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ABSTRACT

This paper presents a method of model population estimates that serves to distinguish
elemental heterogeneity from error of analysis within a set of approximately 40 replicate
microprobe analyses of a single mineral and within a single thin section. A set of muscovite
analyses from a granite gneiss metamorphosed to the amphibolite facies is used as an
example.

The method of model population estimates is a search for plausible parent populations
to which the analyzed sample could belong at a 95% confidence level. Underlying as-
sumptions governing construction of the models are (1) careful analysis of the real sample
sufficed to minimize systematic errors; (2) nonsystematic analytical error is in part re-
moved by charge-sum normalization of each analysis and is in part random; and (3)
compositional heterogeneity, if present, follows a single equation of charge-coupled sub-
stitution.

The models are compared to the real sample at the 95% confidence level by an F test
for standard deviations and a ¢ test for correlations. Both a central model, which best fits
the real analyzed sample, and a range of models that pass the tests for standard deviations
and correlations may be ascertained. The result is an estimate of the allowed extent of
compositional heterogeneity and analytical error.

Assumption of a single equation of charge-coupled substitution to cover all elemental
heterogeneity of a given mineral is the simplest assumption beyond that of no heteroge-
neity at all. Should this assumption fail to produce a satisfactory model for a set of well-
made mineral analyses, the presence of independent and competing substitutions should
be suspected. Conversely, success of this modeling assumption suggests that any indepen-
dent substitutions are obscured by analytical error but does not necessarily suggest their
absence.

The method of model population estimates represents a logical advance in the use of
microprobe analyses and may become useful to many types of analytical studies. For
example, a large covariation in the extent of tschermakitic and alkali substitution is as-
certained within the muscovite analyzed for this study. Application of this covariation to
muscovite-plagioclase geothermometry yields a range of 57 °C in the apparent temperature
of metamorphism for the sample. In contrast, use of a mean muscovite analysis for the
studied sample yields a somewhat lower apparent range of only 10 °C.

INTRODUCTION

Within a set of replicate microprobe analyses, both real
elemental heterogeneity of the sample and error of anal-
ysis contribute to variation in analyzed abundance of the
elements. Such analytical error tends to obscure infor-
mation resulting from real elemental variation and sub-

stitution in the sample. This paper presents methods,
based on computer simulation and statistical analysis, to
estimate the nature and extent of sample heterogeneity as
well as the extent of indeterminate or random error of
analysis within microprobe data. These methods were de-
vised to ascertain the microvariation in composition of
metamorphic minerals whose zoning cannot be deter-
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mined directly, for reasons of complex zoning patterns or
small crystal size. Such methods may also find a use in
many other problems of petrology and materials science.

Apparently, no work similar to this study has been pre-
viously attempted. Chayes (1971) has written on the
problems inherent in similar treatment of whole-rock
geochemical data. The compositional heterogeneity of bi-
otite within single thin sections of metamorphic rocks,
chiefly within rocks of the granulite facies, has been dis-
cussed (Tracy and Dietsch, 1982; Indares and Martigno-
le, 1985). However, this sort of study is generally limited
to discussion of the variability of specific atomic ratios,
such as the ratio of Mg to total Fe. Typically two sets of
averaged analyses, for apparently prograde and obviously
retrograde biotite, or map plots of the Mg/Fe ratio within
single biotite crystals are presented.

Several papers have presented studies of compositional
variation for muscovite (Hollocher, 1987; Mohr et al.,
1986) and biotite (Dymek, 1983), based on virtually
complete cationic microprobe analyses of mica. Linear-
regression analysis was employed to attempt elucidation
of trends in covariation of elements and partial elemental
sums. However, no attempt was made to distinguish gen-
uine trends from those induced by autocorrelation. In
fact, these authors frequently make use of partial elemen-
tal sums, such as [6] Al and total octahedral site occu-
pancy, which are highly derived from the total cationic
sums. This type of sum is radically affected by normaliza-
tion, and any correlations affecting these sums should be
treated with caution. Also, the emphasis of both Dymek
(1983) and Hollocher (1987) was upon regional variation
in mica composition. For example, Hollocher (1987),
sought to determine the variation of muscovite compo-
sition with regional extent of metamorphic retrogression,
and many of his arguments were based on averages of
microprobe analyses. In contrast, the method advanced
in this paper seeks to elucidate the compositional micro-
variation within apparently unzoned minerals of a single
thin section.

