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Molecular dynamics simulations of SiO2 melt and glass: Ionic and covalent models
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Ansrru.cr

Computer simulations using the molecular dynamics (MD) technique have been carried
out on SiO, melt and glass ranging from 300 to 9000 K and 0 to 175 kbar. The MD
simulations used two sets of interatomic potentials-a simple ionic model with Born-
Mayer repulsion terms and a central-force-fie.ld covalent potential-both of which were
derived from quantum mechanical calculations on molecular clusters. Thermodynamic,
structural, and diffirsion data were obtained from these model systems and compared to
experimental values wherever possible.

The MD results indicate that earlier X-ray diffraction data may need to be re-interpreted
with respect to the SiOSi angle distribution. BondJength and bond-angle responses to
pressure and temperature changes compare favorably with experimental and theoretical
studies on the d-qvartz structure. Ring-distribution analyses show that planar rings con-
taining three silica tetrahedra are present in the simulated glass. Predictions of second-
order thermodynamic properties of the system (C, a, B) reveal inadequacies in the ionic
approximation when applied to vitreous silica.

Arrhenius plots of ln D vs. temperature and pressure between 2000 and 6000 K and
between 0 and 200 kbar show that at 6000 K, D increases with pressure from 1.3 x l0-5
at 40 kbar to 6.1 x l0 5 cm2ls at 100 kbar, then decreases to 1.5 x l0-5 at 175 kbar.
Detailed analysis of the diffusion mechanism at pressures less than 100 kbar indicates that
it is defect-controlled with high correlations between the percentages of 3- and S-fold
silicons, nonbridging oxygens, and the difusion rate.

Ixrnonucrrox

In order to understand diffusion, nucleation, and crys-
tal-growth kinetics in molten systems in an integrated
way, an atomistic picture of the melt structure and its
dynamics is necessary. Spectroscopic studies of silicate
glasses have increased our knowledge of the structures
that dominate these melts, but do not give much infor-
mation about reaction mechanisms. With the molecular
dynamics (MD) method, it has become possible to follow
the motion of individual ions in a theoretical system and
to determine both melt structure and reaction mecha-
nisms in the molten state over a wide range of pressure
and temperature.

An underlying concept behind olrr approach to these
problems is that interatomic potbntials in condensed
phases are dominated by the same short-range forces
present in isolated molecules (Nowton and Gibbs, 1980;
Newton et al., 1980; Gibbs, 1982). Thus, it is possible to
translate data from quantum mechanical calculations on
molecular clusters, such as H4SiO4 and HuSirOr, to inter-
action potentials between Si and O in silicate minerals
and melts. Using this approach, it will be possible to put
the understanding of melt dynamics into a firm theoret-
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ical framework that is simple and flexible enough to en-
compass many systems of geochemical interest.

In this paper, two potential-energy models derived from
quantum mechanical calculations are applied to SiO, melts
and glasses and used to extract thermodynamic, structur-
al, and diffusion data. Shortcomings of using the ionic
approximation to simulate covalent systems are exposed,
but the utility of the MD technique in kinetic studies also
becomes obvious, because diffusion mechanisms for Si
and O can be displayed using computer graphics. Prelim-
inary simulations with a covalent potential are also com-
pared to the more extensive ionic results in an effort to
increase the accuracy of model calculations. Inclusion of
these short-range and many-body forces should make
simulations more realistic for silica-rich melts.

Mor.ncuun DYNAMTcs

The MD calculation technique uses a central box con-
taining at least a few hundred ions to simulate a melt or
glass. A periodic boundary condition repeats this cell on
all sides to create an infinite volume and remove surface.
efects. Within the central box, each ion interacts via short-
range forces with all other ions up to a radius of 5 to 6
A (except for the longer-range Coulomb force). In this
study, the central box was subdivided into many smaller
boxes (usually 64), a'nd ions were assigned to one ofthe
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small boxes. This technique reduces by several-fold the
time involved in carrying summations over both short-
range and Coulomb forces. The force on each ion is ob-
tained by differentiating the computed interatomic poten-
tial energy for every ion:

F,: > 
-(dLr/dr,)(dru/du,) (l)

where d : force on ion i in the u direction (u: x, y, z),
@u : potential energy between ions i andJ, ru : the dis-
tance between ions i and7, and du : the x, y, or z com-
ponent of ion i. The sum in Equation I is over all T ions
including those in the periodic boxes.

For the ionic model, Coulomb potential energies (A)
are calculated at each time step by application ofthe Ewald
technique to achieve efrcient convergence (Sangster and
Dixon. 1976):

tained from the force on the ion by assuming that ions
obey Newtonian mechanics (F : rua). The value of Al in
these simulations was 1.0 x l0-'' s at 4000 and 6000 K
and 2.5 x 10-15 s at 2000 K.

All simulations were run on a cubic cell containing 324
ions (108 SiO, units). Runs were completed with initial
temperatures ranging from 300 to 9000 K.

PorpNrru,s usED rN THE MD sTMULATIoNS

The most important factor in MD models is the ac-
curacy of the potential equation that is chosen to simulate
the forces between ions. One of the aims of this paper is
to systematize the development of potential functions for
use in MD simulations. Recently, Iasaga and Gibbs (1987)
reported ab initio calculations ofthe Si-O potential and
applied their results to the prediction of structural and
elastic properties for the silica polymorphs d.-qvartz,
a-cristobalite, and stishovite (the high-pressure poly-
morph). We propose to use these potentials, which have
a firm theoretical basis and which have been tested on
well-known mineral structures, in the MD simulations.
In this fashion, we hope to remove some uncertainty from
the interpretation of the MD results.

Most earlier work on silicates has used simple ionic
potentials of the type

v,,:Z'Zi4 * A,,exp(-r,,/p,,), (4)' t J  
r . .. U

where 2,, A,,, and t4 could be varied to improve the com-
parison with experimental properties. The ionic potential
used in this paper is a potential ofthe type given in Equa-
tion 4 but derived in Lasaga and Gibbs (1987) using ab
initio results. The set of constants used for the ionic mod-
el (Table l) are based on the usual formal charge Z"':
+4.0, used in previous MD papers (e.g., Soules, 1979;
Angell et al., 1982).

