The assemblage $WO_2 + H_2O$ as a steady-state hydrogen source in moderately reduced hydrothermal experiments

GARY L. CYGAN, I-MING CHOU

959 National Center, U.S. Geological Survey, Reston, Virginia 22092, U.S.A.

ABSTRACT

The values of $f_{\rm H_2}$ for the assemblage WO₂ + WO_{2,72} + H₂O (designated as WO) have been measured in sealed Au capsules under an external pressure of 2 kbar CH₄ and between 650 and 800 °C using Ag-AgBr-HBr sensors of $f_{\rm H_2}$. The $f_{\rm H_2}$ values obtained can be represented by the equation

$$\log(f_{\rm H_2}^{\rm WO})_{2\rm kbar, T}(\pm 0.06) = \frac{-1924.9}{T, \rm K} + 4.06$$

and are found to be slightly greater than those associated with the previously calibrated C-CH₄ buffer. The value at 2 kbar and 650 $^{\circ}$ C is approximately an order of magnitude lower than the theoretical value of the wüstite-magnetite-H₂O buffer. The assemblage has been found to generate reproducible steady-state f_{H_2} values at fixed P-T conditions. However, at the relatively high H₂ pressures developed by this assemblage, H₂ leakage through the Au capsule was unavoidable. This leakage can be mitigated by decreasing the $f_{\rm H_2}$ gradient across the Au capsule wall, but it is strongly recommended that $f_{\rm H_2}$ sensors be employed to monitor the actual redox conditions in experiments using buffers or assemblages that generate f_{H_2} values equivalent to the Co-CoO-H₂O buffer or greater. The WO₂ + $WO_{2,72}$ + H_2O assemblage can still be used as a redox buffer even though the system's H₂ consumption is accomplished by H₂ leakage rather than chemical reaction.

INTRODUCTION

Measurements of the steady-state values of $f_{\rm H}$, imposed by the C-CH₄ buffer in cold-seal pressure vessels at 2 kbar and between 600 and 800 °C (Chou, 1987a) show that the $f_{\rm H_2}$ values are only 1/4 to 1/3 of those calculated from thermochemical data as given by Eugster and Skippen (1967). Furthermore, reproducible f_{H_2} values cannot be obtained at temperatures lower than 650 °C because of kinetic problems. Therefore, it is useful to find suitable redox buffers that can control the redox states of hydrothermal experimental systems at levels equivalent to the theoretical C-CH₄ buffer. For this reason, the assemblage of $WO_2 + WO_3 + H_2O_3$, first studied by King et al. (1960), is considered. We report here on the measured $f_{\rm H_2}$ values imposed by the assemblage $WO_2 + WO_3 + H_2O$ at 2 kbar and between 550 and 800 °C; preliminary results were presented earlier (Cygan and Chou, 1987). In addition, since a significant influence is exerted by the pressure medium upon the $f_{\rm H_2}$ values that can be attained in hydrothermal experiments contained in Au capsules (Chou and Cygan, 1987, 1989, 1990), the measurements of $f_{\rm H_2}$ for the assemblage WO₂ + WO₃ + H₂O were performed using three pressure media, CH₄, Ar, and H₂O, to assess these effects.

This buffer assemblage has been used to obtain reducing conditions in other hydrothermal experiments (Tacker and Candela, 1987; Wood and Vlassopoulos, 1989) even though it is not a stable assemblage at the P-T conditions at which those studies took place (discussion follows). The assemblage $WO_2 + H_2O$ was used as the starting assemblage in the latter part of this study to avoid the problem of metastability. In this way, the assemblage was used only as a source of H, rather than a true buffer, through the reaction

$$WO_{2(s)} + xH_2O = WO_{2+x(s)} + xH_{2(g)}$$
 (1)

where x = 0.72 or 0.90, s = solid, and g = gas. Even under the external pressure of CH₄, the most reducing pressure medium employed in this study, the high leakage rate of H through the Au capsule walls impedes H build-up in the charge to the levels predicted by the equilibrium constant of Reaction 1.

In other words, in our experiments, Reaction 1 always proceeds to the right, and the $f_{\rm H_2}$ levels of the system are always below the equilibrium values. Steady-state $f_{\rm H_2}$ values can be maintained in the system, however, when the rate of H₂ production by means of Reaction 1 is countered by the rate of H₂ leakage out of the capsule. For hydrothermal experiments involving quantitative redox control, where the actual redox state is monitored by an $f_{\rm H_2}$ sensor, it does not matter whether the redox control is achieved by a buffering equilibrium or by a steadystate process. What is important is that the redox state of the system is fixed at certain known values at P and Tduring the experiment.

