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Ansrnlcr

Birefringence among the grandite garnets (grossular-andradite solid-solution series) is
common and has been found previously to result, at least in some cases, from ordering of
Al and Fe3* on the octahedral (a) sites of space group la3d, lowering the symmetry to
Fddd or 11; other possible space groups, all of them subgroups of la3d, have been sug-
gested. A group theoretical analysis, based on the Landau formalism and including the
theory of induced representations, has been carried out for order-parameter transitions
from la3d to subgroup symmetries, in which the primitive unit cell is preserved. It is
found that only one irreducible representation of la3d, namely 7r", leads to space group
Fddd, and it yields R3c, C2/c, and 11 as permissible subgroups as well. Elastic strain,
domain formation, and domain-wall orientations are discussed for the transitions from
Ia3d. Further, a function that transforms under the identity representation of 3 and that
is associated with the (0,0,0) site of la3d induces the Tr, representation of la3d, and that
function is interpreted as an ordering function. Extension to the remaining 15 octahedral
(a) sites in the conventional (nonprimitive) cubic unit cell produces ordering functions
(i.e., basis functions of Trr) that can be applied to any of the above subgroups. The ordering
functions for Fddd and.for 11 correctly predict the relative ordering ofAl and Fe3* observed
in grandite garnets ofthose space groups. It is concluded that for birefringent garnets with
compositions between grossular and andradite, ordering schemes that have been observed
to date could have occurred as homogeneous phase transformations from la3d, dnvenby
a single Trrorder parameter, as well as by crystal-growth phenomena as suggested by other
authors.

INrnooucrroN

Nearly all naturally occurring crustal garnets are cubic,
and crystal-structure investigations (e.g., Menzer, 1926;
Euler and Bruce, 1965; Prandl, 1966; Gibbs and Smith,
1966;Novak and Gibbs, 1971; Meagher,1975; Lager et
al., 1987) have shown that they crystallize in space group
Ia3d. ln the general garnet formula {XJr[Y]r(Z)rO,, (no-
tation of Geller, 1967), {X} : eieht-coordinated Ca, Fe2*,
Mg, or Mn, [Y] : six-coordinated Al, Fe3*, Cr, V, or Ti,
and (Z): tetahedrally coordinated Si, for common rock-
forming varieties; all atoms except oxygen are on special
positions. Despite the evident chemical complexity of the
family, as long as the symmetry is la3d there are rather
simple relationships between the average sizes of the {X},
[Y], and (Z) atoms on the one hand, and the cubic unit-
cell dimension and oxygen positional parameters on the
other (Novak and Gibbs, l97l; Hawthorne, 1981).

Among the intermediate grandites (minerals with com-
positions between those of grossular, CarAlrSirO,r, and
andradite, CarFel+Si.O,r), however, are a substantial
number of observed garnets that exhibit optical aniso-
tropy. An early explanation for this (attributed to Brews-
ter in Dana, 1900) was that these garnets consisted of
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complexly twinned triclinic individuals arranged so as to
yield average cubic symmetry. Later, birefringence was
generally attributed to local strain in the crystal lattice
rather than to a change in overall symmetry. Yoder (1950)
was the first to suggest that birefringence might be a con-
sequence of ordering of the octahedrally coordinated Al
and Fe3* in these garnets, and subsequent crystal-struc-
ture ofrefinements by Tak6uchi et al. (1982) have shown
such ordering to exist. Of the three ordered grandite
structures they determined, two were found to be ortho-
rhombic, space group Fddd, ar;,d one was found to be
triclinic, 1I. Hirai and Nakazawa (1986) observed ine-
qualities in intensities on X-ray precession photographs
of a grandite that suggested possible C2/c symmetry; al-
though no structure refinement was done, it seems pos-
sible that ordering ofoctahedral cations could be the cause
of this reduction from cubic symmetry, also. [All bire-
fringence in garnets might not be caused by ordering; that
in some chemically zoned and twinned grandites may
result from coherency strain across boundaries separating
zones of disparate lattice dimensions (Chase and Lefevre,
1 960; Verkaeren, I 97 I ; Lessing and Standish, 197 3).1

In a careful study of a sector-twinned, birefringent
GronorAndrrAlmo. (Alm : almandine, Fer2"AlrSirOrr),
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Allen and Buseck (1988) found a noncubic distribution
both of metal atoms and of hydroxyl groups, the latter
presumably replacing silicate oxyanions by the substitu-
tion 4(OH ) : SiOX (e.g., Aines and Rossman, 1984).
Consideration of their garnet is complicated somewhat by
nongrandite chemistry, namely the presence of both OH
and Fe2*. Heating specimens to 800 and 870 "C resulted
in dehydration, but only the higher temperature produced
isotropy; thus it appears that the (OH ) distribution con-
tributes to the birefringence in this garnet, but is not like-
ly the primary cause of it.