In this study, modeling of glasses and melts of the SiO,
system was based not only on a simple ionic potential as
in Equation 4 but also on a central-force-field covalent
potential. The covalent parameters (Table 2) were de-
rived from a Morse potential fit to ab initio quantum
mechanical potential-energy surfaces (Lasaga and Gibbs,
1987). Based on these approximations for the Si-O inter-
action in the HoSiOo and HuSi'O, molecules, calculations
of the a-quartz structure using the wMIN program (Bus-
ing, l98l) gave good results for both the ionic and co-
valent potential models (Lasaga and Gibbs, 1987). How-
ever, only the covalent potential yielded a good equation
of state and elastic constants.

The Lasaga and Gibbs data and methodology are used
heret however, the form ofthe covalent potential is slight-
ly modified for use in the MD simulations. The initial
covalent potential chosen for the MD work was a com-
bination of the Urey-Bradley force field and the flexible
Morse potential:

-:; i [rurco"r,nt

.;>E?,s(o[sP@' ]- 4 =e)'
where

s(c): f, Z,exp(-iGr,,)

and the index i runs over all N ions in the cell, G is a
reciprocal space vector, S(G) is the structure factor, 4 is
an arbitrary constant that can be chosen to speed up con-
vergence (0.tS A-'l was used here), Z,is the ionic charge
of species i and V.r* is the volume of the periodic box.
The sum over reciprocal vectors in Equation 2 was cat-
ried out using the transformation introduced by Sangster
and Dixon (1976), which decreases the time involved for
each calculation by a factor of 14 the number of ions. The
potential in Equation 2 is also differentiated as in Equa-
tion I to add the Coulomb contribution to the total force
on each ion.

Once the instantaneous force on each ion has been de-
termined, its position and velocity are calculated for the
next time step by using the algorithm of Schofield (1973):

(2)

r(t + at):'f',i^lfli'- 
o(t - at)t^t, (3a)

v ( t + A t ) : v ( t )
+ t/ul2a(t + At)

+ 5a(t) - a(t - At)l\t, (3b)

where r(t), v(l), and a(t) are the position, velocity, and
acceleration of an ion at tr-te l. Accelerations are ob-
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The second and third sums in Equation 5 are over pairs
of atoms that are bonded to a common third atom. The
d parameters were obtained from the optimized STO-3G
structure for HuSirO, in Lasaga and Gibbs (1987) and are
given in Table 2. The Morse parameters, D and a, as well
as the effective charges, 2,, were then obtained from a
least-squares optimization of all the ab initio data in La-
saga and Gibbs (1987). These values are also given in
Table 2. Note that the effective charge on Si is low (+0.4),
as expected in a covalent model (Stewart et al., 1980).
The bond strength of the SiO bond, as indicated by the
large value of Dsio, is higher than expected, reflecting a
lack of adequate data for long bond lengths. Figure la
gives the ab initio (Lasaga and Gibbs, 1987) contour po-
tential surface as a function of SiO bond length and SiOSi
angle for two linked SiOo tetrahedra. Figure lb gives the
contour surface as computed by the Morse potential in
Equation 5. Figure lc is a plot ofthe differences between
Figures la and lb. The Morse potential certainly repro-
duces the basic topology ofthe quantum mechanical re-
sults.

Figure 2a is a plot of the three Morse curves using the
parameters in Table 2. Note the long tails of the poten-
tials, which are a result of the weak l-3 interactions. Fig-
ure 2b gives the ionic potential used for comparison. These
Morse curves implicitly assume that the two Si-O atom
pairs in either a SiOSi or an OSiO angle are "bonded."
To use these Morse potentials in MD simulations, the
bonding must be introduced in an efficient and smooth
manner. This has been accomplished by modifuing the
Morse potential with a Fermi-Dirac-type term involving
the two SiO bond lengths. This F-D-M potential is given
by

%i" : (r/{exp[BQ - D] + l]) Z]fS* (6a)

V"": (l/{expl!Q - r)l + l}) z$g* (6b)

2',,, : (l/{expl1(r - dl + l})Z}fs'i* (6c)

Tnele 2. Morse potential parameters and Fermi-Dirac terms

si-o o-o si-si

60.0980 121.4687
0.6192 0.6524
2.6531 3.0451

where r is the SiO bond distance in Z'o and r,: r/z(r",o,
* /rior) is the average SiO bond length in the Zoo and
2.,., potentials. Table 2 gives the common set of B and r,
parameters. Figure 3 gives the modified F-D-M Si-O po-
tential. Note that generally B and r, are such that they do
not perturb V,, in the bonded region of usual interest (r'o
: 1.5 to 1.7 A). However, the F-D-M potential allows
the possibility of bond breaking and bond forming to
occur in glasses and melts.

Table 3 gives the structure and properties of d-quartz
calculated from wurN using the F-D-M potential. Gen-
erally, this potential does quite well and certainly much
better than the purely ionic potential.

TnnnlrooyNAMrcs oF SiO2 MELTS AND
GLASSES FROM MD

The use of statistical mechanics and molecular dynam-
ics has become a powerfirl method for determining ther-
modynamic properties of systems that are difficult to study
experimentally. Application of MD to the study of geo-
chemical systems has only begun in the past few years
(Woodcock et al., 19761, Soules, 1979; Matsui and Ka-
wamura, 1980; Matsui et al., l98l; Angell et al., 1982;
Brawer, 1983; Mitra and Hockney, 1983; Dempsey and
Kawamura, 1984); however, its utility and simplicity
should make it a valuable and common tool in the future.

Primary data obtained in these simulations are the co-
ordinates and velocities ofeach particle in the system as
a function of time. Application of the theorems of statis-
tical mechanics to this microcanonical ensemble (con-
stant number of particles, volume, and energy) allows one
to derive many thermodynamic properties such as heat
capacities, thermal-expansion coefficients, and compress-
ibilities. An important advantage of MD simulations is
that the data can also be used to obtain kinetic infor-
mation on the systems.

