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Convolution effect in the determination of compositional profiles and
diffusion coefficients by microprobe step scans
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Arsrnc.cr
We present a mathematical formulation and numerical simulations that allow one to

evaluate the convolution effect in the measurement of compositional or diffi.rsion profiles
due to spatial averaging in microprobe analysis. The analytical relation between the true
and measured (convolved) compositions is reduced to a simple form that can be applied
to calculate the convolution effect in microprobe step-scanning with the aid of an ordinary
scientific calculator.

It is assumed that the excitation intensity of the sample volume has a Gaussian distri-
bution with radial symmetry about the beam axis. The error standard deviation e of the
Gaussian, which is required to evaluate the convolution eflect, can be determined by
analyzing the smoothing of compositional discontinuity in a standard sample. The con-
volution effect on the measurement of a concentration profile vanishes when the latter has
a constant slope and increases with the increase in the curvature of the profile. For a given
value of e, the calculated convolution of a diffirsion profile with constant diffusion coeffi-
cient almost exactly agrees with that predicted from probability theory.

The convolution effect on a diffusion coefficient retrieved directly from an experimen-
tally measured diffusion profile decreases with the increasing length and decreasing value
of e and is insignificant for a profile about 15 pm long in a modern electron microprobe.
Our formulation should also prove useful in retrieving true composition near a grain
boundary from a microprobe spot analysis that suffers from spatial averaging of compo-
sitions on both sides of the boundary.

INrnooucrroN

Precise measurement of compositional profiles in min-
erals, metallic alloys, and glasses is a problem of consid-
erable interest in mineralogy, petrology, and geochemis-
try as well as in materials and solid-state sciences. The
classical application of such measurements is in the field
of diffusion studies. More recently, petrologists have been
measuring compositional zoning in natural minerals in
attempts to retrieve from these data their thermal and
growth histories (e.g., Loomis, 1983).

The compositional zonings are usually measured by
step-scanning of the sample in an electron, ion, or Auger
microprobe. The composition that is measured by the
electron or ion beam represents a weighted spatial aver-
age of the composition of the sample around the point of
incidence of the beam. This convolution effect varies de-
pending on the physics ofthe excitation process and in-
strumental factors, but is probably relatively strong in the
case of electron-microprobe analysis.

volved microprobe analysis of experimentally induced
diftrsion profiles in garnet-garnet diffi.rsion couples. The
diffirsion profiles were extremely short in some cases (El-
phick et al., 1985) so that the retrieval of diffusion pa-
rameters from these profiles required a proper under-
standing ofthe broadening efect due to spatial averaging
in the microprobe spot analysis. A similar problem was
faced by Lo and Schuele (1975), who developed an elab-
orate technique of deconvolution.

In this work, we present a theoretical analysis and nu-
merical simulations of the convolution effect, which are
much simpler than the previous formulations and should
be of general interest in the problem of measurement of
compositional zoning in minerals and other solids by spot
analysis, and also in the retrieval of diftrsion coefrcients
from such data. It should be noted that our treatment is
applicable to the convolution problem in any t11pe of mi-
croprobe (i.e., electron, ion, or Auger microprobe)-not
just to that in the electron microprobe, which is com-

We were led into the problem of analysis of the con- monly used by the geological community.
volution effect as part ofour continuing study on cation Goldstein and Colby (1975) suggested that since the
difiirsion in garnet (Elphick et al., 1985; Loomis et al., deconvolution analysis is extremely difficult to perform,
1985; Ganguly and Chakraborty, 1987). The work in- one may convolve hypothetical concentration profiles
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Fig. l. Spatial averaging effect in the microprobe analysis of
a concentration profile by step-scanning across an interface be-
tween two phases. The true profile is discontinuous at the inter-
face, but when the electron (or ion) beam is near the interface,
the excited sample volume involves compositions on both sides
of the interface, thereby smoothing out the compositional dis-
continuity in the analysis of the concentration profile. (The dis-
tance coordinate Xis equivalent to xr in the text.)

until a match is found with the observed profile and thus
"predict" the true profile. They have developed a (com-
puter-aided) numerical method to perform the convolu-
tion analysis. Below, we develop analytical formulations
that serve the same purpose, but can be easily used to
calculate the convolution effect with the aid ofa scientific
calculator (see example in App. 3). In addition, we also
present an analytical relation from which one can directly
calculate the error in the determination of the diffirsion
coefficient due to the convolution effect on the measure-
ment of the diffusion profiles by step-scanning with a mi-
croprobe.