The experimental confirmation of cation ordering as
one cause of low symmetry in some birefringent grandites
is clear, but the reason for the ordering itself is not as
evident. Gali (1983) and Akizuki (1984) used similar ap-
proaches to show that anisotropy could result from or-
dering of Al and Fe3* on growth steps of { I l0} faces dur-
ing crystal formation. Gali (1983) considered that the
different orientations of the [Y] sites render them crys-
tallographically inequivalent and that the symmetry un-
der any single growth step is 11; he further showed that
fragments containing portions of appropriate growth steps
from a single growth pyramid of a dodecahedral crystal
can show the symmetry of any centrosymmetric subgroup
of Fddd, and that portions of different growth pyramids
can be superimposed to yield any centrosymmetric
subgroup of la3d. Thus all of the space groups so far
observed for natural noncubic silicate garnets could result
from combinations of triclinic domains in the crystals
investigated.

Heating experiments (e.g., Hariya and Kimura, 1978)
have shown that birefringent grandites (or near-grandites
in the case of Allen and Buseck, 1988) are homogenized
(that is, made isotropic-presumably by disordering the
[Y] cations) by heating at temperatures between 800 and
1000 'C. Some remain isotropic even after they are an-
nealed at lower temperatures for long periods, and this is
at least consistent with a growth-step origin ofanisotropy,
although it does not constitute proof. Some grandites,
however, regain their birefringence after annealing (Ha-
riya and Kimura, 1978), and this seems inconsistent with
origin of low symmetry during crystal growth. Rather, the
successful reversal of the optical character of these gar-
nets suggests that the observed low symmetry might re-
sult from a temperature-induced order-disorder phase
transformation. Even if the original octahedral ordering
of birefringent garnets was imposed during crystal growth,
it is clear that disordering by heating followed by ordering
on annealing constitutes a phase transformation.

The transition of a homogeneous phase from one space
group to a subgroup of lower symmetry can be described
within the context of Landau theory. This group theoret-
ical treatment of phase transistions is usually applied to
continuous transformations and was originally formulat-
ed by Landau (1937a, 1937b). Extensions by Birman
(1966), Goldrich and Birman (1968), Jaric and Birman
(1977), Hatch (l98la, 1981b), and Hatch and Srokes
(1985, 1986) have been made to the original theory. The
theory is a mean-field description and necessarily neglects

fluctuations near the critical transition. In spite of the
resulting limitations in predicting critical exponents or
changes in the order oftransitions caused by fluctuations,
the theory has proven reliable in delineating the possible
natures of phase transformations, order-parameter char-
acteristics, thermodynamic potentials, and allowed
subgroup symmetries for a wide variety of systems (e.g.,
Hatch, l98la, 198Ib; Hatch and Merri l l , l98l; Stokes
and Hatch, 1984, and references therein) and is applica-
ble to discontinuous, as well as continuous, transitions.
Our purpose here is to use Landau theory to investigate
the possible nature of a phase transformation in grandite
gamets. We then use additional group-theoretical tech-
niques to obtain domain characteristics and to describe
the microscopic changes at the transition.

Rnvrow oF GENERAL L.q.NrA,u THEoRY

Consider a phase transition between two crystal struc-
tures, one of which has higher symmetry than the other,
and take p(r) to be the density function that gives the
probability distribution of atomic positions in the crystal.
The space group G of the crystal is the set of all symmetry
operators g that leaves p(r) invariant, i.e.,

T(g)p(r): p(r). (l)

Each symmetry operator g is a coordinate transformation
that consists of a point operator R followed by a trans-
lation, r, denoted by {Rlr}. Denote the space group of
the higher-symmetry phase by Go, with po(r) invariant
under Go, and let G be the space group of the lower-
symmetry phase. We can decompose p(r) into a linear
combination of basis functions of the physically irredu-
cible representations of Go:

P(r) : 2)alntSl-t(1), (2)

where 4J-t(r) is the i th basis function of the mth irredu-
cible representation and n@ are the numbers that give
the amplitude of each basis function in its contribution
to p(r).

The set of numbers nY), qY), ny) . . . is called the order
parameter, and it represents the contributions (coordi-
nates) ofthe basis functions @!-t(r) to the density p(r). If
the matrices of the mth representation are n-dimensional
(n x n square matrices), this order parameter has n com-
ponents lqP,n|r, ... , n|)l and forms a vector 4 in an
n-dimensional representation space. Usually only one ir-
reducible representation appears at the transition, i.e., only
one geometrical or physical property becomes nonzero at
the transition. [From this point on, we will consider only
the irreducible representation that causes the transition,
and we will drop the superscript (z) from our notation.l
The density function p(r) is thus written

p(r) : po(r) * 2n,Q'G). (3)