A set of 39 replicate analyses of a metamorphic mus-
covite from a single thin section will be used for illustra-
tion. Model population estimates are generated and com-
pared to the real data set in a search for plausible model
populations to which the analyzed sample might belong.
Each of these models incorporates a single linear equation
of charge-coupled substitution (representing the chemical
heterogeneity of the sample), as well as random variation
in the abundance of each element (representing uncer-
tainty of analysis). Statistical tests are used to determine,
at a 95% confidence level, whether a given model consti-
tutes a plausible population estimate for the analyzed
sample.

Incorporation of all elemental microvariation within
one, all-inclusive equation of substitution may represent
an ideal state not often attained during metamorphism.
However, use of a single equation greatly facilitates con-
struction of the models, and statistical tests will deter-
mine to what extent such a simplistic approach is ade-

1407

quate to describe the microvariation within a given
sample. These points will be addressed again later.

Once it is shown that a plausible population exists for
a given analyzed sample, one may explore the range of
plausible population estimates to determine the limits of
geochemical information that may be retrieved from the
analyzed sample. Subsequent sections of this paper out-
line methods of gathering and treatment of the replicate
muscovite analyses, underlying assumptions and con-
struction of the model population estimates, and statis-
tical methods for comparison of the models to the real
data set.

DESCRIPTION OF SAMPLE AND ANALYSES

The analyzed muscovite sample is from a single thin
section of granite gneiss metamorphosed to the middle
amphibolite facies. The sample was collected from the
Wiley Gneiss of Hatcher (1971), specifically from an out-
crop listed as field stop 10 of Hatcher and Butler (1979).
The Wiley Gneiss (WG), located within the Southern Blue
Ridge, is of Precambrian (Grenville) age but was de-
formed and metamorphosed to the middle amphibolite
facies during the Paleozoic. The mineral assemblage con-
tains quartz + microcline + oligoclase + muscovite +
biotite + garnet + ilmenite. The texture is gneissic with
a concentration of aligned mica plates within bands sev-
eral millimeters thick. Individual muscovite crystals are
up to several millimeters across and 0.5 mm thick.

Microprobe analyses, of WDS type, were gathered on
a JEOL JXA733 microprobe equipped with Tracor-
Northern automation and located at the Department of
Geology, Southern Methodist University, Dallas, Texas.
Operating conditions included an acceleration potential
of 15 kV and beam current of 20 nA. Elements analyzed
included Na, Mg, Al, Si, K, Ba, Ti, and Fe. The elements
Ca and Mn were also analyzed but not detected. Stan-
dards used included andalusite for Al and Si, Kakahanui
hornblende for Ti, Amelia albite for Na, orthoclase for
K, garnet for Mg and Fe, and barite for Ba. ZAF correc-
tions were applied to all analyses as part of the Tracor-
Northern automation package.

Several steps were taken to minimize systematic error
during analysis. All analyses were gathered during a single
working session. The beam spot was adjusted to a di-
ameter of 20 um; repeated analyses of the same spot
showed no consistent change in mineral analyses for this
beam diameter. For each analysis, an automatic peak-
search routine was performed for all elemental peaks ex-
cept Ba. To check spectrometer drift for the elements Al
and Si, five replicate analyses of the standard andalusite
were performed immediately before and after the repli-
cate muscovite analyses. Relative changes in averaged
abundances amounted to +0.009 for Al and —0.004 for
Si. An attempt to apply linear corrections to analyzed Al
and Si to compensate for the apparent drift resulted in
an increase in standard deviation for these elements
among the 39 muscovite analyses. Thus it is assumed that
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TaeLe 1. Normalized mean formula and standard deviations of
the analyzed sample
Elemental
counting
error for
Standard unnormalized
Element Mean deviation analyses
Si 6.262 0.0675 0.0128
Al 1.738
8.000
BIA] 3.453 0.0649
Ti 0.125 0.0156 0.0021
Fe** 0.063
Mg 0.219 0.044 0.0032
Fe* 0.178
4.040 0.0136
Na 0.095 0.0143 0.0032
K 1.785 0.0274 0.0098
Ba 0.008 0.0012 0.0008
1.888 0.0242
z 13.931 0.0229
ZAl 5.191 0.1285 0.0121
ZFe 0.242 0.037 0.0055

any spectrometer drift is obscured by indeterminate error
of analysis.

The oxidation state of Fe in muscovite was determined
on a bulk mineral separate, using the wet-chemical meth-
od of Fritz and Popp (1985). The resulting ratio of Fe**
to Fe,,,, 0.262, was applied uniformly to all replicate mus-
covite analyses.