In this study, the steady-state values of $f_{\rm H_2}$ for the H-generating assemblage WO₂ + H₂O contained in a Au

Atomic $\% O_2$

Fig. 1. A portion of the W-O system showing phase relations for the pertinent species in this study, at 1 atm pressure, in atomic percent O_2 . Adapted from Phillips and Chang (1964).

capsule under an external pressure of 2 kbar CH₄ were measured between 650 and 800 °C. Results were compared with those obtained for the metastable assemblage $WO_2 + WO_3 + H_2O$ described above. The technique used in this study is similar to that employed for calibrating the C-CH₄ buffer using Co-CoO-H₂O as a reference buffer and the Ag-AgBr-(H₂O, HBr) H sensor (Chou, 1987a).

PHASE RELATIONS IN THE W-O SYSTEM

The W-O system contains several stable oxide phases intermediate to the end-members. Past experiments have established the existence of at least four oxides, WO_2 , $WO_{2.72}$, $WO_{2.90}$, and WO_3 (St. Pierre et al., 1962; Phillips and Chang, 1964; Bousquet and Perachen, 1964). Figure 1 shows the temperature-composition relations at 1 atm for a portion of the binary relevant to this study.

King et al. (1960) presented thermodynamic data, including measured low and high temperature heat capacity and free energy data for WO₂ and WO₃. Unfortunately, their measurements were made for the metastable assemblage $WO_2 + WO_3$, and the stable intermediate oxide species in the W-O system were not considered. Figure 2 gives the stabilities of the intermediate species for this study as calculated from the data in JANAF (1971). At least two intermediate oxides, WO_{2.72} and WO_{2.90}, are formed before further oxidation of WO₂ to WO₃ at T >585 °C. There appears to be confusion as to whether an intervening higher oxide, WO_{2.75}, will form from the reduction of WO₃ to WO_{2.72}; however, recent high resolution electron microscopy has shown that only an amorphous intermediate step appears prior to the stable stoichiometric WO_{2.72} phase (Sahle, 1982).

EXPERIMENTAL PROCEDURE

Starting materials consisted of commercially available WO₂ (Alfa Products,¹ lot #102036) and WO₃ (Fisher Sci-

Fig. 2. Log f_{O_2} -T diagram for the pertinent W-O system species at 1 atm using data from JANAF (1971). Solid lines are stable phase boundaries and the dashed line represents the experimentally produced values for the metastable WO₂ + WO₃ assemblage as determined by King et al. (1960).

entific, lot #732211). WO₂ as purchased contains <1.5% "other oxide" not identified on the bottle; however, X-ray analysis determined only minor W to be present. The $f_{\rm H_2}$ sensors were sealed Pt capsules (1.85 mm od, 1.54 mm id and 19 mm long) containing 8 to 15 mg of either distilled, deionized H₂O (sensor A) or 1.5 M HBr (sensor B), and approximately 50 mg of a 1/1 mix of Ag and AgBr (both from Fisher Scientific; lot #771462 and #751585, respectively). Either one or both of these sensors, depending upon the available space in the Au capsule, were then sealed inside a cleaned Au outer capsule (4.4 mm od, 4.0 mm id and 25.4 mm long), which contained 0.4 to 0.6 g of WO₂ + WO₃ and approximately 20 to 40 μ L H_2O_2 , or solely $WO_2 + H_2O_2$. If two sensors were placed in the capsule, complementary sensors A and B were used to demonstrate reversals in H₂ transfer. Multiple experiments with single sensors were conducted at higher temperatures when space in the Au capsule presented a problem. Further details of the charge configuration are in Chou (1987b).

Cold-seal pressure vessels made of stellite 25 (a Co-

¹ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Fig. 3. Experimental data of $-\log M_{Br}$ in the f_{H_2} sensors at 2-kbar pressure using Ar, H₂O, and CH₄ pressure media. Symbol definitions are presented as (sensor A/sensor B), where sensor A approaches osmotic equilibrium from below or undersaturation, whereas sensor B approaches from above. Experiments using initial assemblage $WO_2 + H_2O$ and employing CH_4 external pressure (\wedge/\vee) ; experiments with an initial assemblage of WO₂ + WO₃ + H₂O and CH₄ (O/ \bullet) Ar (\triangle/∇) H₂O (\square/\square) external pressure; and those using an initial assemblage of Co + CoO + H_2O plus Ar (\uparrow/\downarrow) or CH₄ (\uparrow/\downarrow) external pressure. Uncertainties are about the size of the symbols (± 0.01 in log M_{Br} and ± 3 °C). The heavy solid line is a regressed line through measurements represented by the chevrons (Eq. 7). The Co + CoO + H_2O assemblage was used as a reference in this study; the dashed line represents Equation 6, and the dotted line is from Chou (1987a). The calibrated log M_{Br} values for the C + CH₄ assemblage determined by Chou (1987a) are depicted by the dash-dot line. Numbers in parentheses represent experiment durations (in hours) for those experiments. Note that experiments made under H₂O external pressure, numbers 17 and 25, plot near the Co + CoO + H₂O line, well beneath the experiments exposed to CH₄ and Ar external pressure. See text for discussion.