The spatial resolution of microprobe analysis will im-
prove with time as more sophisticated instruments and
techniques become available, but the convolution effect
can never be completely avoided since the analysis in-
volves excitation of a finite sample volume. Thus, a prop-
er understanding ofthe convolution efect is essential to
the evaluation and improvement of the efective resolu-
tion of microbeam analysis.

Mnrrmnn,rucAl, FORMULATIONS

General relation between true and convolved compositions

The effect of spatial averaging on the analysis of a com-
positional profile is illustrated schematically in Figure l.
This is a special case, in which the true concentration
profile of an element is discontinuous at the interface of
two samples, but each sample has a constant concentra-
tion of the element. However, the measured concentra-
tion profile will be continuous owing to the spreading of.
the electron beam and spatial averaging of compositions
on both sides ofthe interface.

We make the usual assumption (e.g., Goldstein and
Colby, 1975; Lo and Schuele, 1975) that the excitation
of the sample volume has a Gaussian intensity distribu-
tion that is radiallv svmmetric. In other words. the exci-

tation intensity (or density) around the sample point is of
the form

/  r  \ r  /  -z  v2  - : \

o.(*) :  l=--  l "*p(-*  -  = -  +1,  ( l )
\Y Ztrel \ z€' ze' zc'/

where x : (xr, xz, xr), and e is an arbitrary positive pa-
rameter. It is well known, and simple to check, that for
this intensity distribution the mean displacement is zero
and the standard deviation is e (or the variance is e'z) in
every direction.

We may also express Equation I as

o(x):0;(:)'(:)'(:)' (2)

where @ is the so-called standard normal (or Gaussian)
density function in one dimension,

o{i:ft"*(-i) (3)
Thus, if x : (xr, xz, xt) denotes a point in the sample
volume where the true concentration is C(x), then the
observed concentration fix) at x may be represented by
the convolution relation

/(x): (C*4.)(x)

: f_ f_ f_C(x - v)d.(v) dv

: I:_ f_ f-c(x + y)@-.(y) dy

: 
,l-- f- f-C(x + ez)d,@) dz, (4)

where y : (!r, lz, !t), : ez, * is the usual symbol for
convolution, and 6,@) : 6Gr)QQ)Q(zr) is the standard
normal density in three dimensions. We have suppressed
the dependence of C on I above, as it is not needed for
the analysis ofthe convolution effect.

If A is the spacing between two successive points in the
spot analysis, then Equation 4 can be approximately writ-
ten in terms of the summation relation

f(*): t (nA, mL, rL)]

Here each summation is from -oo to oo, and Clx + (nA,,
mA, rA)l is the true composition at [x + (nL, mA, rA)1.
However, the tail probability of the Gaussian distribution
is negligible beyond three or four times the standard de-

r(^)r(*)4?X)

S S \ l r r -
Zl Zl Zl vL

(5)



r(+)r(+)'(?X)',
where each summation is from -c-Io u, with a: 4(e/A),
rounded offto the nearest integer.

For a physical understanding ofthe effect ofconvolu-
tion, we rewrite Equation 4 in the following form by ex-
panding the function C(x - y) in a Taylor series around x.

r(x): I:- f-J- 'o - ill,$ E
f- f* f- |  ̂ . .  . .  dc(x):J-- J -J -Ltt* l-  Y' i ;

dC(x) 6C(x)
t '  6x" " 6x,

- ,r" $ .,.,D'zC(x)' '" 
,?:,' ' ' j bx,6x,

1_- " ' lo,Q) dv.

(7)

Now y,f.(y) is an odd function of H; therefore, its in-
tegral vanishes. For the same reason, integrals of all terms
ylt)tu6,$)vanish, as do the integrals ofterms like y,yr6.$),
!,!r6,(y), and yS,,r$,(y). Therefore, recalling that the vari-
ance of each coordinate under 6. is e,, while fourth mo-
ments are of the order e4, one gets

,r(x): c(x) + tlryP.ryP
d,C(x)l. 
;-l 

+ o(ea), (8)

where the remainder term O(ea) is of the order of ea and
may be neglected. It is evident from Equation 8 that the
convolution effect vanishes when the true profile has a
constant slope and increases with the increase in the cur-
vature of the concentration profile if terms of the order
ea may be neglected, as is usually the case.