The total kinetic energy per unit cell is obtained from
the velocities ofthe particles in the box

KE:+ f*pi ,  (7)
L  i : t

where N is the total number of particles in the cell, ru, is
the atomic mass of the atom, and yr is the velocity of
atom i. The temperature of the system can then be com-
puted by averaging the kinetic energy over many time
steps (N","" > 100)

D (kcal/mol)
a (A-r1
," (A)
2",
p
rl
SiO cutoff (A)

563.4548
0.8496
1.6022

+0.4119
30.0
2.0
2.3

,:#,uur:#u\> *,n), (8)
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Fig. l. (a) Quantum mechanical potential-energy surface for HuSirOr. The x axis is the SiOSi bond angle in degrees, and the,,
axis is the SiO bond length in A. Eneryies are in kcaVmol. (b) Potential-energy surface for H5Si2O7 calculated from Morse potential

equation. (c) Energy differences between Figs. la and lb test the ability ofthe Morse potential to reproduce quantum mechanical

results.
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The temperature can also be set according to Equation 8
by scaling the velocities. Thus, if the desired value of the
temperature is ?"o and the computed value according to
Equation 8 is Z, the velocities are scaled by

vi"* : v?'d{To/T)^. (9)

Scaling is the MD equivalent of immersing the system in
an isothermal heat bath.

In this study, the ions are initially positioned in a quartz-
like structure that has been distorted to fit a cubic cell
and then given a Boltzmann distribution of velocities for
a chosen temperature. Since runs simulate real times of
I to 2 ps (picoseconds), the initial temperature used to
randomize the system is set at 10000 K (Angell et al.,
1982) so that equilibrium is rapidly attained. Cooling is
then done on successive runs in 1000-K increments.

The temperatures for each run were set by scaling par-
ticle velocities for 250 to 500 time steps. Another 1000
to 2000 steps were then calculated without temperature
scaling. Cooling to the next temperature was then begun
by scaling the velocities of the last time step from the
previous simulation. Equilibration at each temperature
was complete during scaling after 250 to 500 time steps
as evidenced by the establishment of a well-defined ther-
modynamic average from the nonscaled temperature cal-
culations. Numerical errors were checked by the conser-
vation oftotal energy within the system (Figs. 4 and 5).

Both the potential energy (Eqs. 4 and 6) and kinetic
energy (Eq. 7) will fluctuate around their average values,
which should represent the bulk thermodynamic value
for a macroscopic system. Figure 4 shows these fluctua-
tions in kinetic energy, as represented by temperature, to
be within 50/o of the average. According to statistical me-
chanics theory (Hill, 1962), the standard deviation in
temperature, LT/T^,', for a system with N particles is
given by

AT/T: o x l /(3N)h. (10)

If N : 324, as in our system, Equation 10 predicts that
the standard deviation, o, should be approximalely 60/o,
consistent with the results in Figure 4.

In these MD simulations, the total energy (,8) of the
system is constant after scaling has been removed. There-
fore, fluctuations in the potential energy, iD, and the ki-
netic energy, KE, must be coupled by the relation E -- @
* KE. Figure 5 is a plot of the total energy as a function
of time. Note that ,E varies by 0.10/o due to numerical
error, truncation of the power series in the Schofield al-
gorithm, and approximation of the Ewald summation.
We have assumed that this small error does not signifi-
cantly affect our results.

Prediction of pressures in the system is problematic
because the instantaneous pressure fluctuations within the
system can be dramatic (e.g., instantaneous pressures may
range from -100 to +100 kbar). Nonetheless, pressure
estimates are made at each time step using the virial theo-
rem (Woodcock, 1975)
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where F, is the force acting on ion l, r, is the position
vector, @A/dnr is the derivative of the Helmholtz free
energy of the system with volume at constant tempera-
ture, and N and V are the number of ions and volume of
the central box, respectively.

Values ofthe pressure are obtained by averaging over

many time steps (N",.o = 100). Figure 6 gives results of a
typical run. Fluctuations of +10 kbar occur, but Figure
7 shows that a time-averaged pressure converges to a well-
defined value. The simulations using the ionic potential,
however, yield pressures that are substantially different
from those predicted from the equation of state of SiO,
glass at this temperature and density. This deviation (Ta-
ble 4) stems from the difference between experiment and
theory in the unit cell predicted with this potential in
calculations on quartz (Lasaga and Gibbs, 1987). The
simulations using the covalent potential predict pressures
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Fig. 2. (a) Interionic potential curves calculated for Si-O,
O-O, and Si-Si interactions from the Morse potential equation
with energies in kcal/mol vs. interionic distance in A. (b) Potential
curves calculated from the ionic potential equation.

that conform to experimental equations of state up to l0
kbar, again similar to the results obtained from static
mineral calculations. These systems are under isostatic
pressure as evidenced by the constancy of the center of
mass throughout the run and by the equality of the x, y,
and z components of the pressure calculated individually
(Fie. 8).

Fluctuations in first-order thermodynamic properties
are not only required by the theorems of statistical me-
chanics, but they also allow calculation of higher-order
thermodynamic properties. For example, changes in the
potential energy within a given run are directly related to
the constant-volume heat capacity by (Woodcock, 1975)

, , :W+|x*,

u . f , r . 0  1 . 5  2 . 0  2 . 5  3 . 0

B O N D  D I  S T A N C E

Fig. 3. Si-O interaction potential calculated using the Fermi-
Dirac-Morse potential. This plot is comparable to Fig. 2a for
Si-O except for the F-D term, which limits the covalent bond to
less than 2.3 A.

where O : potential energy, k : Boltzmann's constant,
and N^ is Avogadro's number. C, values for SiO, glasses
and melts predicted from MD and Equation l2 are given
in Table 5 along with some experimental results for com-
parison. The agreement is very good at higher tempera-
tures. This derivative property is a stringent test of the
simulation and illustrates the usefulness of the ionic ap-
proximation in modeling silicate systems.