based alloy) with a 3.18-cm od, a 20.32-cm length, and a 6.35-mm id were used. The pressure media used were CH₄, Ar, and H₂O; when CH₄ (99.99% pure, supplied by Matheson) was used, a pure graphite bar was inserted as a filler rod, and when Ar or H₂O was used, a stainless steel bar was employed. Occasionally, when H₂O was used to transmit pressure, the intrinsic $f_{\rm H_2}$ of the pressure vessel was monitored by $f_{\rm H_2}$ sensors.

All experiments were made using horizontal Pt-wound furnaces with conventional temperature proportional controllers. Temperatures were monitored by calibrated chromel-alumel type thermocouples sheathed in inconel with an accuracy of ± 3 °C. Pressures were monitored by Heise gauges with an accuracy of ± 30 bars for the Ar and H₂O pressure media. Experiments performed with CH₄ as the pressure medium required periodic recharging because of H₂ leakage through the pressure vessel wall, es-

Measured Br⁻ concentrations in the Ag-AgBr f_{Ha} sen-TABLE 1. sors equilibrated with the Co-CoO-H₂O assemblage under 2-kbar Ar external pressure

Experi- ment	Temper- ature	Experi- ment duration		atm, 25 °C ISOIS*	−log(<i>M</i> _{Br}) in sensors		
no.	(°C)	(h)	A	в	A	в	
21	800	8	0.1509	_	0.8212	_	
23	800	8	-	0.1585		0.7999	
22	752	16	0.1407		0.8517	_	
19	700	68	_	0.1342	_	0.8722	
24a	701	52	0.1454	_	0.8375	_	
26	651	96	0.1329	0.1228	0.8763	0.9107	
28**	650	120	0.1263	0.1227	0.8985	0.9113	

* Sensor A contains an initial assemblage of Ag + AgBr + H₂O, whereas sensor B contains Ag + AgBr + 1.5 M HBr. ** Conducted under CH₄ external pressure.

pecially at high temperatures. The maximum decrease in pressure was approximately 35 bars.

The experiments were quenched using compressed air with temperatures below 200 °C attained in about 1-1.5 min, followed by immersion in cold H₂O. The recovered capsules were cleaned and weighed to check for leaks. Occasionally it was necessary to determine the weight loss or gain of H_2O in the outer capsule resulting from H_2 diffusion. In this case, the capsules were first cleaned, weighed, and punctured with a stainless steel needle, dried at 100 °C in a vacuum oven for 15-20 min, and then reweighed to $\pm 50 \ \mu g$. The outer encapsulation was then removed and the H sensor recovered and cleaned. The sensor's solution was recovered for analysis using 3, 5, or 10 µL microcapacity disposable pipets with uncertainties of $\pm 1\%$. Bromide concentrations in the sensors were measured on a Buchler chloridometer with uncertainties of $\pm 1\%$. In addition, all solid products were examined optically and by X-ray diffraction methods.

EXPERIMENTAL RESULTS AND DISCUSSION

It has been shown (Chou, 1987a) that the reaction governing the H sensors used in this study is

$$Ag_{(s)} + HBr_{(aq)} = AgBr_{(s \text{ or } l)} + \frac{1}{2}H_{2(g)}$$
 (2)

where (aq) is aqueous and (l) is liquid. For pure solids and liquid, the equilibrium constant of this reaction can be represented by

$$K_2 = f_{\rm H_2}^{0.5} / f_{\rm HBr}.$$
 (3)

From Equation 3, and for the dilute HBr solutions generated in the sensors under the P-T conditions of this investigation,

$$(f_{\rm H_2})_{P,T} = \mathbf{K}'(m_{\rm HBr})_{P,T}^2 \approx \mathbf{K}'(M_{\rm Br})_{1 \, \rm atm, \, 25 \, \circ C}^2,$$
 (4)

where K' is a constant and m_i and M_i are molality and molarity of *i*, respectively. Therefore, by measuring Brconcentrations in the H sensors exposed to the WO₂-H₂O system, the $f_{\rm H_2}$ of the system can be related to that of the previously calibrated Co-CoO-H₂O system through

$$(f_{\rm H_2}^{\rm WO})_{P,T} = (f_{\rm H_2}^{\rm CoO})_{P,T} (M_{\rm Br^-}^{\rm WO}/M_{\rm Br^-}^{\rm CoO})_{1 \text{ atm, } 25 \ \rm ^{\circ}C}^2, \tag{5}$$

