + Ti + Cr, illustrated by Laird and Albee
(1981), are clearly larger than any effects of analy'tical
uncertainty, supporting their conclusion that the varia-
tions represent real differences in metamorphic condi-
tions. Covariance among parameters derived from a sin-
gle microprobe analysis can be obtained by inserting the
derivatives ofEquations 4-9 and covariance matrices of
oxide concentrations into Equation 8 ofRoddick (1987)
for applications where such correlation is ofinterest.
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Apppunrx

APPENDTX Trar-e A1.

1. CovlnrlNcE MATRTcEs

Correlation matrix for bytownite analysis

Naro Alros sio, Ito CaO FerOo

Naro
Al20o
sio,
KrO
CaO
FerO.

1.00
0.11  1 .00
0.26 0.21
0.02 -0.28
0.14  0 .18
0.00 -0.22

1.00
-0.12

o.24
- 0 . 1 0

1.00
0.00
0.0s

1.00
-0.2'l 1 .00
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Apperorx TABLE A2. Correlation matrix for augite analysis

Na.O Mgo Al203 sio, CaO Tio, C12O3 MnO FeO

Naro
Mgo
Alros
sio,
CaO
Tio,

MnO
FeO

1.00
0 0 1

-0.07
0.28
0.16
0.16

-0.08
0 . 1 5
0 1 3

1.00
0.12
0.17
0.07

-o.2'l
0 . 1 5

-0.36
o.24

1.00
0.29

-0.05
0 . 1 8
0 . 1 8
0.23
0.07

1.00
0 . 1 5

-o.24
-0.12
-0.05

0.21

1.00
-0.04

0.60
-0 .11

0 . 1 1

1.00
-0.09
-0.01
-0.30

1.00
0 0 6

-0.04
1.00

-0.09

Apperorx TABLE A3. Correlation matrix for hornblende analvsis

Tio,Naro Mgo Al203 sio, KrO

1.00
-0.06 1.00

Naro
Mgo
Al,o3
sio,
KrO
CaO
Tio,
MnO
FeO

1.00
-0.47

0.15
0.18
0.16

-0.24
-0 .13
-0 03

0 . 1 0

1.00
-0.12

0.01
-0.20

0.40
0.02

,0.05
- 0 . 1 8

1.00
0.31
0.02

-0.12
-0.02
- 0  1 6

0.04

1.00
0.04

-0 04
-0.09
-0.30
-0.03

1.00
-  0 .14
-0.21

0.22
0.o2

1.00
-0.01
-0.'t7

0.05

1.00
-0.04

0.12

AppnNnrx 2. Ennon MAGNTFTcATToN

The calculated abundance ofa cation, ci, has a variance
that is given by Equation 3, in the absence ofsignificant
covanance terms:

o?,: 2 o2n@c10w,)2. (3)

We are interested to know how the ratio o,/c, compares
lo o*,/w, for an oxygen-basis calculation. Dividing Equa-
tion 3 by cf, we have

Substituting for c,, 6c,/dw,, and 0c,/0w, from Equations 4
and canceling terms,

i:e{':__y4)' . 2"r($)'

For the case in which o.,/w,: o*/wj for all i and j, and
taking the square root,

(  l0 )

Equation 10 clearly shows that the error magnification of
a cation i depends on the proportion oftotal oxygen that
resides in the oxide ofthat cation.

#fr :f' =u**,' . yr 2, (A,, $)'

ffi:[,r - "r, * >, rnf"'*:'*(#)' . +2"r(#)'