TREATMENT OF MICROPROBE DATA

The initial step in treatment of the 39 replicate analyses
of the muscovite sample consisted of charge-sum nor-
malization of each analysis to an assumed cationic charge
of 44 (22 O atoms). Fe,, was assigned a functional va-
lence of 2.262, based on the results of wet-chemical anal-
ysis. All subsequent treatment and interpretation of data
are based on the resulting charge-balanced formulae. Mean
abundances and standard deviations in abundance, cal-
culated for the elements as well as for partial elemental
sums, are listed in Table 1. Linear-regression correlations
(Table 2) were calculated for each of the 28 resulting pairs
of elements, as well as for three pairs involving the partial
elemental sums FM (Mg + Fe?*) and AF (Al + Fe*).

The mean analysis of the WG muscovite sample is
rather typical of muscovite analyses from amphibolite-
grade rocks (Guidotti, 1984, Fig. 33). A slight excess of
octahedral cations and deficiency of interlayer cations is
evident (Table 1). An excess of Si and a deficiency of Al
relative to ideal muscovite are also unremarkable. The
low ratio of Na to K reflects the presence of microcline
within the sample rock. The abundance of Ti is high but
not unusually so. High values for the standard deviations
of some of the elements suggest the presence of elemental
heterogeneity.

Although observed correlations of elements (Table 2)
suggest substantial variation in elemental abundance, these
correlations are obscured by the presence of random or
indeterminate error of analysis, and autocorrelation has
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TaBLE 2. Linear regressions of the analyzed sample

Slope of Correlation
Elements (/) correlation coefficient
¥ X o] n
Mg Al —0.332 —0.969
Mg Si +0.598 +0.916
Ti Mg -0.219 -0.618
Fe Mg +0.728 +0.866
Si Al -0.511 -0.972
Ti Al +0.068 +0.557
Fe Al —0.240 —0.832
Ti Si —0.143 -0.619
Fe Si +0.401 +0.732
Ti Fe —0.259 —0.615
Na K -0.235 —0.450
Ba Na —-0.016 —0.190
Ba K -0.007 —0.151
K Mg +0.309 +0.497
K Al —0.094 —0.440
K Si +0.132 +0.325
Ti K —-0.197 —0.346
K Fe +0.344 +0.465
Na Mg —0.240 —0.740
Na Al +0.079 +0.715
Na Si -0.131 -0.621
Na Ti +0.371 +0.404
Na Fe -0.319 —0.827
Ba Mg +0.008 +0.279
Ba Al —0.003 -0.311
Ba Si +0.006 +0.323
Ba Ti —0.002 —0.024
Ba Fe +0.006 +0.167
Si AF —0.547 -0.977
FM AF -0.535 —0.933
FM Si +0.894 +0.874

resulted from charge-sum normalization (Chayes, 1971).
For muscovite analyses, the elements Si and Al account
for approximately 55% and 40% of the total cationic
charge, respectively, and autocorrelation involving these
elements is high. In fact, the contribution of autocorre-
lation to any observed correlation of Si to Al (or to the
partial elemental sum AF) is sufficiently large (Fig. 1) that
the observed correlation cannot be interpreted directly.
This is unfortunate, since phengitic or tschermakitic sub-
stitution has long been recognized as a fundamental con-
trol on variability of muscovite composition (Guidotti,
1984).

On the other hand, the effect of random error on cor-
relations among the less abundant elements is simply a
lessening of the degree of observed correlation. Since in-
determinate error of analysis is random in nature, it can-
not be filtered out of the set of analyses. Thus, the ob-
served correlations (Table 2) are not readily interpreted.
The method of model population estimates attempts to
overcome this difficulty by comparison of the real data
set to computer models within which the limits of ele-
mental heterogeneity and indeterminate error of analysis
have been assigned.

FORMATION OF THE MODEL
POPULATION ESTIMATES

Computer modeling requires that fundamental as-
sumptions or boundary conditions be made regarding the
nature of both real chemical heterogeneity and error of
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analysis. Three assumptions govern the manufacture of
model population estimates:

1. It is assumed that systematic error of analysis is
unimportant within the analyzed sample. Possible causes
of systematic error include poor standardization, spec-
trometer drift, and errors within the applied ZAF correc-
tions. Analytical procedures described above are believed
sufficient to prevent development of significant system-
atic error. Thus, all variations in analyzed abundance of
the element that are not due to chemical heterogeneity of
the sample are ascribed to random analytical error.

2. It is assumed that random analytical error takes two
forms. The first is a change in the absolute intensities of
all characteristic X-ray peaks from one analysis to the
next, without any change in the ratios of peak heights
among the elements. Such error could be caused by the
uneven character of the sample polish. Without correc-
tion, such error would result in a trend toward false pos-
itive correlations among the analyzed elements. Charge-
sum normalization is used to filter out this type of error.