In the higher-symmetry phase, 4 : 0, and thus p(r) :
po(r) with symmetry Go. In the lower-symmetry phase, 4
+ 0, and now only a subset of the operators 8' € Go will
leave p(r) invariant. Symmetry is lost in the transition,
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Trele 1. Subgroups of /a3d allowed by the L, representation Tasle 2, Matrices for the [" representations of /a3d

Direc-
tion of
veclor

rl
ICt,l/a,3/t,Vt\,

{ca+1 10,0,0}

{ / 10 ,0 ,0 }

{El  f1, t r , f3}-

Matrix reoresentation

Sub-
group' Origin Basis veclors

- 1  0  0
0 0 1
0 - 1  0
0 0 1
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

B3c (1 67)
Fddd(7o)
C2lc(15)
Pl (21

(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

( - 1 ,1 ,0),(0, - 1 ,1) ,(V2,v2,V2), (n,,n,,n'l
(1 ,1 ,0) , ( -  1 ,1 ,0) , (0,0,1)  ( , r , ,0,0)
(0, - 1 ,0),(1 ,0, - 1) ,(V2,Vr,V2l (rr,,tr,,rsl
(-V2,V2,Vr\,(V2,-Vr,V2\,(Vr,V2,-V2\ (ry,nz,nel

. Numbers in parentheses are space-group numbers fiom lnternational
Tables for X-ray Crystailography (1983)

and the new symmetry is the maximal set of operators
leaving p(r) invariant (the isotropy group ofa).

For a given set of basis functions {d,(r)}, the crystal
structure is completely determined by the value of the
order parameter 4. Thus, we write the thermodynamic
potential O (the free energy) as a function ofpressure P,
temperature ?", and order parameter 4, i.e., iD : AQ,T,q).
In a continuous phase transition, 4 changes continuously
from zero to a nonzero value. Thus, near the transition,
4 is small, and we can expand Q in powers of 4. The form
of the expansion is determined by the requirements of
symmetry. Since O is a scalar function, it must be invar-
iant under all operations I € Go, i.e., T(g)O : iD. The
expansion of iD to fourth degree looks like

@(P,T,il: ao/1'7) + A(P,T)a'1 + >8"(P,7)19(a), (4)

where

q'  :2n? (5)

and where {ar(4) represents the independent fourth-de-
gree polynomials (in \r, rz, . . . , rn) that are individually
invariant under all operators I e Go, i.e., T(g)1r+r : 7t+r.
The coefficients A(P,T) and B"(P,T) carry the P and T
dependency of O. In a discontinuous parametric transi-
tion, it may be required that O be expanded to higher-
order terms, but O must still be invariant under all op-
erations I e Go.

Onnnn PARAMETER AND FREE ENERGY FoR THE
INTERMEDIATE GRANDITES

In order to interpret the characteristics ofthe possible
transitions in the grossular-andradite minerals, we now
formulate a detailed Landau description of space-group
changes and the associated order parameters. Given the
work ofTak6uchi et al. (1982), one important space-group
change to consider is from la3d to Fddd, which is clas-
sified as a pure ferroelastic transition by Aizu (1969); that
is, the transition could be caused by the onset of macro-
scopic strain. From experiment, it is seen that the trans-
formation preserves the (nonconventional) primitive unit
cell, so it must arise from the gamma (I) point (zone
center) ofthe Brillouin zone.

There are ten representations ofthe space group la3d
associated with the I point. Our approach in obtaining
the subgroups of la3d is to allow contributions to the
density function (as shown in Eq. 3) from each represen-
tation, one at a time. Then by considering arbitrary di-

Note. Matrices represent the transformation properties of the functions

6,, 62, 6s.only generating elements of /a3d are shown.
. Translations t1, L, t3 apply to any and all lattice points.

rections for the order parameter a ofthat representation,
the subgroups that leave 4 unchanged are the only pos-
sible lower-symmetry subgroups allowed by the onset of
this order parameter. This is a specific use of the Curie
principle and is a result of the physical statement that a
quantity which becomes nonzero below the transition and
which has the irreducible representation symmetry re-
duces the symmetry of the structure to that of the result-
ing subgroup; that is, the transition is a parameter-driven
transition. Investigation of the allowed subgroups (Stokes
and Hatch. 1988) indicates that the three-dimensional
f2s representation leads to the subgroups R 3c, Fddd, C2/ c,
and PI (see Table l), and is the only cell-preserving rep-
resentation that leads to the subgroup Fddd. The subgroup
Fddd is the symmetry group of a crystal in which only
one component of the order parameter 4 is nonzero (for
example, (11,,0,0) or (0,4r,0), etc.). However as the order
parameter varies more freely, the other subgroups listed
above correspond to the space group of the crystal. Notice
that for an arbitrarily oriented order parameter, the
subgroup is Pl.