Thermal-expansion coefficients may be found using the
thermodynamic relation a: (1/T)ll - Q/n(AH/AP)rl
in the form (Woodcock, 1975)

using ,FI : E + PV. In addition, isothermal compress-
ibilities are calculated according to

Taeue 3. Comparison of a{uartz structural parameters from
experiment and from wMrN calculations using the Fer-
mi-Dirac-Morse potential

Experiment FDM potential

Unit cell
4.9163
5.4054

Atomic position
0.4697
0.4135
0.2669
0 .1  191
1.6047
1 .6137

143.7
2.54
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Fig. 4. Variation in average temperature over 100 time-step
intervals for a low-temperature, low-pressure silica glass using
the ionic model. All scaled time steps of equilibration have been
excluded.

p: -Q/n@v/aP)r. (14)
Because these simulations use a microcanonical ensemble
(constant N, V, and.E), several runs with various vol-
umes are used, and (dV/An is calculated from the change
in calculated average pressure with volume. Table 6 con-
tains estimates for d and B of a SiO, melt from our sim-
ulations using the ionic model and experimental numbers
for SiO, glass.

Prediction of second-order thermodynamic quantities
is a stringent test of MD models, so the error in these
predictions is encouragingly small. However, the more
realistic covalent potentials are necessary for these sim-
ulations if accurate thermodvnamic data are to be ob-
tained.

Srnucrunn
Glass and melt structures can be analyzed using the

pair correlation function

S I L I C A  T = 2 8 3 K  < P > = 2 k b

TOTAL ENERGY

P O T E N T I A L  E N E R G Y

.aOO. O 5OO. O

T I M E  S T E P S

Fig. 6. Extreme calculated pressure variations are present even
when averaged over 100 time steps for the simulation in Figs. 4
and 5. Temperature fluctuations do not control the pressure vari-
ations in this case because the NkT/Vterm of the virial theorern
(Eq. l1) is very small at 300 K. The pressure predicted at this
temperature and density from the SiOt glass equation of state is
0 kbar, and the average calculated pressure in this simulation is
2 + 5 kbar.

g,i(r) = (l / 4r pr'z)ldN(r)/ drl ( l  5)

where N(r) is the number of ions of typeT within a sphere
of radius ," around a selected ion of type I, and p is the
bulk density of the ions of type 7. Note that as r ' @,

short-range order and structure are lost, and N(r) '

(4r/3)(pr3). Therefore, g, ' I as / + oo. To calculate gu
for these simulations, each ion is selected over 100 or
more time steps, and the number of atoms of type 7 in
thin spherical shells with radii of r and r + Lr (Lr :

0.025 A) around these ions li.e., dN(r)/drl are counted
out to l0 A. ttre correlation functions are averaged over
the number of time steps and plotted to show the short-
range melt structure. Figure 9 gives the results for the
ionic model at the experimental density and 300 K as
well as the curve determined from Mozzi and Warren's
(1969) experimental data. Our fit to the experimentally
derived correlation function is very good. The peaks dis-
agree by 0.1 A or less for primary coordination and by

TnaLe 4. Cell dimensions, densities, and average calculated
pressures for MD runs at 6000 K
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Fig. 5. Fluctuations oftotal and potential eneryies ofthe sys-
tem over 1000 time steps after an initial equilibration period of
500 time steps using velocity scaling.
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6.238
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Fig. 7. Overall running average ofthe pressure plotted in Fig.
6. Convergence to a well-defined value indicates that the calcu-
lation is stable and that more realistic model potentials may
allow accurate predictions of equations of state for glasses and
melts.

less than 0.5 A for secondary coordination. This discrep-
ancy is especially noticeable in the Si-Si correlation, and
it is caused by the disagreement between the average SiOSi
angle determined experimentally (144") and the MD-cal-
culated average SiOSi angle of these simulations (160').

Coordination numbers (CN) are obtained by integrat-
ing to the first minimum, r,, in the g(r) curve.

cN:4zrp j"" ^rrn nr. ( l  6)

Table 7 compares the values of first and second coordi-
nation numbers with experimental values found by Moz-
zi and Warren (1969) using X-ray diffraction. For pri-
mary coordination, the values in Table 7 are in good
agreement with one another. The reason for the large
errors in the secondary coordination numbers is unclear,
but the breadths ofthe peaks in the correlation functions
makes defining secondary coordination numbers ambig-
uous.

Coordination numbers may also be obtained by the
location of plateaus in a plot of N(r) vs. r (Fig. l0); the
plateaus define the average number of ions clustered
around each type ofion at a given distance. Primary co-
ordination plateaus are very distinct, but there is diffi-

TABLE 5. Comparison of MD-derived Cu and experimental Cp
for SiO. at high temperatures

. From Robie et al. (1978) except the 2000 K value, which has been
extrapolated from their data.

T I M E

Fig. 8. Plot of running average for pressure components in
the x, y, and z directions shows convergence toward the same
value for all three components indicating isostatic equilibrium.
Note that total average pressure is slightly higher than compo-
nents because the (NkT/n term of Eq. I 1 is significant at the
temperature of this simulation (i.e., 1500 K).

culty in defining secondary coordination because of the
diffuse nature ofthe secondary coordination sphere in a
melt or glass.

The average, primary polyhedral units are accurately
reproduced by our models (Tables 7 and 8). However,
the ionic approximation results in errors in the distribu-
tion of SiO bond lengths and OSiO angles (Fig. I l). The
centers of the peaks for SiO and OSiO distributions are
in the proper positions, but the widths ofthese peaks are
broader than the widths of the experimentally derived
peaks. For example, our SiO bonds vary by t0.2 A and
OSiO tetrahedral angles by + 10", whereas X-ray studies
show a +0. I A variance in SiO bonds (Mozzi and War-
ren, 1969) and esn (Gaskell and Tarrant, 1980) experi-
ments indicale a +7" distribution around the average tet-
rahedral angle. Wide distributions are caused by the lack
of directionality in the ionic potentials. Also, high-tem-
perature structures may have been locked in by the very
rapid cooling rates of MD simulations. The covalent
model corrects this wide distribution for the SiO bond
lengths, but the angle distribution remains unchanged (Fig.
l lb).