The second form of random analytical error is strictly
random in nature, both among the various elements within
a given analysis and among the various analyses for a
given element. For sufficiently large samples, distribution
of the magnitudes of such error follows a normal, or
Gaussian, pattern. The magnitude of the standard devi-
ation of this error is characteristic of each analyzed ele-
ment. This form of analytical error includes but is not
limited to fundamental counting error.

3. Chemical heterogeneity of the analyzed sample is
assumed to be governed by variation along a single equa-
tion of charge-coupled substitution among the analyzed
elements. Thus, real variation in all elemental abun-
dances may be expressed in terms of two end-members.
For sufficiently large samples, distribution of the real
abundances for each element is assumed to be linear
(rather than normal) with definite limits and symmetrical
about the mean. Chemical heterogeneity is assumed to
be present only if null models, which incorporate only
random error of analysis, fail to reproduce the correla-
tions observed in the real analyses of the mineral sample.

Models are constructed using the assumptions outlined
above. Each model contains 1000 simulated analyses. El-
emental heterogeneity is modeled by incremental change
along a single equation of charge-coupled substitution,
which is specific to each model. Random error of analysis
is modeled by a Monte Carlo method.

Details of the construction of the simulated analyses
for the elements Al and Si are shown graphically in Figure
2 and discussed below. A sample of the computer pro-
gram for the elements Al and Si is given in Basic lan-
guage:

100  RANDOMIZE

110 GOSUB 2000

120 FOR J =1 TO 1000

130 AL(J) = 5.401 — 0.42-J/1000 + 0.0424+Z())
140 NEXT]J
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Fig. 1. Charge-sum normalization of muscovite analyses in-

duces false correlations, especially for the elements Si and Al.
The graphs show linear-regression correlations Si vs. Al for a
model set of muscovite analyses constructed according to meth-
ods stated in the paper. The model set of analyses consists of
1000 members; every 20th member is shown for clarity. The
elemental mean and standard deviations are those of sample
WG, but elemental variations are not correlated at all. The slope
of —0.65 that results from charge-sum normalization reflects, in
part, the 3/4 ratio of the cationic charges for Al and Si.

150
160
170
180
190

RANDOMIZE
GOSUB 2000

FOR J = 1 TO 1000

SI(J) = 6.157 + 0.21-J/1000 + 0.0452-Z(J)
NEXT J

The simulated 1000 analyses for Al and Si are calculated
by lines 130 and 180, respectively. For each element, the
first two terms model elemental heterogeneity, whereas
the third term models random error of analysis. The un-
derlined coeflicient of the second term represents the el-
emental coefficient within the equation of charge-coupled
substitution that is assumed for this particular model.
The constant value of the first term is equal to the mean
analysis for the WG sample minus one-half the value of
the underlined coefficient of the second term. The third
term calculates the extent of random error. The Z(J) vari-
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Fig. 2. Graphs demonstrating construction of a model set of
analyses incorporating both a single equation of charge-coupled
elemental substitution and uncertainty of analysis (see text). The
model set of analyses consists of 1000 members; every 20th
member is shown for clarity. The equation of charge-coupled
substitution and the limits of random error are those of the cen-
tral model (see text). Top: Model analyses for the elements Si
and Al before normalization. The line connecting the arrows
represents the array of calculated elemental abundances before
the terms representing uncertainty of analysis are added; the cen-
tral circle represents the mean of sample WG. Distortion caused
by charge-sum normalization is shown below (bottom).

able is constructed within the internal loop entered by the
GOSUB command. This loop converts a linear array of
1000 random numbers, generated initially by the RAN-
DOMIZE command, to a normally distributed array with
a standard deviation of 1. The underlined coeflicient of
the third term scales the standard deviation to whatever
value of indeterminate error is assumed for the element
within a particular model. The purpose of the RAN-
DOMIZE command is to assure that the arrays repre-
sented by the Z(J) variable are not correlated from one
element to the next.

Variation of the underlined coefficients for either term
allows construction of a variety of model population es-
timates with differing equations of charge-coupled sub-
stitution and differing limits of assumed random error.
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For all models, each simulated analysis is subsequently
charge-sum normalized. Means, standard deviations, and
linear-regression correlations are calculated in the same
fashion as for the real analyzed sample. The result is a
model analysis within which the limits of both elemental
heterogeneity and error of analysis are known, despite the
subsequent distortion of both elemental standard devia-
tions and correlations caused by charge-sum normaliza-
tion. Thus, the real analyzed sample may be compared
to each model directly.