The space group la3d can be generated by successive
operations of the space-group elements {CLlt/q,3/t,%},
{Cir  10,0,0} ,  {110,0,0} ,  and t ranslat ions (notat ion of
Bradley and Cracknell, 1972). The matrices representing
these operations in the three-dimensional order-param-
eter space of Tr, are shown in Table 2. (Note that, in
general, these are not the same matrices that represent
these operations in physical space.)

The three nonzero macroscopic spontaneous strains (err,
err, e,.) transform according to the representation Ttrand
could therefore be a candidate for the order parameter of
the transition. Particular sublattice atomic displacements
could also serve as the order parameter for the transition.
However, our choice for the primary order parameter in
the intermediate grandites is the ordering of the octahe-
drally coordinated Al and Fe3* at the sixteen (a) sites.
This sublattice ordering can couple linearly with the strain
components as well as with appropriate symmetrized
atomic displacements. Thus, strain and atomic displace-
ments could be induced by the onset of the primary order
parameter.
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The free energy to fourth order is ofthe form

AF: (a/2)(n? + n', + n') + (b/3)(tt,q,n)
+ (c,/4)(tf, + n'. + n1), + (c,/4)(n1, + nt + nl)

+ (\,/2)(q,q, t n,q, * nfl) t (a/2)(ql + q3 + 6. 6)

Here 4, are the components of the primary order param-
eter (the Al,Fe3* ordering) and the q, are the strain com-
ponents [namely (err,err,e ,r)), which transform in the same
manner as the primary order parameter. Note that Equa-
tion 6 contains a third-order term in a and thus does not
satisfy the Landau condition that requires that the sym-
metrized triple Kronecker product of the irreducible rep-
resentation of Go not contain the identity representation
of Go; the transformation must therefore be discontin-
uous (first-order). The bilinear coupling of the primary
order parameter with the shear strain implies that for the
subgroup Fddd with order-parameter components (4,,0,0),
only the macroscopic shear strain €r2 should be induced.
Thus a change in the 7 angle of the cubic lattice is ex-
pected. As other order-parameter contributions occur,
additional shear strains could be induced. In particular,
a transition to the R3c subgroup can be accompanied by
shear strain ofthe form erz.: (zs: eri & transition to the
C2/c subgroup can be accompanied by shear strain of the
form e,, : ezt * e,.; and a transition to the PI subgroup
can be accompanied by shear strain of the form e ,, + e.,
*  e tz .

Twru novra,rN FORMATION DUE To rHE pHASE
TRANSITION

As the coefficients of the free-energy change (for ex-
ample, as temperature is lowered), the transition from a
cubic to an orthorhombic structure may result. For ori-
entation 4 : (a,,0,0), which gives Fddd, therc are other
orientations that are crystallographically equivalent and
have the same free-energy minimum. Such a transition
will result in six twin domains having crystallographically
equivalent subgroup symmetries. Thus, as stated by Ta-
k6uchi et al. (1982), many twin laws are possible in the
lower-symmetry phase. For Fddd (in the "first" domain),
the symmetry elements of the parent group that are pre-
se rved  a re  {E  10 ,0 ,0 } ,  {C  z " l l z , 0 , l z } ,  {C ,o l3 /+ ,V+ ,V+} ,
{C rul3/+,3/e,3/t} , { 1 | 0,0,0 }, {o oult/t,3/+,3/+} , {o oolt/+,1/r,Y+) ,
{oo,lt/2,0,t/z}, and all multiples of primative translations.
The resolution of la3d into left cosets with respect to the
subgroup Fddd Is then

Ia3d : {E 10,0,0) Fddd + {C r,lt/z,t/2,0}Fddd
+ {C r,lVq,Tc,Tq} Fddd + {CrolYe,3/+,Vg Fddd
* {Cr"l3/a,3/a,3/+}Fddd + {C413/+,3/e,3/t}Fddd. (7)

The coset representative specifies the orientation ofeach
domain relative to the first domain and allows six distinct
orientations, all ofwhich are energetically equivalent. In
Table 3 we show explicity the coset members and the six
associated order-parameter directions. Because la3d is a
nonsymmorphic space group, coset representations in the
table must also include the appropriate fractional trans-
lations.

Following the procedure described by Janovec (1972,

197 4), the orientation of permissible domain walls in the
Ia3d-to-Fddd transition can be straightforwardly ob-
tained. First, the double coset decomposition of la3dwith
respect to the subgroup Fddd must be determined. For
this case, we find

Ia3d : Fddd {E 10,0,0} Fddd + Fddd {C,"lVz,rh,O} Fddd.