	Temperature	External	Experiment	-log(M _{Br} -) in sensors*			
Experiment no.	(°C)	pressure	duration (h)	А	в	Final phase products	
(a)			WO ₂ + H ₂ O sta	rting assemblage			
76†	793	CH₄	7	0.5111	<u></u>	in: 1,2; out: 1,2,4	
73++	801	CH4	7	0.5596	_	1,2,(3)	
67	758	CH	8	0.5568	-	1,2,(3)	
71	754	CH4	8	-	0.5427	1,2	
63	700	CH₄	46	-	0.6148	1,2,(3)	
72	656	CH₄	143	0.6749	0.6564	1,2,(3)	
(b)		-	$WO_2 + WO_3 + H_2O_3$	starting assembla			
52	794	CH₄	20	_	0.5098	1,2,4	
42	793	CH	18	0.5114		1,2,(3),4	
51	751	CH₄	27		0.4940	1,2,(3),4	
47	750	CH	27	0.5351		1,2,(3),4	
31	704	CH	46	0.5965	0.5253	1,2,4	
44	654	CH	120	0.5989	0.6062	1,2,(3),4	
45	605	CH4	168	0.6400	0.6415	1,2,3,4	
54	802	Ar	8 0.5833			1,2,4	
55	699	Ar	50	0.6720		1,2,(3),4	
56	604	Ar	168	0.6969	0.7433	1,2,3,4	
62	554	Ar	120	0.6938	0.7018	1,3,4	
17	800	H ₂ O	6	0.7707		1,2,4	
25	700	H ₂ O	24	0.8788	0.9194	1,2,(3),4	

TABLE 2. Measured Br⁻ concentrations in the Ag-AgBr *f*_{H₂} sensors from experiments made at 2-kbar total pressure of various pressure media

* Sensor A contains Ag + AgBr + H₂O; sensor B contains Ag + AgBr + 1.5 M HBr.

** 1 = WO₂; 2 = WO₂₇₂; 3 = WO₂₉₀; 4 = WO₃; () indicates trace amounts, probably formed upon quench.

† Triple capsule experiment. In and out refer to Au capsule positions in the triple capsule configuration. For details, see text.

[‡] Not used in regression because of excessive H₂ leakage.

where the superscripts WO and CoO represent the assemblages $WO_2 + WO_{2,72} + H_2O$ and Co + CoO + H₂O, respectively. The bromide measurements used to compute the f_{H_2} values are given in Tables 1 and 2 and shown in Figure 3.

The Br⁻ concentrations in the sensors equilibrated with the Co-CoO-H₂O buffer under an external pressure of 2 kbar CH₄ obtained by Chou (1987a) are shown in Figure 3 by the dotted line. Results of the additional experiments conducted under Ar external pressure given in Table 1 are shown in Figure 3 by the arrows. The agreement of these two sets of data is excellent at $T \ge 750$ °C, but some discrepancies exist at lower temperatures. The dashed line represents the least-squares fit of all available data, which can be described by the equation

$$\log M_{\rm Br^-} = \frac{-1003.7}{T, \rm K} + 0.134 \qquad (r^2 = 0.819). \tag{6}$$

Experimental results for two initial external assemblages, (a) $WO_2 + H_2O$ and (b) $WO_2 + WO_3 + H_2O$, are given in Table 2. Analysis of the quenched solid phases indicates that the initial assemblage (a) produces the stable solid assemblage $WO_2 + WO_{2.72}$, whereas the initial assemblage (b) consistently produces metastable solid assemblages $WO_2 + WO_{2+x} + WO_3$ (depending on temperature, x = 0.72, 0.90, or both; see Fig. 1 and Table 2). Most X-ray diffractograms produced a few broad, small peaks, suggesting the presence of a poorly crystallized $WO_{2.90}$ phase at temperatures much higher than the stability field would indicate (see Fig. 1). We interpret these peaks to represent a metastable phase formed upon quench. Experiments on assemblage (a) were performed