COMPARISON OF MODEL POPULATION ESTIMATES
TO THE ANALYZED SAMPLE

Comparison of model population estimates to the an-
alyzed sample is performed by an F test for the standard
deviations listed in Table 1 and by a ¢ test for the 31
correlations of Table 2. A particular model is considered
to represent a plausible population estimate for the real
analyzed sample if all calculated values of F and ¢ match
those of the real sample within the interval of 95% con-
fidence. A model is considered to have failed if any one
value of F or ¢ exceeds the critical value for 95% confi-
dence.

The F test for comparison of standard deviations is
based on the formula (Dixon and Massey, 1969):

F = s’(sample a)/s*(sample b),

where the larger variance is always in the numerator. This
test furnishes an estimate of the probability that the two
standard deviations could arise from samples of the same
population and is valid as long as the means of the two
samples are the same.

However, use of both linear and Gaussian elemental
distributions for construction of the model population
estimates renders the standard F tables invalid. There-
fore, critical values of F for 95% confidence were esti-
mated empirically. Two hundred sets, each of 39 simu-
lated analyses, were constructed using a modified version
of the computer program for the model population esti-
mates. Assigned coefficients of charge-coupled substitu-
tion and the limits of uncertainty of analysis were con-
stant in all 200 sets. Resulting elemental standard
deviations for each of these sets were compared to those
of the model population estimate, based on 1000 simu-
lated analyses, whose assigned coefficients for charge-
coupled substitution and error of analysis were the same.
Comparison of standard deviations was performed by an
Ftest. For each element and tested partial elemental sum,
the 190th highest value of F (within a set of 200 calculated
F values) was assumed to represent the critical value for
95% confidence. This test was conducted once for a model
population estimate that most closely matched the ana-
lyzed sample. In general, critical values of F are less than
those seen in standard statistical tables but approach the
standard values, as the assumed indeterminate analytical
error constitutes more of the total calculated variation of
the clement.

The test for correlations is that given by Dixon and
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Massey (1969, p. 207-209), without modification. This
test allows direct comparison of linear-regression corre-
lations among two samples, provided that standard de-
viations for each element within the two samples are
compatible with a single overall population. For the WG
muscovite sample, the test for correlations was more
stringent than the test for standard deviations. Although
many models that would have passed the F test in fact
failed the ¢ test for correlations, the converse was almost
never observed.

The model equation of charge-coupled substitution,
normalized to the charge-sum of 44, was varied among
the test models by increments of 0.001 formula units for
each element. The amount of model indeterminate error
was varied by increments of 0.5 of the counting error
estimate for each element within the real analyzed sample
(Table 1). Tracor-Northern automation on the JEOL mi-
croprobe reports sufficient information to estimate count-
ing error for each element in terms of formula abundance.
The formulas used are

€cen = [Npol"/[Ne,, — N, wals

where i refers to a specific element, N, and N, represent
the number of photon counts for peak and background
positions respectively, and e, is a dimensionless number
that expresses the relative counting error for each ele-
ment. An estimate of the magnitude of the counting error
for each element follows, using the formula

a(te,z) = €(ce,i)‘Xi’

where X is the mean abundance of each element within
the average reported analysis (Table 1).

By trial and error, a central model was identified that
most closely reflects the standard deviations and corre-
lations of the real analyzed sample. The extent to which
models departing from this central model could also con-
stitute plausible population estimates for the real sample
was tested by incremental variations in the elemental
coefficients. Variations within the equation of charge-
coupled substitution were tested in models whose inde-
terminate error of analysis remained the same as that of
the central model. Variation in the elemental indetermi-
nate error of analysis were tested in models whose formula
of charge-coupled substitution remained the same as that
of the central model.

RESULTS OF COMPUTER MODELING

Null models, or those incorporating only random error
of analysis, fail to match the correlations of the real WG
muscovite sample. The central model that most closely
reflects the observed standard deviations and correlations
contains the following charge-coupled substitution equa-
tion:

0.2181 + 0.15Mg + 0.115Fe(Fe**/Fe,, = 0.262)

+ 0.038K + 0.001Ba + 0.001020
= 0.42Al + 0.035Ti + 0.04Na + 0.0210,
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TasLe 3. Comparison of the central model to the real analyzed
sample

Standard deviations

Standard Observed Critical
deviation value of value of

Element of model F statistic F statistic
Si 0.0660 1.05 1.39
BIA| 0.0640 1.03 1.35

Ti 0.0164 1.1 1.52
Fey, 0.0363 1.04 1.44
Mg 0.0443 1.01 1.33
IR 0.0148 1.18 1.60
Na 0.0142 1.01 1.48