The discrepancies for the value of the SiOSi angle have
been a matter of controversy for some timp. The original
work of Mozzi and Warren (1969) was "corrected" by
DaSilva et al. (1974) to give a value of 153.0'. Subse-
quently, however, Coombs et al. (1985) have vindicated
the original work of Mozzi and Warren and re-calculated

TaeLe 6. lsothermal compressibilities (B) and thermal-expansion
coefficients (a) for SiO,

B (ionic MD) B (experimental)
(bar-1) (bar')

o (MD ionic) @ (experimental)
( K ' )  ( K ' )

Temperature
(K)

Density
(g/cm")

Cv (MD ionic) Cp (experimental)-
lJ(mol K)l U/(mol K)l

300
1 000
2000

2.209
2.209
2.209

37.94
69.84
79.90

70.73
59.30
66.98

< T > = 1 5 0 0 K  < P > = 2 8 k b

TAL AVG PRESSURE

8 . 9 x 1 0 6 2.45 x 10 6 3.4 x 10-n 0.5 x 10-,
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Fig. 9. Calculated correlation function for silica glass from
ionic MD model (solid line) and experimentally derived corre-
lation function (dashed line; Mozzi and Warren, 1969). Positions
of peaks, coordination numbers, and comparison to experimen-
tal values are given in Table 7.

the average SiOSi angle aI144. NMR spectroscopy (DuPree
and Pettifer, 1984) has yielded a third SiOSi angle distri-
bution, which is broader and more symmetric than that
of Mozzi and Warren. Both this study and one by Mitra
(1982) using MD on vitreous silica, however, predict av-
erage intertetrahedral bridging angles greatet than 144
( 1 60" and I 53', respectively). Both the low-Z structure of
quartz and quantum mechanical calculations on H.SirO,
dimers indicate that 140" should be the minimum-energy
angle at 0 K (Fig. la). However, if this theoretical mod-
eling is accurate, then the tendency should be for the SiOSi
angle to expand with an input of thermal energy (Fig. 1a),
and the average should be somewhat higher than l44 at
temperatures not only above the melting point but even
as low as several hundred degrees Celsius.

Analysis of ring geometries in our calculations using
the ionic model (Table 9) reveals that the average SiOSi
angle in rings containing 4 or more Si atoms is larger than
144, as predicted by quantum mechanics, MD, and con-
tinuous random network (CRN) models (deleeuw et al.,

Tnele 7. Comparison of coordination numbers (CN) and cor-
relation function (15) peaks

Coordination numbers
Correlation function peaks

(A)

Experi_
lonic Covalent ment

Experi-
lonic Covalent ment

Fig. 10. Number of O atoms with a radius of r, N(r), vs. the
distance from a given Si ion using the ionic model. Clear plateau
at N(r) : 4.0 and r : 2.0 gives the coordination number of Si
and a limit for the length of SiO bonds.

1985). Since the vitreous SiO, structure is dominated by
5- and 6-membered Si rings (Table l0), it becomes dif-
ficult to justify the l44 average for the SiOSi angle from
any theoretical evidence. These arguments do not pre-
clude the original Mozzi and Warren (1969) statement
that a maximum in the distribution occurs at 144"; how-
ever, this peak should be very broad and look more like
the distribution obtained by DuPree and Pettifer (1984)
using NMR spectroscopy. The only theoretical calculations
we know of that reproduce theMozzi and Warren distri-
bution is the Gaskell and Tarrant (1980) computer-re-
laxed version of Bell and Dean's (1971) CRN model.
Gaskell and Tarrant noted, however, that their model has
overrelaxed the strain energy in the system by a factor of
four and gives a bond-angle distribution that is too nar-
row (130'to 160'instead of 120'to 180'). As stated ear-
lier, these tails on the intertetrahedral angle distribution
are critical in determining the average because of the
asymmetric slopes on the quantum mechanical potential-
energy surface.

The ring statistics of the MD simulations are of interest
as a comparison to other models and experiment. The
results of our ionic, low-pressure model agree well with
those of the MD model of Soules (1979) and the CRN

TneLe 8. Comparison of average bond length and angles be-
tween ionic and covalent MD simulations and exper-
iments

L

z

Atomic
parr

<T>=300K  <P>=2kb

T O T A L

sio 0)
sio (il)
oo 0)
oo (il)
sisi (r)
sisi (il)

1.625 1 .600 1.620
4.300 4.300 4.15
2.55 2.525 2.65
5.100 5.125 4.95
3.200 3.200 3.12
4.600 5.650 5.18

Nofe.'Values are from ionic and covalent MD results and from exoeri-
ments of Mozzi and Warren (1969).

3.97 3.96
28.3 20.8
5.85 6.46

46.6 22.9
3.92 4.20

21.2 9.7

4't2
b

1 8
4

1 2

SiO bond
(A)

SiOSi angle OS|O angle
f) f)

lonic MD
Covalent MD
Experiment 1

(Mozzi and Warren, 1969)
ExDeriment 2

(Dasilva et al., 1974)

1.642
1.631
1.620

1.620

108.9
1 08.1
109.5

109.4

160.5
159.3
144.0

153.0



CALCULATED

C O V A L E N T

I O N I C

KUBICKI AND LASAGA:

<T>=3OOK <P>=2kb

1 . 2  1 . 4  1 . 6  l .  a
s i o  BoND o t s tn ruce  t i >

O - S i - O  D I S T R I B U T I O N

1 0 0 . 0  1 2 0 .  o

ANGLE (deg)

Notei The deleeuw et al. (1985) values are from a @ntinuous ranclom
network model (CRN). The 5T06-31 G* values are from highlevel quantum
mechanical calculations on isolated rings of three silica tetrahedra with
nonbridging oxygens saturated with H atoms' Analytic values are from
optimized ring structures in isolated molecular clusters based on equations
fit to OM potential-energy surfaces.

model of Bell and Dean (1971) with the important ex-
ception of the existence of 3-membered Si rings in the
MD models. These planar, highly strained structures have
been used to explain the D, line in the Raman spectrum
of SiO, glass (Galeener, 1982; McMillan et al', 1984). If
this assignment is correct, the MD simulations may be a
more accurate reproduction of glass structure than the
ball-and-stick models. The ionic, high-pressure run (Ta-

ble 10) shows that aI V/Vo: 0.6, 3- and 4-membered Si
rings begin to dominate the structure of the glass. This
finding supports the assignment ofDr (Sharma et al., l98l)
and D, to small rings on the basis of the intensity in-
creases of these two peaks with pressure (Hemley et al.,
1986). The change from 6-membered Si rings to 4-mem-
bered Si rings may also have some important effects on
melt diffusion, as will be discussed later.