under CH_4 external pressure only (chevrons in Fig. 3), whereas three pressure media were used for assemblage (b): CH₄ (circles), Ar (triangles), and H₂O (squares). Under CH₄ external pressure, the assemblages (a) and (b) yield about the same Br- concentrations, indicating that the presence or absence of WO₃ in the external assemblage does not significantly affect the level of $f_{\rm H_2}$ that can be maintained in the Au capsules in this particular experimental setup. At the highest temperatures of this study, we were initially unable to maintain a steady-state condition in the experiment, and H₂ leakage occurred (see experiment 73). We attempted to mitigate the leakage through a modified capsule configuration represented by experiment 76, which we term a triple capsule technique. This arrangement essentially seals the sample configuration of experiment 73 inside a second, thicker-walled Au capsule (0.25 mm) that is also loaded with $WO_2 + H_2O$. This arrangement effectively provides an additional H₂ source and Au shield between the internal Au tube plus H sensor and the external pressure medium. The H₂O content of the two nested Au tubes was measured at the conclusion of the experiment; 19.6 mg (\approx 50%) of H₂O was lost from the outer Au tube assembly, whereas only 9.7 mg (\approx 20%) was lost from the inner Au tube. In addition, solid phases produced at the conclusion of the experiment indicate oxidation of WO₂ to WO₃ in the outer capsule, although the inner capsule maintained an effective steady-state $f_{\rm H_2}$ condition represented by quenched experimental products of $WO_2 + WO_{2.72} + H_2O$ and an $f_{\rm H_2}$ value of about 0.5 log units greater than that in experiment 73.

The results for assemblage (b) under different pressure

Fig. 4. Calculated results of $\log f_{\rm H_2}$ at 2 kbar using measured $M_{\rm Br^-}$ data presented in Table 2 employing WO₂ + H₂O as the initial assemblage under CH₄ external pressure. Also shown are the calculated $f_{\rm H_2}$ -T relations for the C-CH₄ buffer from Eugster and Skippen (1967; dashed line) and the calibrated values from Chou (1987a; dash-dot line). Values for the Co-CoO-H₂O buffer used in the calculation of $(f_{\rm H_2}^{\rm wo})_{2kbar,T}$ are given as a dotted line. Uncertainties are shown as vertical and horizontal bars at each data point.

media indicate that the pressure medium has a significant effect on the level of $f_{\rm H_2}$ that can be maintained in the Au capsules. Experiments made under Ar external pressure approached the minimum log $(M_{\rm Br})$ values of those experiments conducted under CH₄ external pressure; however, enough H₂ loss has occurred to upset the steady-

state balance of Equation 1 on the basis of the monitored H_2O content before and after the experiment. H_2 loss is even greater in experiments 17 and 25 that use H₂O for external pressure. These charges generate $\log(M_{Br})$ values at or very near to the intrinsic $f_{\rm H_2}$ values of the pressure medium in the Co-based pressure vessel $[\log(M_{Br}) \propto f_{H_2}]$ see Eq. 4]. Even though durations of the experiments (in hours, given in parentheses in Fig. 3) are similar to those of experiments made under CH₄ external pressure, massive H₂ loss to the pressure medium has occurred at a high rate. We have discussed this effect extensively (Chou and Cygan, 1987, 1989, 1990), and the current results further strengthen our previous conclusion that H₂O is a poor pressure medium for hydrothermal experiments involving redox control at the $f_{\rm H_2}$ levels equivalent to the Co-CoO-H₂O buffer or higher.

The following discussion will be restricted to the experimental results obtained from the stable assemblage produced by the initial assemblage (a). The $(f_{\rm H_2}^{\rm WO})_{2kbar,T}$ values calculated from Equation 5 using the $M_{\rm Br^{-}}^{\rm WO}$ values given in Table 2 and $M_{\rm Br^{-}}^{\rm Coo}$ values given in Table 3 are plotted in Figure 4. Linear least-squares fit of the data between 793 and 656 °C gives

$$\log(f_{\rm H_2}^{\rm WO})_{\rm 2kbar,T}(\pm 0.06) = \frac{-1924.9}{T, \rm K} + 4.06$$
$$(r^2 = 0.985) \tag{7}$$

which is shown in Figure 4 by the heavy solid line. Also shown in Figure 4 are the $f_{\rm H_2}$ values for the C-CH₄ buffer calculated from thermochemical data (Eugster and Skippen, 1967) and those calibrated by Chou (1987a). The $f_{\rm H_2}$ values for the Co-CoO-H₂O buffer used in Equation 5 to obtain $(f_{\rm H_2}^{\rm WO})_{\rm 2kbar,T}$ values for this study are listed in Table 3 and shown in Figure 4 (dotted line).