Thus there are two nonequivalent sets of domain pairs.
In Table 3 we have collected the left cosets corresponding
to the six relative domain orienlations (D(r),r(/)) into these
equivalent sets. The horizontal spaces in the table delin-
eate the sets, one of which consists of domain 1 and do-
mait 2, whereas the other consists of domain I and do-
mains 3, 4, 5, and 6. Following Janovec, there are two
permissible domain walls separating domains I and 2.
With respect to the cubic lattice, these walls are perpen-
dicular to the diad axes Cr" and Cr, and are thus rational
planes (Z). For the domain pairs (,Dt), U)), j : 3, 4, 5,
6, one wall (I4l) is perpendicular to the diad axis shown
in the table, whereas the other wall (S) is noncrystallo-
graphic. The latter wall is determined by spontaneous
strain in the orthorhombic phase, but is perpendicular to
the W wall. Realizing that each of the six domains could
be chosen as the "first" domain, we obtain a total of 2l
permissible domain-wall orientations. This is consistent
with the results ofSapriel (1975).

Depending upon which lower-symmetry subgroup is
obtained, different twinning will result. The above dis-
cussion is for the subgroup Fddd and gave six possible
distinct twin domains in the lower-symmetry phase. For
the subgroup R3c, 4 distinct domains are possible; for
C2/c, 12 are possible; and for Pl, 24 are possible. In each
case, the overall average symmetry, assuming equal prob-
ability of domains, is the symmetry 1a3d.

No domain-wall orientations in grandites have been
experimentally determined to date, but the above devel-
opment defines the possible orientations for each
subgroup. These predicted orientations will serye as
another check ofconsistency for the ordering mechanism
we have proposed.

Mrcnoscoplc oRrcrN oF pHASE TRANSTTTONS rN
GRANDITES

As mentioned earlier, the order parameter is assumed
to be the Al-Fe3* ordering at the (a) sites. Up to this point
however, we have considered the transformation only in
terms of the symmetry properties of the la3d-to-Fddd
transition, particularly representation properties, and we
have not attempted any detailed microscopic description
of changes in cation distribution that cause the loss in
symmetry. We now wish to describe the qualitative
changes in octahedral site occupancies that bring about
the previously described space-group change.

The 16 (a) sites have site-symmetry 3; consequently,
each of the (a) sites (0,0,0), (t/2,0,t/z), (0,1/z,t/z), (t/z,Vz,O),
(T t,le,t / t), (3/t,3/ +,3/+), (t /t,V+,i / +), (Y+,3/+,Vn), plus the body-cen-
tered translations ofthese, is left unchanged by a subgroup
of la3d that is isomorphic to the point group 3. For ex-
ample, the point (0,0,0) is left unchanged under the group
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of transformations (E | 000), (C i, | 000), (C r, | 000), (1 | 000),
(Su, 1000), and (Su*, 1000). Other (a) sites are invariant un-
der other subgroups isomorphic to 3, some of which in-
volve translations as well as rotations. In a manner sim-
ilar to the way in which lattice modes are calculated, we
can assign a distortion to the (0,0,0) site and then obtain
the distortions of other equivalent points by determining
the effects of the symmetry elements of la3d that map
(0,0,0) into those equivalent points. This process is a well-
defined method ofgroup theory and leads to an induced
representation of la3d (see Hatch et al., 1987, for details).
The induced representation theory we use here is not part
of the usual Landau theory since it focuses on more than
just the general symmetry properties of the order param-
eter 4.

Depending upon the symmetry of the distortion at the
(a) sites, only certain space-group representations are in-
duced. For example, it can be shown that a displacement
of an atom at the (0,0,0) site in the I l l] direction can
induce the A,,, Ar,, Tr,, and Tr,representations, but can-
not induce the Tr, representation. Thus a displacement
in the I I l] direction cannot be the order parameter of
the Tr, representation, which is the representation asso-
ciated with the la3d-to-Fddd transition. Detailed calcu-
lations show, however, that a function that transforms
under the identity representation of 3 and is associated
with the (0,0,0) site can induce the Tr, representation of
Ia3d. We interpret this function as a probability function
expressing the relative concentrations (that is, ordering)
of Fe3* and Al at the (0,0,0) site. Extension to symmet-
rically equivalent sites by projection-operator methods
then yields the following 4,(r) (see Eq. 3) for the Z,* rep-
resentatron:

(P t  -

I
- l

I
- l

Q z : rPt -

- l

The elements of each basis function correspond to the
eight equivalent non-body-centered (a) sites of la3d list-
ed, from top to bottom, in the same order as the Inter-
national Tables for X-ray Crystallography (1983)-that
is, (0,0,0), (Vz,O,t/z), (0,t/z,Vz), (t/2.,12,0), (3/e,t/t,Vn), (3h,3/t,3h),
(Vt,Ya,Ta), and (Yt,3/t,1/+); they also apply in the same se-
quence to the other eight (a) sites, obtained by adding the
body-centering vector (t/z,Yz,Vz) to the original set. The
elements of these functions represent the relative weight-
ing at the eight equivalent positions ofa localized ordering
function transforming as the identity under 3.