Given the above errors in the reproduction of the SiO,
system, we have studied the changes of structure with
temperature and pressure that are easily obtainable with
MD. Compressibilities of individual bond types and an-
gles are found from runs at different densities so that a
"polyhedral" approach to studying the melt or glass may
be adopted (Hazen and Finger, 1982). Knowledge of these
factors is of great importance to the study of diffirsion,
nucleation, and crystal growth under geologic conditions
where higher temperatures and pressures predominate.

Figure l2 shows the relative changes in three important
structural features with pressure for the ionic model SiO
bond length, OSiO angle, and SiOSi angle. Clearly, the

lengths from X-ray data (Mozzi and Warren, 1969) are narrower

than the calculated distributions, but the covalent model signif-

icantly corrects the bondJength distribution as compared with

the ionic model.

MOLECULAR DYNAMICS SIMULATIONS OF SiO,

TneLe 9. Bond lengths and angles of rings in vitreous silica

SiO bond OS|O angle S|OSi angle

Bulk average
160.6 (ionic MD)
159.3 (covalent MD)
152.7 (deLeeuw et al., 1985)
144.0 (Mozzi and Wanen, 1969)
152.0 (DaSilva et al., 1974)

Rings of three silica tetrahedra
108.0 140.4 (ionic MD)
89.8 129.5 (covalent MD)

1.638
1.631
1.636
1.620
1.620

1.643
1.668
1.636
1 .641
1 .613

1.633
1.617
1.636
1.593

108.9
108.1
109.1
109.4
109.4

100.6
106.5
103.5

Rings of four silica tetrahedra

132.0 (deLeeuw et al., 1985)
133.s (5106-31G)
136.5 (analytic)

159.1 (ionic MD)
154.4 (covalent MD)
146.4 (deleeuw et al., 1985)
152.9 (analytic)

108.7
106.3
105.1
112.2

1 4 0 .  O

8 0 .  0  l O O .  O 1 2 0 . 0  1 4 0 .  o
ANGLE (deg)

160.  o  180.  0

Fig. I l. Plots of distribution of SiO bond lengths, OSiO tet-
rahedral angles, and SiOSi intertetrahedral angles with the ionic
model results (solid lines) compared to the covalent model re-
sults (dashed lines). Actual distributions of tetrahedral angles
from Esn experiments (Gaskell and Tarrant, 1980) and SiO bond
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TaeLe 10. Vitreous silica ring statistics

Atoms in
pnmary nng

Ring size (%l Model Reference

/Vote.'MD : molecular dynamics; CRN : continuous random network;
ILP : ionic, low-pressure; IHP : ionic, high-pressure.

- p : 3 . 6 1 7 9 / c m 3 -

dominant effect ofincreasing pressure is the contraction
of the SiOSi angle. As found in static calculations for
quartz (Lasaga and Gibbs, 1987), most of the compress-
ibility of Si{}, is dependent upon this parameter. Tetra-
hedral angles and bond distances are much less compress-
ible and do not undergo drastic change up to 100 kbar
(Hazen and Finger, 1982), where Si changes to 6-fold
coordination in stishovite. The tatSi to r6tSi transition was
observed in these simulations along with a consistent in-

60. 70. ao. 90. too.
PRESSURE (kbor.)

Fig. 12. Percent changes in average bond lengths and angles
with pressure showing the relative flexibility ofthe SiOSi angle
over SiO bonds and OSiO angles in the ionic model.
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Fig. 13. This strong correlation between ln D" (at 6000 K
and 40 to 100 kbar) and 5-coordinated Si suggests that the
anomalous increase in diffirsion rate with pressure may be a
defect-controlled process. The linear correlation coefficient here
is 0.99.

crease in the percentage of tstSi (Fig. l3). Contraction of
the SiOSi angle should be expected in this simulation,
because similar effects are seen experimentally in quartz
under pressure. Levien et al. (1980) have shown that the
SiOSi angle decreases by 6.50/o and the SiO bond de-
creases by 0.260/o when quartz is subjected to a pressure
of 60 kbar. This is a change of -0.16"/kbar and -7 x
l0-s A"/kbar in quartz; our simulations give -0.09'lkbar

and -18 x l0-s futbar over the same pressure range.
Considering that the latter values are for a melt at 6000
K and the former are for crystalline quarlz, this agree-
ment is startling and may be an indication of the overall
dominance of bulk properties such as compressibility by
individual coordination polyhedra.

DrrrusroN
MD simulations allow calculation of self-diffusion coef-

ficients by the Einstein equation

0.0
0.0
0.0
4.6
5.6
5.0
0.0
c .o
7 .4

12.0
1  1 . 0
19.0
20.4
28.7
s0.0
24.0
28.O
20.4
16.7
23.1
6 1 . 0
53.0
57.9
40.7
8.3
i o

1 . 9
0.9

MD
CRN
ILP
Covalent
IHP-
MD
CRN
ILP
Covalent
IHP-
MD
CRN
ILP
Covalent
IHP-
MD
CRN
ILP
Covalent
IHP-
MD
CRN
ILP
Covalent
IHP-
ILP
Covalent
IHP-

Soules (1979)
Bell and Dean (1971)
this study
this study
this study
Soules (1979)
Bell and Dean (1971)
this study
this study
this study
Soules (1979)
Bell and Dean (1971)
this study
this study
this study
Soules (1979)
Bell and Dean (1971)
this study
this study
this study
Soules (1979)
Bell and Dean (1971)
this study
this study
this study
this study
this study
this study