It should be emphasized that the $f_{\rm H_2}$ values described by Equation 7 (solid line in Fig. 4) are not necessarily the equilibrium values for the assemblage WO₂ + WO_{2.72} + H₂O at *P*-*T* conditions. These $f_{\rm H_2}$ values measured by the $f_{\rm H_2}$ sensors simply reflect the actual $f_{\rm H_2}$ levels maintained in the Au capsules just before quench. Two competing processes determine these $f_{\rm H_2}$ levels: (1) the generation of H₂ through WO₂ oxidation, represented by Reaction 1

TABLE 3. Calculation of (f_{H2})_{P,T} values for the WO₂ + WO₂₇₂ + H₂O assemblage in Au capsules under 2-kbar CH₄ external pressure

Experi- ment no.	T (°C)	$\log(f_{O_2}^{coO})_{P,T}^A$	log K _w ^B	$\log(f_{H_{2O}})_{P,T}^{C}$	$\log(f_{H_2}^{CoO})_{P,T}$	log(M ^{CoO}) _{1 atm, 25 °C} E	log(<i>M</i> ^{WO}) _{Br}) _{1 atm, 25 ℃} ^E	$\log(f_{\mathrm{H_2}}^{\mathrm{WO}})_{P,T}$	$\log(f_{O_2}^{WO})_{P,T}^{G}$
76	793	-15.4391	9.2494	3.193	1.663	-0.8078	-0.5110	2.257	16.627
67	758	-16.2078	9.6626	3.173	1.614	-0.8398	-0.5568	2.180	-17.339
71	754	-16.2990	9.7116	3.170	1.608	-0.8436	-0.5427	2.210	-17.503
63	700	-17.6034	10.4134	3.128	1.516	-0.8978	-0.6148	2.082	-18.735
72	656	-18.7784	11.0451	3.086	1.430	-0.9467	-0.6656	1.992	-19.902

 $f_{O_2}^{Coo} = -24242.6/T + 7.205 + 0.052(P - 1)T$; T in K and P in bar (Chou, 1987b).

^B K_w for the reaction H₂ + $\frac{1}{2}O_2 = H_2O$; data from Robie et al. (1979).

^c Data from Burnham et al. (1969).

^D Calculated from the equation log $f_{H_2}^{CoO} = \log f_{H_2O} - \log K_w - \frac{1}{2} \log f_{O_3}$.

^E Calculated from Equation 6.

F Calculated from Equation 5.

^G Calculated from Equations 5 and 9.

Fig. 5. Diagram of $\log f_{O_2}$ vs. 1/T at 2 kbar based on the data given in Table 3. The data for WO₂-WO_{2,72} and W-WO₂ equilibria were from JANAF (1971). Those for WM (wüstite-magnetite) and IW (iron-wüstite) were from Haas (1988). All calculations were corrected to 2-kbar pressure using the molar volume data of Robie et al. (1979) or were estimated using molar volumes of the WO₂ and WO₃ end-members. Note that the steady-state f_{O_2} values obtained in this study for the assemblage WO₂ + WO_{2,72} + H₂O are about one to two orders of magnitude more oxidizing than the equilibrium values.

proceeding to the right, and (2) the loss of H₂ through the Au capsule wall to the external pressure medium, CH₄ in this case. If the first process dominates, the $f_{\rm H_2}$ levels in the system may build sufficiently to closely approach the equilibrium values. If the second process prevails, there will not be an f_{H_2} increase in the system, and the f_{H_2} levels will tend to approach the external f_{H_2} conditions of the pressure vessel + pressure medium. However, if these two processes counterbalance each other during the run, steady-state $f_{\rm H_2}$ levels can be maintained in the system. The apparent linear trend of our experimental data shown in Figure 4 indicates that reproducible steady-state $f_{\rm H_2}$ values can be obtained in our particular experimental system, even though the time dependency of the $f_{\rm H_2}$ level at each P-T condition was not determined in this study. Of course, the actual $f_{\rm H_2}$ levels that can be obtained in this type of experimental system are system dependent. However, the important controlling factors are the nature of the container (i.e., the size and wall thickness of the Au or Ag capsules), the nature of the external pressure medium (see Fig. 3 and previous discussion), and the kinetics of the H₂-generating reaction used in the experiment.

The measured $f_{\rm H_2}$ values in Au capsules containing the initial assemblage WO₂ + H₂O under an external pressure of 2 kbar CH₄ were recalculated to $(f_{\rm O2}^{\rm wo})_{2\rm kbar,T}$ values through the following relations:

$$H_2 + \frac{1}{2}O_2 = H_2O$$
 (8)

and

$$\mathbf{K}_{\mathbf{w}} = f_{\rm H_2O} / f_{\rm H_2} \cdot f_{\rm O_2}^{1/2}.$$
 (9)

The K_w data from Robie et al. (1979) and the $f_{\rm H_{2O}}$ data from Burnham et al. (1969) are used in this calculation. We have considered the effect of H₂ partial pressure on $f_{\rm H_{2O}}$ in the binary system H₂O-H₂ but found it to be negligible at the *P*-*T*- $f_{\rm O_2}$ conditions of this investigation. For example, we used *PVT* data from Presnall (1969), Shaw and Wones (1964), and Shaw (1967) to calculate the activity coefficient of H₂, $\gamma_{\rm H_2}$, in our mixture H₂ + H₂O, which was then incorporated into our computations of log $f_{\rm H_2}^{\rm WO}$. That value was then converted to log $f_{\rm O_2}^{\rm WO}$ through Relations 8 and 9 and compared to log $f_{\rm O_2}^{\rm WO}$ values, not including $\gamma_{\rm H_2}^{\rm mixture}$; differences of ±0.02 log units were obtained, and therefore the activity coefficients of H₂ are not considered further.