Ordering in orthorhombic garnets

For the la3d-to-Fddd transition, only the first com-
ponent, 4,, of the order parameter is nonzero (Table l),
and so the ordering function ('l,d) is

Trale 3. Cosets and order-parameter directions

Left cosets

Order-
parameter Domain
directions walls

(a,'o'o)

(-4,,0,0) W, W

(o' -r,'o)
(0,0,-"rJ W, S
(o'a,'o)
(o,o,aJ

Nofe; Horizontal spaces divide domains into two inequivalent sets, one
consisting of domains 1 and 2, the other of domains 1 and 3 through 6.
See text for full exDlanation.

( 1 )

(2)

(3)
(4)
(5)
(6)

E, C2,, C2", C26, l, o,, o6., oao

Cr,, C"y, C-0., Q., o,, o, S;. Si

C"", Cl, Ct", C.'r, o*, S", S*, Su;
C"o, Co,, C-., Qr. o*, S;, Su;, So,
Cu, Co, C;0, Q,, o*. S", S;, S;t
C", Q* C"", Cr,, oa, 9- Ssi, Sor

4 t

I t
- \ t

- 4 t

4 t

4 t
- \ t

t l  I

I
- 1
- l

where 4, is an arbitrary multiple of dr with magnitude
determined by the degree of Al-Fe3* ordering. The posi-
tive and negative values signify two diferent states of
ordering at the respective sites of an ordered phase, re-
ferred to the (disordered) cubic lattice; each state of or-
dering differs from the disordered state by the same
amount as the other, but in the opposite sense. Thus, two
sets of ordered sites emerge, one consisting of (0,0,0),
(Vz,O,lz), (3h,%,le), (T+,Te,Tt) and their body-centered equiv-
alents [the l6(c) sites of Fddd], and the second consisting
of (0,t/z,t/z), (t/z,t/2,0), (t/+,th,3/+), (Va,3/+,Vt) and their body-cen-
tered equivalents [the l6(d) sites of Fddd]. Within one
set of sites, Fe3* is enriched relative to a disordered dis-
tribution, and in the other set, it is depleted by the same
amount.

Comparison of our results with those of Tak6uchi et
al. (1982) obviously requires that the group theoretical
and experimental treatments both be referred to the same
crystallographic origin and axial orientation in both the
higher- and lower-symmetry phases. The ordering of Al
and Fe3t removes the degeneracy inherent in the cubic
lattice, and the naming of the axes of the face-centered
orthorhombic lattice relative to the those of the body-
centered cubic one is arbitrary. In the transition to do-
main 1 (Table 3), q, and qj are zere, and thus the only
shear strain induced is e,, (see Eq. 6), and our analysis
predicts that the cubic 7 angle will become different from
90'; Tak6uchi et al. (1982) chose that angle to be B. Their
choice corresponds to shear e,r, or to an order parameter
with only the third component being nonzero, that is,
(0,0,r,J. Such a transformation is a transition to domain
6 (or 4) of our listing and is crystallographically equiva-
lent to the one we describe. Notice that if only the third
component 4, of the order parameter is nonzero, the site-
distribution (4,@,) should be
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4z
-'0t

Tt
t t  ]

r t 1

4t
llz

and the two sets of ordered sites become (0,0,0), (0,Vz,t/z),
(3/a,3/t,3/e), (Ve,t/+,3/t), and (lz,0,t/z), (t/z,t/2,0), (Tt,t/e,Ve), (Vt,3/n,t/t),

respectively. This is just the ordering pattern found by
Tak6uchi et al. (1982). Thus the two assumptions built
into our description-namely (l) an order parameter
leading to an Fddd subgroup and (2) the transition being
driven by an (a)-site ordering process-predict the conect
ordering scheme, although we cannot predict which set
ofoctahedra would be Fe richer or Fe poorer.

Ordering in other subgroups of la3d

From Table I it is seen that a transition from la3d to
R3c can occur only if all three components of the order
parameter are equal. Thus the ordering function at the
eight non-body-centered (a) sites (which are based on the
pseudocubic unit cell) would be of the form

