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Ordering behavior of albite using the modified sequential construction method
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ABSTRACT

In order to use a local unit larger than that suggested by Andersen and Mazo (1979), a
new method—the modified sequential construction method or “MSCM” —has been de-
veloped for the calculation of order parameters and configurational entropies in albite.
This method has several advantages over the older methods, such as being readily usable
for any size of local structural unit. The number of distributions of atoms among sites is
first reduced to noninteracting units, and the resulting combinatorial factor is then cor-
rected by an approximated correction factor. In comparison with Monte Carlo results, this
new approximation gives a better order parameter for the 2-D model of albite of Andersen
and Mazo than the quasi-chemical and the sequential construction methods. The maxi-
mum numerical deviation of the calculated order parameter (for Andersen and Mazo’s
2-D model of albite) from the Monte Carlo results is about 6% for the quasi-chemical
method, 2% for the sequential construction method, and only about 1% for the modified
sequential construction method. It is also shown that if the size of the local unit becomes
larger, the entropy curve becomes steeper at temperatures in which the high albite-fow

albite transition occurs.

INTRODUCTION

The extent of Al-Si ordering in feldspar minerals de-
pends directly on a number of variables, such as temper-
ature, time, rate of cooling, and pressure. Temperature is
probably the most influential variable, and the ordering
behavior of feldspars has recently been under intensive
study.

The structure of feldspar minerals is well known, and
readers are referred to reviews by MacKenzie and Zuss-
man (1974) and Smith (1974). In the feldspar framework,
there are four different types of sites that are occupied by
Al and Si atoms. Crystallographically, these sites are de-
noted by T,(0O), T ,(m), T,(O), and T,(m). It seems that,
unlike most ordering phenomena, the site energies in these
minerals have a more important role than the interaction
energies in the ordering behavior of the lattice. Al has a
tendency to occupy the T,(O) site, especially at lower
temperatures, and in “low” albite, almost all the Al at-
oms are located on this site. As temperature increases, Al
atoms migrate to other sites, and the lattice becomes more
disordered. At sufficiently high temperatures, but still be-
low the melting point of albite, each site is statistically
occupied by Al and Si atoms, i.e., with probability % and
%, respectively. The distribution of Al and Si atoms on
T sites is such that no two Al atoms sit next to each other,
however. This phenomenon, known as the Al-avoidance
principle, is based on experimental observations (Smith,
1974).

The ordering behavior of albite has been modeled us-
ing various approximation methods, such as the quasi-
chemical method (Mazo, 1977) and the Kikuchi method
(Rajabali, 1981). In these models, site preference energies
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and the Al-avoidance principle were included in the cal-
culations. Andersen and Mazo (1979) then pointed out
that local charge neutrality, as well as the global charge
balance, have to be imposed on the distributions; only
those distributions that allow local charge neutrality are
accepted. After this suggestion, new calculations that in-
cluded local charge neutrality were carried out by the se-
quential construction method (Rajabali, 1986) and the
independent pairs-and-sites method (Rajabali, 1987). In
all these calculations, the smallest possible size for the
neutral local units has been considered, and the idea of
Andersen and Mazo is simply that the ratio of alumi-
nums to silicons in a unit must be equal to that for the
whole lattice. This is referred to as local charge neutrality.

Obviously, the effect of local charge balance is to re-
duce the number of distributions of atoms among T sites,
therefore reducing the configurational entropy. Recent
work (Rajabali, 1987), however, shows that the size of
the local unit may have some important effects on the
ordering behavior of the model lattice. A crucial ques-
tion, therefore, relates to how big the local unit must be.
There is no theoretical way of choosing an acceptable
local unit size, and one may even expect that it changes
with temperature.

In the first calculations (with no local charge neutrali-
ty), the whole lattice was chosen as a unit. In the later
calculations (those with local charge neutrality) the small-
est possible size was chosen as a unit. Thus only the larg-
est and the smallest possible unit sizes have been consid-
ered, in order to simplify the mathematics. To use local
unit sizes that are temperature dependent complicates the
problem, and, as in the previous calculations, local units
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Fig. 1. Local units: (a) with two squares, (b) with three

squares. In each square the a site is shown by a circle and the
other corners of the squares are b sites. The X at the center of
each square represents the position of an atom of Na. The sides
of squares are smaller than the distance between the squares
(, < b).

are used that are independent of temperature. For inter-
mediate local unit sizes, it seems that it is not possible to
use the previous approximations in straightforward cal-
culations. The main purpose of this paper is to use a new
model with local units that are larger and more realistic
than the local unit used by Andersen and Mazo and to
introduce a new method of calculation, the modified se-
quential construction method (MSCM).