The steady-state f_{0_2} values obtained for the initial assemblage $WO_2 + H_2O$ at 2 kbar are listed in Table 3 and shown in Figure 5. Also shown in Figure 5 for comparison are the f_{0} , values for the assemblages Co + CoO (Chou, 1987b), WO₂ + WO_{2.72} (JANAF, 1971), W + WO₂ (JANAF, 1971), wüstite-magnetite, and iron-wüstite (WM and IW, respectively; Haas, 1988). The steady-state f_{0} , values for the assemblage $WO_2 + WO_{2,72} + H_2O$ obtained in this study under an external pressure of 2 kbar CH₄ are about one to two orders of magnitude higher than the equilibrium values calculated from JANAF (1971). This difference demonstrates the danger of assuming equilibrium redox control of the buffer assemblage in the hydrothermal experiments using the O₂-buffer technique (see Chou and Cygan, 1989, 1990). As pointed out previously (Chou, 1987b), the presence of the buffer assemblage examined after quench ($WO_2 + WO_{2.72} + H_2O$ in this case) is a necessary, but not a sufficient, condition for equilibrium redox control.

For quantitative redox control in hydrothermal experiments, it has been suggested that an $f_{\rm H_2}$ sensor be incorporated into the experimental system to determine its true redox condition (Chou, 1988; Chou and Cygan, 1989, 1990). This practice is particularly important for systems that are employing the assemblage $Co + CoO + H_2O$ or assemblages that are more reducing (see Fig. 5). In addition, H₂O should not be used as a pressure medium at these relatively reducing conditions. A recent example demonstrating the utility of $f_{\rm H_2}$ sensors can be found in the hydrothermal phase-equilibrium study of Moecher and Chou (1990) who employed a wide range of buffers including the WO₂ + H₂O assemblage. The f_{H_2} sensors were used to obtain isobaric reversals of equilibria that are f_{O_2} -T dependent at constant T rather than the traditional T reversal along an f_{O_2} buffer curve.

The use of the $WO_2 + H_2O$ assemblage for steady-state redox control in hydrothermal systems differs from conventional redox buffers in two ways: (1) the actual redox state of the system is not governed by the chemical equilibrium of the buffer assemblage but rather by the dynamic balance between the rate of H_2 production and the rate of H_2 leakage and (2) the consumption of H_2 in the system is not achieved through the buffer reaction but rather through H_2 leakage through the capsule wall. Therefore, the presence or absence of $WO_{2.72}$ in the initial experimental assemblage has no effect on the redox state of the system, and the $f_{\rm H_2}$ of the system can never attain the level that allows Reaction 1 to proceed to the left and achieve values approaching those predicted through thermochemical calculations.

CONCLUSIONS

The $f_{\rm H_2}$ values for the H₂-generating assemblage WO₂ + H₂O contained in Au capsules were measured between 650 and 793 °C, under an external pressure of 2 kbar CH using the previously calibrated Co-CoO-H₂O buffer as a reference. H_2 containment in the experimental sample has been demonstrated to be a problem at the H₂ levels produced by the $WO_2 + H_2O$ assemblage. However, the use of this type of assemblage to generate a reproducible reducing environment, albeit steady state, can be successful in hydrothermal experiments if precautions are taken. These consist of the use of quantitative redox control techniques to measure the f_{H_2} at the experimental conditions, monitoring the H₂O content to reveal the degree of reaction, and lowering the $f_{\rm H_2}$ gradient across the capsule wall by using appropriate pressure media. The assemblage $WO_2 + H_2O$ as a source of H_2 appears to be a useful addition to the available redox buffers, and its application can be extended to temperatures below 650 °C, the applicable low temperature limit of the C-CH₄ buffer (Chou, 1987a).

ACKNOWLEDGMENTS

We would like to thank the numerous U.S. Geological Survey colleagues who encouraged this work, especially Steve Huebner for the use of his hydrothermal laboratory facilities and Paul Barton and Phil Bethke for use of their X-ray equipment. We also would like to thank Dave Joyce, and U.S.G.S. colleagues Dick Robie and Julian Hemley for their helpful comments and discussions. Critical reviews by Scott Wood and an anonymous reviewer also aided in improving this manuscript.