K 0.0275 1.01 1.61

Ba 0.0012 1.00 1.48
2R 0.0268 1.23 1.54

> 0.0229 1.00 1.61
ZAl 0.1255 1.05 1.36
Linear-regression correlations

Slope of Correlation

Elements (y/x) correlation coefficient

¥ x in model (b) in model () t statistic
Mg Al —0.334 —0.947 -0.125
Mg Si +0.593 +0.883 —0.089
Ti Mg -0.225 —0.609 -0.127
Fe Mg +0.743 +0.908 +0.268
Si Al —0.508 —0.966 +0.111
Ti Al +0.072 +0.552 +0.256
Fe Al —0.258 —0.891 —0.834
Ti Si -0.161 —-0.647 —0.580
Fe Si +0.439 +0.797 +0.692
Ti Fe -0.257 —0.571 +0.020
Na K -0.160 -0.310 +0.918
Ba Na -0.018 -0.207 -0.133
Ba K +0.005 +0.107 +1.597
K Mg +0.240 +0.387 -0.719
K Al —0.087 —0.396 +0.209
K Si +0.128 +0.307 —0.058
Ti K -0.173 -0.291 +0.253
K Fe +0.271 +0.358 —0.633
Na Mg —0.260 -0.812 -0.632
Na Al +0.089 +0.784 +0.804
Na Si —0.161 —-0.749 -1.269
Na Ti +0.431 +0.498 +0.464
Na Fe —0.300 —0.769 +0.454
Ba Mg +0.006 +0.225 —0.342
Ba Al —0.002 -0.212 +0.597
Ba Si +0.004 +0.185 -0.797
Ba Ti -0.012 -0.165 —0.838
Ba Fe +0.008 +0.233 +0.460
Si AF —0.547 -0.971 0
FM AF —0.556 —0.936 —0.627
FM Si +0.917 +0.870 +0.275

Note: t critical = 1.646.

The standard deviations and correlations for this model,
as well as the results of statistical comparison to those of
the real sample, are given in Table 3. The limits of in-
determinate error, in terms of multiples of the counting
error for each element, are 1.5 for Ba, 2.5 for Na, Mg, K,
and Fe, 3.5 for Al and Si, and 6.0 for Ti. The range of
allowed variations in both the coefficients of the equation
of charge-coupled substitution and of limits of indeter-
minate error of analysis are furnished in Table 4.
Compositional heterogeneity is ascribed to variation
along a single equation of charge-coupled substitution,
whose nature is dominantly phengitic. For the WG mus-
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TaBLe 4. Allowed ranges for successful models

Possible ranges for coefficients of selected elements and site vacancies
within the equation of charge-balanced substitution (increments of 0.001):

Na 0.038-0.041 Ba 0.001 only

Mg 0.14-0.163 Ti 0.023-0.044
K 0.036-0.04 Fe 0.107-0.125
] 0.013-0.029 0] 0-0.001

investigated only

Possible ranges for uncertainty of analyses, expressed as both multiples
of the extent of Poisson counting error and as numerical values (increments
of 0.5 times counting error of the element):

Range in standard deviation of successful models

As multiple of

Element counting error Numerical value
Na 2-3.5 0.0064-0.0112
Mg 0-5 0-0.016
Al 2-55 0.0242-0.0666
Si 1-55 0.0129-0.082
K 2.5 only 0.0245 only
Ba 1.5 only 0.0012 only
Ti 5-7.5 0.0105-0.0158
Fe 1.5-3.5 0.0083-0.0192

Standard deviation of central model
As multiple of

Element counting error Numerical value
Na 2.5 0.008
Mg 25 0.008
Al 35 0.0424
Si 3.5 0.0452
K 25 0.0245
Ba 1.5 0.0012
Ti 6 0.0126
Fe 25 0.0138

covite sample, an increase in content of K and Ba and a
decrease in Ti correlate to the phengitic substitution with-
in all successful models. Assuming charge balance, all
successful models suggest that substitution of Ti into the
muscovite structure is accommodated by decrease in the
total number of octahedral cations. In all cases, the total
number of octahedral cations remains above the ideal
value of 4 (per 44 cationic units). No change in the number
of interlayer cations need be assumed. A partial charge-
coupled substitution of the form:

Ba + WAl = Na + Si

would also produce successful models that require no
change in interlayer site occupancy.

Results generally agree with what is known regarding
chemical substitution within muscovite (Guidotti, 1984)
and with the extent of indeterminate error to be expected
from good microprobe analyses. The major exception to
this rule is the high degree of model indeterminate error
for the element Ti. When this element is excluded, the
ratio of indeterminate error to counting error increases
with elemental abundance, being lowest for Ba and high-
est for Si and Al. The limits of indeterminate error in
terms of elemental abundance are also controlled by the
detection efficiency of the characteristic photons, which
is lowest for Fe.
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DIScUSSION

It is necessary to point out several inadequacies of the
method of model population estimates set forth in this
paper. Although some shortcomings are due to relatively
simplistic assumptions of the modeling method, others
arise from the shortcomings of standard microprobe
analyses.