In the framework of albite, each Na atom is surrounded
by 12 Al and Si atoms. For this reason, a unit that is
three times as big as the one proposed previously seems
to be reasonable. In the following, units that are 1, 2, and
3 times larger than the unit of Andersen and Mazo will
be used.

MODEL AND UNIT

The two-dimensional model of Andersen and Mazo is
a plane that is constructed of squares of tetrahedral sites.
Unlike the T ,(O) site, the other T sites do not show any
preference for occupation by Al and so are treated as
being equivalent in this model. These sites will be de-
noted by b and the special site, T,(0), by a. One-half of
the squares have one Na atom at their centers, and each
of these squares is surrounded by four squares with no
Na atoms at their centers. Any square with Na at its
center is considered to be a unit, containing one a and
three b sites. In order to obey the principle of local charge
neutrality, only those distributions of Al and Si on T sites
in which each unit has one Al (4) and three Si (B) atoms
are allowed.

To obtain units twice as large as those of Andersen and
Mazo, two parallel and identical planes are selected, each
of which is the same as the plane of the previous model.
However, the distance between the planes is greater than
the size of the squares in order to still have four nearest
T sites around any T site. Two parallel squares (one from
each plane) with Na at their centers can be chosen as a
unit. Of course, in this model, distributions obeying local
charge balance in each unit have only two A and six B
atoms located on their T sites. Such a unit is shown in
Figure la. Similarly, in order to have units with 3, 4, . ..
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Fig. 2. A sublattice with nine units. The square at the middle
is considered to be a nonsolid unit, and the rest are solid units.
The a sites are shown by circles, and the positions of Na atoms
are shown by X’s.

squares, the model will be constructed by 3, 4, . . . parallel
identical planes, respectively, in which each plane is the
same as in Andersen and Mazo’s model. A unit with three
squares is shown in Figure 1b. It should be noted that
there is no energetic interaction between the layers. They
are coupled only by the local charge balance condition.

MODIFIED SEQUENTIAL CONSTRUCTION METHOD

For the calculation of the order parameter p, which is
the probability of an a site being occupied by an 4 atom,
and the configurational entropy, the sequential-construc-
tion-method (SCM) approximation is used. In this meth-
od, units are divided arbitrarily into two imaginary groups,
called solid and nonsolid units, in such a way that each
solid unit is surrounded only by nonsolid units and vice
versa. There are, therefore, no solid-solid and nonsolid-
nonsolid interactions (only the nearest-neighbor interac-
tions among atoms on T sites are considered). This meth-
od will first be applied to Andersen and Mazo’s model,
in order to make a comparison with the previous results.

Suppose that one-half of the 4 atoms are distributed
on the solid units in such a way that each solid unit has
one A, either on an a site or on a b site. The probability
that an a site of a solid unit has been occupied by an 4
atom is p. It can easily be shown that the probability of
occupation of a b site of the solid unit by an 4 atom
(P) is given by P = (1 — p)/3. The sublattice shown in
Figure 2 reveals the following probabilities for the avail-
ability of T sites of a nonsolid unit for occupation by A:
probability for site 1 = 1 — [p + (1 — p)/3]1 = %(1 — p);
probability for site 2 =1 — [p + (1 — p)/3] =%(1 — p);
probability for site 3 =1 —{(1 — p)/3 + (1 — p)/3] =
(1 + 2p)/3; probability for site 4 = 1 — [(1 — p)/ 3+
(1 — p)/3}1= (1 + 2p)/3. (Note that any site of a nonsolid
unit will be unavailable by probability p for any a site of
a solid unit that is next to it and by probability (1 — p)/3
for any b site of a solid unit that is in its neighborhood.)

The probability of availability of the one a and three
b sites of any nonsolid unit is therefore given by (1 +
2p)y3and (1 + 2p)/3 + (1 —p) + (1 —p) =0 -
2p)/3, respectively.