References cited

- Bousquet, J., and Perachen, G. (1964) Etude du systeme tungstene-oxygene entre l'anhydride tungstique WO₃ et l'oxygene WO₂. Comptes Rendus, 258, 3869–3871.
- Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969) Thermodynamic properties of water to 1000 °C and 10000 bars. Geological Society of America Special Paper No. 132.
- Chou, I-Ming (1987a) Calibration of the graphite-methane buffer using the f_H, sensors at 2-kbar pressure. American Mineralogist, 72, 76–81.

- (1987b) Oxygen buffers and hydrogen sensor techniques at elevated pressures and temperatures. In H.L. Barnes and G.C. Ulmer, Eds., Hydrothermal experimental techniques, p. 61–99, Wiley, New York.
- —— (1988) Quantitative redox control in hydrothermal experiments. Eos, 69, 528.
- Chou, I-Ming, and Cygan, G.L. (1987) Effect of pressure medium on redox control in hydrothermal experiments. Eos, 68, 451.
- (1989) Equilibrium and steady-state redox control in hydrothermal experiments. 28th International Geological Congress Abstracts, Washington, DC, 1–287.
- (1990) Quantitative redox control and measurement in hydrothermal experiments. In R.J. Spencer and I-Ming Chou, Eds., Fluid mineral interactions: A tribute to H.P. Eugster, Geochemical Society Special Publication No. 2, p. 1–15. University Park, Pennsylvania.
- Cygan, G.L., and Chou, I-Ming (1987) Calibration of the WO₂-WO₃ buffer. Eos, 68, 451.
- Eugster, H.P., and Skippen, G.B. (1967) Igneous and metamorphic reactions involving gas equilibria. In P. H. Abelson, Ed., Researches in Geochemistry, vol. 2, p. 492–520. Wiley, New York.
- Haas, J.L., Jr. (1988) Recommended standard electrochemical potentials and fugacities of oxygen for the solid buffers and thermodynamic data in the systems iron-silicon-oxygen, nickel-oxygen, and copper-oxygen. Preliminary report of January 17, 1988 distributed to the CODATA Task Group on Chemical Thermodynamic Tables, U.S. Geological Survey, National Center 959, Reston, VA 22092.
- JANAF (1971) Thermochemical Tables (2nd edition), The Thermal Research Laboratory, Dow Chemical Company, Midland, Michigan.
- King, E.G., Weller, W.W., and Christensen, A.U. (1960) Thermodynamics of some oxides of molybdenum and tungsten. U.S. Bureau of Mines Report of Investigations No. 5664, 29 p.
- Moecher, D.P., and Chou, I-Ming (1990) Experimental investigation of andradite and hedenbergite equilibria employing the hydrogen sensor technique, with revised estimates of $\Delta_f G^0_{m,298}$ for andradite and hedenbergite. American Mineralogist, 75, 1327–1341.
- Phillips, B., and Chang, L.L.Y. (1964) High-temperature stability of tungsten oxide structures. Transactions of the Metallurgical Society, AIME, 230, 1203–1206.
- Presnall, D.C. (1969) Pressure-volume-temperature measurements on hydrogen from 200 to 600 °C and up to 1800 atmospheres. Journal of Geophysical Research, 74, 6026–6033.
- Robie, R.A., Hemingway, B., and Fisher, J.R. (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin 1452 (reprinted with corrections).
- Sahle, W. (1982) Electron microscopy studies of W₁₈O₄₉. I. Crystals formed by gaseous reduction of WO₃. Journal of Solid State Chemistry, 45, 324–333.
- St. Pierre, G.R., Ebinhara, W.T., Pool, M.J., and Speiser, R. (1962) The tungsten-oxide system. Transactions of the Metallurgical Society, AIME, 224, 259–264.
- Shaw, H.R. (1967) Hydrogen osmosis in hydrothermal experiments. In P.H. Abelson, Ed., Researches in Geochemistry, vol. 2, p. 521-541. Wiley, New York.
- Shaw, H.R., and Wones, D.R. (1964) Fugacity coefficients for hydrogen gas between 0° and 1000 °C, for pressures to 3000 ATM. American Journal of Science, 262, 918–929.
- Tacker, R.C., and Candela, P.A. (1987) Partitioning of molybdenum between magnetite and melt: A preliminary experimental study of partitioning of ore metals between silicic magmas and crystalline phases. Economic Geology, 82, 1827–1838.
- Wood, S.A., and Vlassopoulos, D. (1989) Experimental determination of the hydrothermal solubility and speciation of tungsten at 500 °C and 1 kbar. Geochimica et Cosmochimica Acta, 53, 303-312.

MANUSCRIPT RECEIVED MARCH 14, 1990

MANUSCRIPT ACCEPTED SEPTEMBER 19, 1990