First of all, electron microprobe analyses do not allow
investigation of all possible forms of elemental micro-
variation within muscovite. Analyses cannot be made for
microvariation of either the ratio of Fe** to Fe,, or H
content. The simplest assumptions, of constant Fe**/Fe,,
and absence of microvariation involving elements not
analyzed, were used by default.

In fact, both variations in the ratio of Fe** to Fe,, and
oxymica substitution of the type AP* + (OH)- = Ti** +
02- could produce successful models with only minor
adjustments. Also, in the absence of microanalyses for
H,O, microvariation in the extent of oxymica substitu-
tion of the type Fe?* + (OH)- = Fe** + O?" cannot be
tested at all. Hence, this method of computer modeling
reflects the well-known weaknesses of standard micro-
probe analyses.

A second issue is the extent to which genuine hetero-
geneity within the sample analyzed is reflected within the
successful models. The choice of a single equation of
charge-coupled substitution to represent chemical hetero-
geneity of the sample is governed by simplicity. Once null
models, incorporating only random analytical error, are
shown to fail, models incorporating a single equation
constitute the next logical step. Success of a single-equa-
tion model precludes development of more complex
models, such as those involving several unrelated partial
equations of charge-coupled substitution. The same hier-
achical order of complexity applies to the individual el-
ements. If the correlations of a particular element with
the other elements are adequately reproduced within
models that ascribe all variation for this element to an-
alytical error, this element should not be included within
the linear equation. With the analyzed WG muscovite
sample, successful models were generated only upon in-
clusion of all elements, including Ba, within a single equa-
tion of charge-coupled substitution.

It is recognized that models that include all mineral
heterogeneity within a single equation of substitution may
fail to reflect the chemical complexity of metamorphic
processes. Indeed, actual validity of a single equation of
substitution would require strict crystal-chemical control
of elemental variation or a metamorphic history analo-
gous to the ideal concept of perfect fractional crystalli-
zation within igneous rocks. In fact, neither condition is
likely to have been met within the analyzed WG sample.
Natural muscovite does not possess rigid stoichiometry,
and the parent rock formation has undergone both Gren-
villian and Paleozoic orogenies.

Nevertheless, incorporation of a single equation of
charge-coupled substitution yields successful results for
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Fig. 3. Comparison of the central model to the real set of
WG muscovite analyses is shown for correlation of the elements
Mg and Al. The model set of analyses consists of 1000 members;
every 20th member is shown for clarity, Covariation of the two
elements is well constrained, and little room is left for any con-
flicting patterns of substitution not incorporated within the sin-
gle equation.

the WG muscovite sample, and it is reasonably certain
that the magnitude of any additional complex patterns of
elemental substitution is not large. These points are ad-
dressed in Figures 3 and 4. Figure 3 shows that the co-
variation of Mg with Al is tightly constrained within the
analyzed sample and that this constraint is reflected with-
in the central model. In contrast, Figure 4 shows some-
what lower correlation between Ti and Fe,,. The large
indeterminate error for Ti in the model, as well as the
relatively poor correlations involving this element, is not
readily explained in terms of real analytical error for this
element within the muscovite sample. Apparently some
additional cause of heterogeneity not reflected in the
equation of charge-coupled substitution is present. Het-
erogeneity could be caused by an additional uncorrelated
equation of substitution. In any event, the fact that het-
erogeneity for Ti is well modeled by a large degree of
indeterminate error means that information regarding the
cause of this element’s heterogeneity cannot be retrieved
from the data set by the methods presented here.
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Fig. 4. Comparison of the central model to the real set of
WG muscovite analyses is shown for correlation of the elements
Ti and Fe,,. The model set of analyses consists of 1000 mem-
bers; every 20th member is shown for clarity. In contrast to the
case displayed in Figure 3, covariation of the elements Ti and
Fe,, is only loosely constrained by the single equation of charge-
coupled substitution of the central model. Independent and con-
flicting trends of substitution may be hidden within the diffuse
cloud of data points.

Anyone who chooses to use the methods of this paper
must remain aware of the rather simplistic assumptions
underlying the methods. That complex patterns of ele-
mental substitution are neither revealed nor required
within a particular sample by the method of model pop-
ulation estimates does not mean that such patterns are
not present.