The total number of available a sites (for A occupation)
is [(1 + 2p)/3]N/2 + N/2 = Nl(p + 2)/3], where the first
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TABLE1. Probabilities, P, and the multiplicities,
A, of different units

n=1 n=2 n=3
N P N P A P
MN=1 P =1 P, A =1 P,
N=3 P, A= P, =15 P,
A=11 P, =51 P
N=45 P,

Note: The value of nrepresents the number of squares
in a unit or the number of planes in the model. The
subscript ion P, and A, denotes the number of A atoms
on a sites of the unit.

term belongs to the nonsolid units and the second term
to the solid units. N is the total number of units. Now,
the number of distributions of 4 atoms on available a
sites is needed. Since each ¢ site is occupied with prob-
ability p, there are pN of 4 atoms that have to be dis-
tributed among N[(p + 2)/3] available a sites. The num-
ber of such distributions, w(a), is given by

N + 2)/3]H
(eN)! [A(1 — p)N]!

wla) =

Similarly, there are
[(5 — 2p)/3)(N/2) + 3(N/2) = N[(T — p)/3]

available b sites for 4 occupation. The remaining A4 at-
oms, whose number is 3[(1 — p)/3], have to be distrib-
uted on the available b sites. The number of such distri-
butions, w(b), is

NI(7 = py/3]}!
(1 — NI {[(4 + 2p)/3]N}

w(b) =

In the above calculations of both w(a) and w(b), the Al-
avoidance principle was taken into account. If this re-
striction was not included in the calculation, the number
of distributions on a and b sites would have been W(a)
and W(b), respectively, such that,

M

W@ = No NG = T

and

(€))
[ = NI + NI

In the calculation of W(a) and W(b), all a and b sites are
considered to be available. Note that local charge neu-
trality was not included in the calculation of either the w
or the W values. In the calculation of w values, the prin-
ciple of Al avoidance was included, however, so that the
difference between w and W values is due only to the
principle of Al avoidance.

In the following calculations, it is assumed that the
units are all noninteracting, and with this unrealistic as-

W) =

TaBLe 2. Order parameter, p, and configuration entropy (per
mole Na), S/R, of model albite with different sizes of

local unit
n=1 n=2 n=3

u P SR p SR P SIA
Vs 0.332 1.032 0.324 1.145 0.366 1.202
0.4 0.351 1.026 0.331 1.140 0.394 1.185
0.5 0.380 1.012 0.366 1.128 0.444 1.148
% 0.431 0.983 0.411 1.102 0.537 1.056
1 0.540 0.891 0.506 1.023 0.794 0.628
2 0.829 0.467 0.780 0.617

4 0.990 0.047 0.983 0.076

Note: The value of n denotes the number of squares in a unit.

sumption, the total number of distributions is calculated.
The incorrect combinatorial factor is then corrected by
multiplying it by a correction factor f, where f =
[w(@)/ W(@)][w(b) W(b)]. The value of f is assumed to be
independent of the size of the unit, although it seems that
as the number of parallel planes in the model increases,
factually decreases. As a result of increasing the number
of planes, the number of units on the sides of planes in-
creases so that, on average, interaction between units de-
creases and a smaller correction factor becomes neces-
sary. In the present model the lattice is so large that this
side effect does not play an important role, however.

For the model with one plane, Table 1 gives all allowed
distributions and their probabilities for a unit that are
consistent with both the local charge neutrality and Al-
avoidance principle. To impose local charge balance, only
one A atom has to be allocated to each unit. In this case
there are no 4-A4 nearest neighbors in any units. In Table
1, the subscript # of probability P,, and multiplicity, A,
represents the number of 4 atoms on a sites of a unit.

If the interactions among units are not taken into ac-
count, the total number of distributions would be W,
where

M
V= NN

Because of the local charge balance and the normalization
condition, P, and P, are not independent variables. Since
the a site of each unit is occupied by 4 with probability
p, P, = p, and the normalization condition gives P, +
3P, = 1. Hence, W in terms of p is given by

N

55T

In order to impose the principle of Al avoidance among
units, W has to be multiplied by the correction factor,
and the approximated true combinatorial factor g is giv-
en by
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TABLE3. Calculated order parameters for the 2-D model of albite of Andersen and Mazo
(1979) using different approximations

Puc — Psem Puc_— Puscm Puc ~ Pac
Puc Puc Puc

u Pac Pscm Puscm Puc x 100 x 100 x 100
Ya 0.346 0.328 0.332 0.334 18 0.6 —-54
0.4 ? 0.347 0.351 0.355 23 1.1 ?