Let us now suppose, as a special case, that the concen-
tration C varies only along one direction, x,. This is the
usual form ofspatial dependence ofCin a diffusion-cou-
ple experiment. Then one may simply write C(x,) for
C(x) and integrate the variables zr, zrin the last expres-
sion in Equation 4 to get

In particular, since/(x) does not vary with x, and xr, we
may simply write it as f(x,). Equation 6 then becomes

According to Equation 3, 6ex) : 6@).Thus, for ex-
ample, 1f a: 4, then Equation l0 reduces to

J(x,) * \s(a/e)lC(x, - 4a) + C(x, + 4a)l

I 11i^l',J,:!2d,i,^1,.i C(x' -'o",, 
r,

Equation ll or 12 can then be evaluated easily to
obtain the convolved composition lx,) from the true
composition C(x,) if the standard deviation e of the
Gaussian intensity distribution is known. From a prac-
tical point of view, € may be determined from the con-
volution efect on a discontinuous profile (Fig. l) in a
control sample whose structural and chemical character-
istics are similar to those of the sample of interest, pro-
vided that the spot analyses have been carried out under
identical instrumental conditions in both cases.

Let x, : 0 be the point of discontinuity of the concen-
tration profile in a control sample (Fig. l), and

C(x,): C, forur, > 0
C(x,) : C, for x, < 0. (13)

It can then be shown (see App. l), using the convolution
Equation 9, that

C , - C r=ffi (r4)

where /'(0) is the slope of the convolved or measured
concentration profile in the control sample at x, : 0, and
C, > Cr.

Convolution effect on diffusion profile and diflusion
coefficient

In this section, we treat the relatively simple case that
the diffusion coeftcient is independent of composition. If
the discontinuous concentration profile illustrated in Fig-
ure I is now allowed to relax by diffusion, then the con-
centration C(x,,t) is given by (Crank, 1975)
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viation. Thus, for all practical purposes, one may take

f(x) = S S S r r :
zJ z,l zJ tL t (nA, mA, rA)]

C(x, + nA)'O@Ne)'!,f(x') = (10)

(6) where a is as defined in Equation 6, i.e., a: 4(e/A). Sim-
ilady, Equation 8 becomes

.f(x,) * C(x,) + i,r',*,r. ( 1 1 )

c(x,, t)-  C,:?[ ' -  *(-"L;]  (r5)

where C" : Cz - C,, D is the diffusion coefficient, and

+1,o-r: I:-C(x,-r ez,)g(2,) dz,. (e) ertQ): e-,2 dn. (16)
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Fig.2. Diffusion profile ofa species with constant diffusion
coefficient in a diffusion-couple experiment. The interface is at
X (or x,) : 0. The normalized concentration is plotted against
the dimensionless parameter X/\/4Dtt. The initial concentration
is equivalent to the "true profile" in Figure 1. The concentration
C of the diffusing component varies between C, and C,.

The diffusion profile described by Equation 15 is illus-
trated in Figure 2. It follows from Equations 15 and 16
(see App. 2) that

C"(x,) :
2Coxrg-t'tt*lz (r7)

l l  and 17, and

kt\/C 
'

where k : 2fn. Thus, from Equations
neglecting higher-order terms,

The second term on the right, which is due to the con-
volution effect, vanishes at Jcr : 0, that is, at the interface
of the diffusion couple.

The convolution of the diffusion profile will evidently
lead to an estimation of diffusion coefficient that is larger
than its true value unless the effect ofconvolution is cor-
rected for. The observed concentration distribution is the
convolution of the true concentration profile and the error
distribution. Now the convolution of two independent
Gaussian distributions is a Gaussian distribution whose
variance (or mean square displacement) is the sum of
variances of its components. From probability theory,
2Dt is the variance of a diffusion profile characterized by
a constant diffirsion coefficient (e.g., Shewmon, 1963, p.
53), such as given by Equation 15. Therefore,