CONCLUSION

The method of model population estimates allows res-
olution and quantification of the nature and extent of
elemental heterogeneity within a mineral to a scale that
is comparable to that of analytical error. Thus, this meth-
od is ideally suited to the study of replicate microprobe
analyses within single thin sections and other small sam-
ples. Such studies represent a logical advance in the use
of microprobe analyses.
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TaBLE 5. Calculations for plagioclase-muscovite thermometry,
using the method of Green and Usdansky (1986)

Plagioclase mole fractions

Center Rim
Xoo 0.749 0.712
Xan 0.248 0.285
Xor 0.011 0.010

Muscovite mole fractions

Most phengitic ~ Least phengitic Mean

X 0.773 0.799 0.786

Xea 0.040 0.061 0.050
Calculated temperatures at an assumed pressure at 5 kbar °C
Most phengitic muscovite/plagioclase centers 525
Least phengitic muscovite/plagioclase rims 582
Mean muscovite/plagioclase centers 551
Mean muscovite/plagioclase rims 561

For example, the method of model population esti-
mates may be applied to studies of metamorphic geother-
mometry. Application of the muscovite-plagioclase
geothermometer of Green and Usdansky (1986) to the
central model for the WG muscovite sample is outlined
in Table 5. Oligoclase crystals, to several millimeters
across, show inverse zoning with rims richer in Ca. Use
of the mean composition for WG muscovite, along with
center and rim compositions of oligoclase, results in a
calculated temperature range of 551-561 °C at an as-
sumed pressure of 5 kbar. Use of the two end-members
of the linear equation of charge-coupled substitution re-
sults in a somewhat wider temperature range of 525 to
582 °C. Thus, mean mineral compositions, typically used
for many geothermometric calculations, may hide im-
portant information regarding the metamorphic history
of the rock, and any conclusions based on use of such
mean compositions must be suspect.

A method that would allow quantification of hetero-
geneity within complex minerals is clearly needed for a
more accurate study of metamorphism. The method of
model population estimates may furnish such a method.

MOHR ET AL.: ELEMENTAL VARIATION IN MINERALS

ACKNOWLEDGMENTS

The authors appreciate the assistance of Dwight Deuring, microprobe
research associate at Southern Methodist University, in gathering the mi-
croprobe analyses. Also, several colleagues at the Naval Coastal Systems
Center, including Marty Feldman and John Mittleman, furnished invalu-
able advice on the subjects of computer modeling and statistical analysis.

REFERENCES CITED

Chayes, F. (1971) Ratio correlation. University of Chicago Press, Chicago,
Illinois.

Dixon, W.J., and Massey, F.J., Jr. (1969) Introduction to statistical anal-
ysis. McGraw Hill, New York, New York.

Dymek, R.F. (1983) Titanium, aluminum, and interlayer cation substi-
tutions in biotite from high-grade gneisses, West Greenland. American
Mineralogist, 68, 880-899.

Fritz, S.J., and Popp, R.K. (1985) A single dissolution technique for de-
termining FeO and Fe,0, in rock and mineral samples. American Min-
eralogist, 70, 961-969.

Green, N.L., and Usdansky, S.I. (1986) Toward a practical plagioclase-
muscovite thermometer. American Mineralogist, 71, 1109.

Guidotti, C.V. (1984) Micas in metamorphic rocks. In Mineralogical So-
ciety of America Reviews in Mineralogy 13, 357-467.

Hatcher, R.D., Jr. (1971) Geology of Rabun and Habersham Counties,
Georgia: A reconnaissance study. Georgia Geological Survey Bulletin,
83.

Hatcher, R.D., Jr., and Butler, J.R. (1979) Guidebook for the Southern
Appalachian field trip in the Carolinas, Tennessee, and northeastern
Georgia. North Carolina Geological Survey, Raleigh, North Carolina.

Hollocher, K. (1987) Systematic retrograde metamorphism of sillimanite-
staurolite schists, New Salem area, Massachusetts. Geological Society
of America Bulletin, 98, 621-634.

Indares, A., and Martignole, J. (1985) Biotite-garnet geothermometry and
granulite-facies rocks: Evaluation of equilibrium criteria. Canadian
Mineralogist, 23, 187-193.

Mohr, D.W., Barneit, R.L., and Michie, J. (1986) Chemical processes and
migration of elements during retrogression of a staurolite-zone assem-
blage in western North Carolina. Contributions to Mineralogy and Pe-
trology, 92, 400-411.

Tracy, R.J., and Dietsch, C.W. (1982) High-temperature retrograde re-
actions in pelitic gneiss, central Massachusetts. Canadian Mineralogist,
20, 425-437.

MANUSCRIPT RECEIVED JUNE 5, 1989
MANUSCRIPT ACCEPTED SEPTEMBER 20, 1990