0.5 0.398 0.377 0.380 0.385 21 1.3 -5.9
%4 0.451 0.431 0.431 0.435 0.9 0.9 -6.3
1 0.552 0.548 0.540 0.543 -0.9 0.6 -38
2 0.776 0.837 0.829 0.824 -1.6 -0.6 4.9

Note: Pac, Psown Puscw @Nd Py have been calcuated by the quasi-chemical, sequential-construction,
modified-sequential-construction, and Monte Carlo approximation methods, respectively.

To find the configurational entropy, we use the Boltz-
man equation, s = k In g. The resulting entropy is —S/Nk =
plnp + 2[(1 — p)/3In{(1 — p)/3] — %(p + )ln(p + 2) —
[(7 — p)/3Mn[(7 — p)/3] + %(p + 2)In 3 + 21n 2.

We take ¢ < 0 for the energy of an 4 atom on one a
site, in such a way that all other site energies and inter-
action energies become zero, except for the interaction
energy between two nearest-neighbor 4 atoms, to which
an infinite energy has already been devoted (Al avoid-
ance). (No 4-A4 nearest-neighbor distributions have been
allowed in g.) The lattice energy F and the free energy of
the lattice A are E = pNe2 and A = E — TS = pNe, —
TS. ¢ = A/INKT = —pU — S/Nk, where U is defined as
—ea/kT.

To find the equilibrium state, ¢ has to be minimized
with respect to p, d¢/dp =0, giving U =In p — % 1In[(1 —
p)Y3l — % In(p + 2) + Y5 In[(7 - p)/3] + % 1n 3. The
numerical results are given in Table 2.

CALCULATION FOR UNITS CONSISTING OF TWO
SQUARES
In this case the approximated combinatorial factor is

given by

_ /2! 5
[(N72)Po]! {I(N/2)P, ] I(NT2) Po) '3

g i

where the correction factor f is the same as before and
the probabilities and multiplicities for the different con-
figurations of the unit with two squares are included in
Table 1. Probabilities P,, P,, and P, are not independent
variables. On the one hand, there are (N/2)P, units with
two A atoms on their a sites and 8(/N/2)P, units with one
A atom on their a sites. The total number of 4 atoms on
a sites is then 2 x (N/2)P, + 1 x 8(N/2)P,. On the other
hand, there are Np 4 atoms on ¢ sites and, therefore pN =
2(N/2)P, + 8(N/2)P, or P, + 4P, = p. The normalization
also gives P, + 8P, + 11P, = 1. If the above equations
are solved for P, and P,, one obtains P, = p — 4P, and
Py=(1 —p—4P)/11.

If P,, P,, and f are substituted in the combinatorial
factor g and the Boltzman equation is used, the following
expression is obtained for the entropy:

—S/Nk = %{(p — 4P)In(p — 4P,) + 8P,In P,
+ (1 — p — 4P)In[(1 — p — 4P)/11]}
— %P + ln(p + 2) — [(1 — p)/3] X
In[(1 — p)/3] — [(7 — p)/3]n[7 — p)/3]
+%p+2n3+2n2

where k is the Boltzman constant.

Again, the function ¢ can be defined as ¢ = A/NkT =
—pU — S/Nk, and to find the equilibrium state, ¢ has to
be minimized with respect to p and P,. The results are

P =[2-V4-5(1 —pl/5

and

U= W{ln(p — 4P,) — In[(1 — p 4P)/11]}
~ % In(p + 2) + ¥ In[(1 — p)/3]
+ Y In[(7 — p)/3] + % In 3.

The results for the order parameter, p, and the config-
urational entropy per mole Na, S/R, are given in Table 2.

CALCULATION FOR UNITS WITH THREE SQUARES

In this case there are 220 ways to distribute three 4
and nine B atoms on T sites of a unit. However, in order
to impose the principle of Al avoidance, only 112 of these
configurations are acceptable. The probabilities and mul-
tiplicities for different acceptable distributions are given
in Table 1. Like the previous cases, the variables p, P,
P,, P,, and P, are not all independent, and with similar
arguments, the following relationships can be obtained:
P, + 15P, + 51P, + 45P, = l and 3p = 3(P;) + 2(15P,) +
51P,or P,=p — 10P, — 17P,and Py =(1 — p — 5P, —
34P))/45.

By using MSCM and the equation .S = k In g, the ap-
proximated configurational entropy is given by —S/Nk =
B{(p — 10P, — 17P)In{p — 10P, — 17P,) + 51PIn P, +
I5P,n P, + (1 — p — 5P, — 34P)In[(1 — p — 5P, —
34P)/45]y — %+ 2n(p + 2) — [(1 — p)/3]-In[(1 —
pY31 = [(7 — pY/3n{(7 — p)/3] + %@ + 2)In 3 + 2 In
2, where k is the Boltzman constant.