3n,
t l  I

- 11r
- I t

- '0r

3qt
- 4 t
-'tl 

r

For a transitiotto C2/c, the ordering function would be
ofthe form

Transitions governed by other representations

Tak6uchi et al. (1982), in their Figure 6, included all
of the centrosymmetric subgroups of la3d containing the
same translational group and predicted inversion paths
on the basis of grouQ-subgroup relationships alone. In
failing to consider the constraints that a single parameter
(representation) transition would impose (that is, the as-
sumption that a single mechanism drives the transition),
they predicted four series oftransitions from la3d to I7
that mixed space groups deriving from different represen-
tations. Consideration of each of the subgroups in light
ofthe Landau approach (Stokes and Hatch, 1988), leads
to the following: The Zr" representation can result in tran-
sitions from la3d to R3c, Fddd, I2/c, and 11; the 7,"
representation accounts for transitions to R3, I4r/a, I2/c,
and 11; and the E" representation governs transitions to
I4r/acd and lbca. Figure 1 summarizes these results
and is topologically distinct from Figure 6 ofTak6uchi et
al. (1982). Notice that transformation to 12/c and 1l can
occur along two different paths governed by different ir-
reducible representations, and the ordering patterns that
result from the two paths will necessarily be different.
fNote also that I2/c is the same as C2/c with a different
choice of a axis, and our previous discussions that in-
volved space group C2/c could as well have been stated
in terms of I2/c.)

Consideration of the 11 Munam garnet of Tak6uchi et
al. (1982) provides a good illustration ofthe power ofthe
group theoretical formalism (induced representation the-
ory) we have used in dealing with phase transformations.
Table 4 shows the eight unique triclinic sites, with atomic
coordinates referred to the pseudocubic unit cell. Also
given are the ordering functions for the Tr, and lhe T'"
representations-that is, the two representations that can
lead to this space group in the context ofour study. The
ordering function for Tr, shows that the sites must, if the
transition is governed by this representation, divide into
four sets of two equivalently ordered sites each; in the
orientation of Tak6uchi et al. (1982), these are M(l l) and
M(I3), M(I2) and M(I4), M(22) and M(23), and M(21)
and M(24). The ordering function for 7,, predicts that
each site should have a unique Fe3* concentration and
that some must be the negatives of each other (in the
sense that one is as much above the mean Fe3* concen-
tration as the other is below it). The last column of Table
4 shows that the Fe3* concentrations observed by Ta-
k6uchi et al. (1982) conform closely to the first prediction;
although the two values of each pair are not precisely
identical, they are statistically indistinguishable from their
mean, and so the differences can be attributed to exper-
imental error.

Homogeneous phase transforrnation or
crystal-growth phenomenon?

We have shown that, if the transition is governed by a
single order parameter that belongs to the Tr, represen-
tation, ordered (or partially ordered) Fddd grandites, as

2q,
0

- ) -
- ' t  I

0
0

2q,
- ) -

0

2qt

2q,
- 2q t

A transition to the subgroup PI (or 1I, ifthe pseudocubic
cell is retained) would have arbitrary contributions of4,,
qr, and qri

t I z i 4 z
-  r l z -  4 t
- 4 2 * t l z

l n z - n z
-  

1 z -  4 z
t 4z t 'tlt
- t t z * ' 4 t

* rt, - tlt

4 t

4 t
- r l t

- I t

1 t
'0r

- 4 t
- 4 t
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TABLE 4, Ordering in /i Munam grandnite

Site.

Ordering
function
tor Tro

Site
name"'

ob-
Ordering served
function Fea*
fot T1s (%)..

(0,0,0)
(Y2,0,V2)
((O,V2,1hl
(Vz,lh,0l
(3/a,1/a,Vt)
(3/t,Tt,Val
(Ve,Va,Va\
(!t,3/t,Vt\

M ( 1 1 )  h + r t 2 + \ 3
M ( 1 2 )  r n - l t z - 4 s
M(22) -It rtz -f rts
M(21) -h I rtz - \s
M(14) It - ttz 4s
M ( 1 3 )  \ + 1 2 + r t g
M ( 2 3 )  \ - I z * t t s
M(24) -h + tt2 - \3

f h t r l z t r l s

t h  -  
I z -  t l s

- t h - r l z I 4 s

- , r + n 2 - \ s

- r h t l l z t q s

-rlt 
1z 

- 
Is

n 1  +  4 2 -  n o

h 
- rtz -f rlg

41
45
29
1 5
49
45
27
1 6

Trn

Fig. l. Possible phase transitions from Ia3d to subgroup
symmetry, assuming that only cell-preserving transitions driven
by a single order parameter are permissible. I2/c is used for
consistency with Fig. 6 ofTak6uchi et al. (1982), but is identical
to C2/c used in the text, with the a axis chosen diferently.

well as grandites of three other subgroups of la3d, car'
result from a homogeneous phase transformation from
the cubic space group. Moreover, our treatment has pre-
dicted specific ordering functions that can be tested by
crystal- structure refi nement.

As previously mentioned, Gali (1983) and Akizuki
(1984) have suggested that ordering can occur as a result
of crystal-growth processes, yielding grandites that are tri-
clinic (/1) at formation, but may appear to have higher
symmetries owing to superposition of variously oriented
triclinic growth sectors. Gali (1983), in particular, has
predicted four possible ordering schemes that result from
the superposition of his groWh sectors numbered I and
II, from numbers I and III, from numbers I and IV, and
from numbers I, II, III, and IV together. The first three
each yield average C2/c struclures, but each one has a
qualitatively unique ordering scheme. The fourth, super-
position ofall four sectors, yields an average Fddd struc-
ture.