(17)

where z : time interval during diffirsion, lr,(r) - r,(0)1'z
is the squared displacement of an ion of type i during the
time interval 7, and N is the number of silicons or oxy-
gens in the cubic cell. "(. . .)" in this case represents av-
eraging over many different initial times. Equation l7
predicts a straight line for a plot of (r2) vs. time, and a
slope that is related to the diffusion coemcient D,. Given
the time scale of MD simulations I ps (picosecond) :
1000 time steps:75 h of CPU time on a vAx tr/ lsof,
diffusion coemcients are usually determined at geologi-
cally unreasonable temperatures (e.g., 6000 K). However,
extrapolation of high-temperature values to more realis-
tic conditions may be possible if the structure does not
change drastically between the high- and low-tempera-
ture ends and there are no changes in diffusion mecha-
nism across the extrapolated temperature range.
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Fig. 14. Mean-squared displacement of O and Si at 6000 K
and 100 kbar. Vibrations of atoms cause wiggles from best-fit
line (dashed), and these become more significant at lower tem-
peratures, which drastically increases the error in calculated dif-
fusion coefrcients at lower temperatures.

Figure 14 is a plot of (r'z) vs. time for O and Si at 6000
K and 100 kbar. The slope of the line is related to the
diffusion coefficient by Equation 17. For O and Si, self-
diffusion coefiicients are 8.4 x l0-5 and 6.1 x lQ-s srnzT
s, respectively, at 6000 K and 100 kbar; and both are
approximately 2 x l0-5 at 6000 K and 40 kbar. These
diffusion values are in reasonable agreement with theo-
retical values found for Si and O in alkali-silicate melts
(5 x l0-' cm'?ls) by Soules (1979). Deviations from lin-
earity increase in these plots as temperature decreases,
probably because of the effects of vibrations imprinted
on migration. Hence, at lower temperatures, the ions are

loo00 5000 2500

<P>=40kbo rs

o

1  
o  -  o X Y G E N

.  *  -  S I L I c o N

c

o \

l . o  a . o 3.0 ,a. O 5. o

l / T E M P  ( x l O . r 4 )  < 1 / K >

Fig. 15. Arrhenius plot ofln D vs. l/T used to obtain acti-
vation energy ofditrusion. Note large increase inln D at l/T :

1.6 (T :6000 K), which probably indicates a change ofdiffirsion
mechanism above this temperature that is associated with a large
shift in melt structure toward 2- and 3-coordinated Si. Simula-
tions at 2000 K were nrn for 2000 time steps wirh dt : 2.5 fs
(femtoseconds).

Fig. r 6. ,n. ,,.on, 
',1'"'ul'ilu;lJ:; 

,r* rn D vs. pressure
plot between 40 and 100 kbar allows for a fairly precise deter-
mination of activation volume for each atom type. Negative AIz.
implies that strained species, such as 5-coordinated Si or

3;::lo*"0 
Si rings, may be controlling diftrsion at hish pres'

spending more time rattling around in their cages than
moving through the melt, and longer run times are need-
ed to obtain a reliable diffusion coefficient.

Runs of 1200 to 2000 time steps were made to inves-
tigate temperature and pressure variations of Si and O
self-diffusion coefficients. Since the plots of mean square
displacement (MSD) vs. time have an initial period where
the relationship is parabolic and the Einstein equation
(Eq. 17) does not apply, only the final 800 to 1000 time
steps of each run were used to determine the dift-rsion
coefficients [i.e., t(0) was used as a starting configuration,
but only t(400) to t(1200) were used to determine the
slope of the linel. Using Arrhenius plots of ln D vs.
(l/7) and P (Figs. 15 and 16), activation energies and
volumes may be determined from the relations

ln(D) : (-AE"/R)(|/7) + ln(l') (18)

for temperature changes and

ln(D) : (AV)(- P/ RI) + tn(A,) (1e)

for pressure changes. A-E" and AV^ arc the activation en-
ergy and volume, respectively, R is the gas constant, and
I is the / intercept of the least-squares fit line. Values
obtained give a good check on the accuracy ofthe model
when compared to experimental values, and they also
give clues to the reaction mechanism involved in diffu-
sion. Proposed mechanisms may then be verified with
detailed molecular graphics of diftrsing ions.

The ln D vs. (l/T') plot shows a marked curvature in-
dicating that the activation energy of diffi.rsion is a func-
tion of temperature. If only the 2000 to 6000 K range is
used, however, a linear trend is closely approximated (Fig.
l5). Exclusion of the 8000 and 9000 K values is also
justified by the large change in 2- and 3-coordinated sil-
icons along with nonbonded oxygens at these tempera-
tures. With the slope of the three lower-temperature

- t
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Fig. 17. Displacement squared of Sio* ion after scaling has
been removed for a simulation at T :6000 K and P : 60 kbar.
The rapid rise from I : 550 to / : 600 marks a diftrsion event
during which time the atom is also 3-coordinated (see Figs. 18
and l9).

points, the activation eneryies are 102.3 kJ/mol for Si and
9l.l kJ/mol for O. These values are low compared with
experimental values of 20G400 kJ/mol. Both atom types
are governed by similar energetics with the O moving
more rapidly and diffusing more readily because of its
lower mass and because it is not as tightly enclosed within
its primary coordination sphere as Si.

953

Activation volumes are obtained from the slope of the
ln D vs. pressure line (Fig. 16). Because the rate ofdif-
fusion increases with pressure up to 100 kbar, these AZ"
values are negative, in agreement with experimental find-
ings for other polymerized silicate melts (Kushiro, 1983).
The activation volumes from the MD results are -4.01

cm3/mol for Si and -4.53 cm3/mol for O. The change in
the diffusion rate for O with pressure is greater than for
Si, which hints that the transition-state complex for dif-
fusion is more compact for O than for Si, and both have
denser structures than normal melt polyhedra. Thus, al-
though temperature and pressure have opposite effects on
the type of defects formed, the nature of SiO, melts causes
both to increase the diffusion rate. Above 100 kbar, the
diffusion coefficients decrease. because Si has become
6-coordinated and is more tightly bound within its pri-
mary coordination shell.