To find the state of equilibrium, the function ¢ is again
defined as ¢ = —pU — S/Nk. This is then minimized
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with respect to all the independent variables, p, P,, and
P,. The following equations have been obtained:

U=%In(p — 10P, — 17P)
— % 1n[(1 — p — 5P, — 34P,)/45]
— 2% 1In(2 + p) + Y5 1n[(1 — p)/3) + Y5 In[(7 — p)/3]
+ % In3

and

2025P¥/[(p — 10P, — 17P)(1 — p — 5P, — 34P )] = 1.
Also,

45P3/[(p — 10P, — 17P)X1 — p — 5P, — 34P)] = 1.

Although it seems to be difficult to solve the three equa-
tions above simultaneously, the problem is simplified if
a new variable a is introduced: o = P,/P,. At the high-
temperature limit (in which P, and P, become equal), « =
1; at very low temperatures, « = 0. The results of the
calculation are tabulated for p and S/R in Table 2.

DISCUSSION

The approximation in the sequential construction
method (SCM) comes from the discrimination in the or-
der of distributing atoms among equivalent units. In the
modified sequential construction method (MSCM), the
same discrimination is used as a starting point. By adding
all the available sites of each type and distributing atoms
on them, however, an average of the equal available sites
is devoted to each class, solid and nonsolid, and the de-
gree of discrimination is reduced. MSCM should there-
fore give a better approximation than SCM. To clarify
this point, let us suppose that our lattice has four sites on
a line and we wish to distribute two 4 atoms such that
no A-A nearest-neighbor pair is permitted. There is a
total of three ways of doing this (true combinatorial fac-
tor). If we divide sites into two classes a and b, such that
no a-a nearest-neighbor pair of sites exists, the distribu-
tion of one 4 on a sites can be carried out in two ways
and the distribution of another A on b sites, on average,
in %> way. SCM predicts a total of one way (2 x 1A),
instead of three ways, of distributing two 4 atoms. Fol-
lowing the MSCM approach, there is a total of 2 + 0.5 =
2.5 available sites (¢ and b) for occupation by two 4
atoms, i.e., the two 4 atoms have to be distributed on
2.5 available sites. This gives a combinatorial factor equal
to 2.5 x 1.5/2! = 1.9, where 2.5 and 1.5 are the number
of available sites for the first and the second A atom,
respectively, and 2! in the denominator is due to the in-
distinguishability of the two A atoms. This result is better
than that of SCM (compare 1.9 of MSCM and 1.0 of SCM
with 3.0 of true combinatorial factor).

For testing the MSCM in a more realistic model, cal-
culated values of the order parameter of the quasi-chem-
ical (QC) approach of Andersen and Mazo (1979), SCM
of Rajabali (1986), and MSCM are tabulated in Table 3
along with the Monte Carlo results of Rajabali (1981) for
Andersen and Mazo’s 2-D model of albite. The Monte
Carlo method gives estimates of the configurational en-
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200 |

Fig. 3. The slope of entropy against 7, dS/dT, for three dif-
ferent local units. Each value of n represents the number of
squares of a unit or the number of parallel planes of the model
lattice.

ergy that are accurate to 1% or better—except in the im-
mediate neighborhood of the phase transition—within a
reasonable amount of computing time (Fosdick, 1959).
The data in Table 3 show that the MSCM approximation
gives a better order parameter than SCM and that both
of these approximations work better than quasi-chemical
estimates. Numerically speaking, the maximum differ-
ence of the calculated order parameter from that of the
Monte Carlo calculations is about 6% for quasi-chemical,
2% for SCM, and only about 1% for MSCM.

To see the effect of the size of the local unit on the
thermodynamic behavior of the model lattice, the slope
of the entropy curve, dS/dT, is plotted against T in Figure
3. This figure shows two points. First, in the model lattice
with three squares, which may be more realistic than the
others, the low albite-high albite transition occurs at
higher temperatures. The second point, which may be
more important, is that as the size of the local unit in-
creases, the plot of dS/dT versus T becomes sharper
around the transition temperatures, especially for n = 3.
Although none of these models predicts a first-order tran-
sition (no discontinuity is observed), the n = 3 case gives
a peak that is very much sharper than for n = 1 and n =
2 and is very much closer to first-order transition behav-
ior.
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