In Table 5 we compare the ordering schemes predicted
by our analysis and by that of Gali (1983) for the mono-
clinic polymorph. We have used letters simply to indicate
which sites must be equivalently occupied in each case,
with no implication that the same letters used for differ-
ent structures represent the same degree of ordering.
Combining Table 5 with our previous discussion, several
observations are pertinent. First, we have shown above
that our approach correctly predicts the ordering ob-
served by Tak6uchi et al. (1982) in both of their ortho-
rhombic garnets, and this is the same ordering scheme
predicted by Gali (1983) as a superposition of four growth
sectors. Second, because Gali assumed 11 to be the fun-
damental space group, with higher symmetries being ar-
tifacts of the presence of various growth sectors, he nec-
essarily restricts apparent la3d symmetry to only those

'Coordinates based on our unit-cell orientation
'. Site names and Fe concentrations from Tak6uchi et al. (1982).

fragments with equal numbers of appropriate domains;
we take la3d to be the starting fundamental symmetry
and on that basis have correctly predicted the qualitative
nature ofordering in the lone refined 11 grandite. Third,
our treatment leads to a unique monoclinic polymor^ph,
whereas Gali's predicts that three different monoclinic
ordering patterns should be observed; so far, only one
report of a possible monoclinic garnet has been published
(Hirai and Nakazawa, 1986), and the structure was not
<ietermined, but it is noteworthy that none of Gali's three
monoclinic ordering patterns is the same as the one we
predict for the C2/c polymorph.

We note here that Allen and Buseck (1988) also refined
an anisotropic garnet in space group 11 and found a cat-
ion distribution different from the one we predict. The
composition of their specimen (given above) is nearly
end-member grossular, but it contains almost as much
almandine component as andradite component. They
found partial ordering in not only the octahedral sites,
but also the dodecahedral sites. Thus, ifordering in their
specimen resulted from a phase transition, it must have
been driven by a diferent mechanism than discussed in
the present treatment, which is limited to garnets of strictly
grandite composition with (a)-site ordering.

CoNcr-usroxs

The agreement between our predictions based on group
theory and the ordering scheme found by Tak6uchi et al.
(1982) in two orthorhombic grandites and one triclinic
grandite supports the following coilclusions:

l. Evidence that all three ofthe garnets ofTak6uchi et
al. (1982) might have experienced a phase transition from
Ia3d to Fddd or 11 via the 22" representation is strong.
Thus, these garnets could have originally grown as cubic
phases in space group la3d.

2. If this was the case, the harmony between the group
theoretical and the experimental results indicates that
these garnets would have experienced a (primitive) cell-
preserving transition that was governed by a single order
parameter.

3. The order-parameter mechanism for the transition
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Taele 5. Comparison of predicted ordering patterns in C2lc grandites

M(11 )  M(12 ) M(l3) M(14) M(21) M(22) M(23) M(24)

This work
Gali no 1
Gali no 2
Gali no 3

o
o
o

o
o

h

o

b

b
o

o o

Nofe. Letters indicate equality or inequality of site occupancies only within a given structure, and not between slructures.

would have been the ordering of Al-Fe3* at the (a) sites
ofthe cubic phase.

4. The validity of the assumption that this single order-
parameter mechanism is sufficient for the complete de-
scription of existing experimental data is evident. More-
over, additional predicted characteristics (e.g., domain-
wall orientations and monoclinic and rhombohedral site
ordering) are also provided.

5. From symmetry arguments alone, we cannot tell
whether the rhombohedral ordering pattern was ever
present in any of these garnets, or whether the Munam
garnet passed through the monoclinic Al-Fe3* distribu-
tion before becoming triclinic.

There is ample evidence that some synthetic birefrin-
gent garnets, particularly some nonsilicate species, exhib-
it growh-induced anisotropy (e.9., Callen, 1971; Pfeiffer,
1977; Kitamura et al., 1986). Their properties are highy
dependent on the conditions ofgrowth, however, and it
seems unlikely that the conditions required for those
growth mechanisms would often be duplicated in nature.
Nonetheless, if ordered grandite garnets do grow as pri-
mary phases in nature, then a correct theoretical treat-
ment of an asymmetric growth process resulting from the
3 symmetry of (a) sites should yield the same distribu-
tions we have predicted for the C2/c subgroup, and not
those of Gali (1983). Obviously, much more work, in-
cluding the crystal-structure refinements of many other
anisotropic grandite garnets, is required before more gen-
eral conclusions can be drawn concerning the relative im-
portance of phase transitions and growth mechanisms in
producing anisotropic grandites.
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