One of the biggest advantages that the MD technique
enjoys is a knowledge of the positions of all individual
ions as a function of time. Thus, reaction mechanisms
may be checked directly with MD, and the ionic behavior
should be as realistic as the potential used to model it.
Figure l7 follows the displacement of a Si ion throughout
a segment of a simulation. At time step 578, there is a
large (> I A') displacement of this Si ion, and it begins
to vibrate around an average position of 1.3 A'compared
to the average of 0.8 A' before this step. This diffusion
event coincides with step 578 in Figure 18, which shows
that the Si ion is bonded to three oxygen atoms at this
point. The structure of this complex is nearly trigonal

KUBICKI AND LASAGA: MOLECULAR DYNAMICS SIMULATIONS OF SiO,
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Fig. 18. Distances ofnearest-neighbor O atoms to the Si atom ofFig. 17 plotted vs. time. The average SiO bond is l.-. A in
this case, and the maximum distance for a bond is set at 2.0 A in these simulations. Note that the loss of no. I coincides with the
retumofno.2toanormalbridgrngOposit ion.Also,no.5wasabridgingOonanearbytetrahedronthatformeda3-membered
Si ring with the central Si atom before the loss ofno. I occurred.
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Fig. 19. Molecular graphics (onrrr) of step 578 in Figs. 17
and 18. The formation of this trigonal planar complex coincides
with a change in the average position ofthe central Si atom in
the targeted tetrahedra. Bond distances are given in A.

planar (Fig. l9); the,r coordinates ofthe Si and all three
bonded oxygens are within 10.5 A ofeach other, and the
OSiO angles are approximately 120". Within this frame-
work, it becomes possible to visualize Si diffusion normal
to the equatorial oxygens toward the upper right ofFigure
19 .

At time step 700 in Figure 18, an O transfer begins
between tetrahedra. As the new O becomes bonded to the
central Si, a 5-fold complex is formed that is a distorted
square pyramid (Fig. 20) corresponding to step 775 in
Figure 18. A nearly planar ring with three silica tetrahe-
dra is also formed at this time using the 5-fold Si. This
highly strained complex brings another Si within 3 A of

Fig. 20. Distorted square pyramidal complex from step 780
of Fig. 18 showing a mechanism of O transfer from one tetra-
hedron to another. No. I is the O leaving the original tetrahe-
dron, and no. 5 is the new atom replacing it. All five of the
oxygens bonded to the central Si are bridging oxygens, but two
of the surrounding tetrahedra have been eliminated from the
drawing for clarity.

+  -  Z C N 3  S i

x  -  Z N B r O

- l i r . 0  - 1 3 . o  - l ? . !  - t l . o  - l o . o  - 9 . o  - a . o

Fig. 2l . Percentage of 3-coordinated Si and nonbridging oxy-
gens are plotted vs. ln D (at V : Vo and 2000 to 6000 K) here
to illustrate the breakdown of polymerization and lowering of
viscosity with increasing temperature. Correlations between these
defects and ln D for Si and O are both 0.99, which is suggestive
of a defect-controlled mechanism for difusion.

the central Si atom and completes the oxygen transfer
(Fig. l8). Within another l0 time steps, one of the orig-
inally bonded O atoms leaves the square pyramidal com-
plex, and the central Si returns to a tetrahedral geometry
without the 3-membered Si ring.

This mechanism involves a short-lived 5-coordinated
Si that the pressure derivatives of the diffusion coem-
cients indicate may be a defect responsible for the anom-
alous pressure dependence of diffusion. Other workers
(Brawer, I 9 8 I ) have seen the effect of 5-fold coordination
on diffusion in similar systems (BeFr), and our data sup-
port this conclusion, because there is a strong correlation
between the percentage of 5-fold Si and ln D in our data
(Fig. l3). In addition, the increase of ln D with temper-
ature is correlated with 3-coordinated Si and nonbridging
oxygen species (Fig. 2l).

The role of 3- and 4-membered Si rings in difusion at
high pressures is not clear but well worth investigating.
If these strained species do play an active role in melt
diffusion, they could explain the anomalous pressure de-
pendence of diffirsion coefflcients for network-forming ions
while at the same time slowing the diffusion rates of net-
work-modifying cations. Computer animation of these
simulations may be necessary to study many diffirsion
events and determine which structures are responsible for
negative activation volumes in silicic melts and which
are incidental.

At higher temperatures (i.e., T > 6000 K), different
mechanisms apparently become the controlling factors
for diffirsion because the ln D vs. (l/7") plot (Fig. 15) has
a sharp increase in slope at this point and 3-fold Si and
nonbridging O become abundant. Above 100 kbar, the
3-fold and 5-fold mechanisms are no longer applicable
either, because there is a large decrease in the diffusion
coefficient at this point and the transition to a melt dom-
inated by 6-coordinated Si has taken place.
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CoNcr,usroxs

Molecular dynamics calculations using the ionic ap-
proximation have proven to be useful for molten salt
systems but begin to become unrealistic for silicates in
which the bonding has a substantially covalent character.
Success in reproducing bonding geometries and diffusion
properties with this method, however, is encouraging be-
cause its flexibility and simplicity allow new insight into
previously intractable problems. Previously, mechanisms
of diffusion and structures of melts at high pressures and
temperatures had to be inferred from experimental re-
sults and were largely untestable. Further, the develop-
ment of an integrated theory of melt diffirsion, nuclea-
tion, and crystal growth may be possible with simulations
of this type.

The most important development to be made now is
a potential that will accurately describe the nature ofthe
covalent bonding in silicates in order to more realistically
model melt dynamics. The initial results using the co-
valent potential reported here encourage further work on
refining such potentials. An important focus of future work
will be spectral analysis of the MD simulations. Such
work will be a stringent test on the accuracy of the models.
It is our ultimate goal to be able to simulate known prop-
erties ofsilicates accurately enough (and without the use
of empirically fit parameters) that faith may be put in
extrapolations of thermodynamic and atomic properties
into regions of P-T space not easily examined experi-
mentally.
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