2D , t : 2D t  +  e ' ) , ( le)

where 2D.t is the variance of the Gaussian error distri-
bution of the measured concentration profrle, or in other
words, D" is the diffusion coefrcient that would be di-
rectly retrieved from the measured concentration profile.
From Figure 2, the half-length of the measured concen-
tration profile, x", is given by x. : 4\/W. Thus, from
Equation 19, we obtain

D/D.: | - 8(e/x)2. (20)

I

d  0 6

9 o ns

f(x,): C, - C(x,)_- C, * f","-'',,l''.l.,
C" Co I Hr/r l

This relation among D/D", half-vidth of the diffusion
profile, and e is illustrated in Figure 3. As we shall see

(lS) later, the e values obtainable with electron microprobes
do not usually exceed 0.6 pm. For e : 0.6 pm, the diftr-
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Fig. 3. Illustration ofthe convolution effect on the determination ofa diffusion coefficient from concentration profiles measured

with a microprobe. D is the true difusion coefrcient whereas D" is the diffusion coefrcient that would correspond to the convolved
diffusion profile (see Fig. 5). e is the assumed standard deviation of the Gaussian error function density of the excited sample
volume, and X is the half-length of a diffusion profile of a species with constant diffrsion coefrcient. The points on the curve
illustrate D/D" values corresponding to X: 10e (see text and Fig. 5).
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Fig. 4. Convolution effect on the electron-microprobe anal-
ysis of concentration profiles across interface of (A) spessartine-
almandine and (B) almandine-Al couples (reproduced from El-
phick et al., 1985). The true profiles are effectively discontinuous
at the interface, which is at X : 6.27 p.m. The spessartine-al-
mandine couple was annealed at 30 kbar to 1200 "C for 2.5 h
and to 800'C for 9.5 h; the almandine-Al couple was made by
inserting a piece of almandine in molten Al and quenching im-

mediately. The analysis was done by step-scanning in an .lnr
microprobe at 0.5-pm intervals using I 5-kV accelerating voltage
and 50-nA beam current. Variations ofvoltage and current set-
tings did not significantly affect the resolution (see text). The spot
analysis around 7-pm distance in (A) must be slightly offin terms
ofcomposition as it produces too sharp a change in the curvature
of the concentration profiles compared with that in the left side
of the profiles and in the concentration profiles in (B).

sion coefrcient retrieved directly from a l4-pm diffusion
profile will be subjected to an 80/o error, which is usually
considered to be small or negligible, compared to various
other uncertainties, in the determination of the diffusion
coefficient. However, for profiles of smaller lengths, the
error may be significant, and needs to be corrected for.

NurvrsnrcaI, sIMULATToN oF coNVoLUTroN EFFEcrs

In this section, we present numerical simulation of the
convolution effects in the determination of concentration
profiles, in order to provide visual illustration of the
mathematical formulations developed above and to con-
vey a general idea ofthe situations where the broadening
of the compositional profiles due to spatial averaging in
spot analysis becomes important.

To obtain a value of e that may be commonly encoun-
tered in microprobe analysis, we use the data of Elphick
et al. (1985), who have step-scanned a garnet-garnet cou-
ple and a garnet-Al metal couple with very sharp com-
positional changes at the interface in an nnr (seuq) mi-
croprobe. Their results are reproduced here as Figure 4.
The true compositional profiles may be treated as efec-
tively discontinuous at the interface of each couple, the
smoothing etrect (due to a very small amount of diftrsion
at the annealing conditions) being negligible (Elphick et

al., 1985). Using Equation 14, we obtain e * 0.58 rrmi
both samples yield essentially the same value of e.

Elphick et al. (1985) performed these microprobe anal-
yses with beam conditions of l5 kV and 50 nA. However,
they stated that step-scanning at l0- and 20-nA beam
currents at both 15- and 20-kV accelerating voltages did
not significantly improve the analytical resolution of the
concentration profiles. These additional analyses were
performed across the garnet-garnet couple. We have per-
formed further analysis of the garnet-Al metal couple us-
ing a beam culrent of l0 nA and an accelerating voltage
of I I kV. These results do not show any improvement of
resolution. Therefore, we conclude that the variation of
the analytical condition (within the normal operating
ranges) at least in an enr microprobe does not signifi-
cantly affect the central part of the Gaussian of the X-ray
intensity distribution, which effectively determines the
extent of the spatial averaging. However, analysis of the
garnet-garnet couple in a pruooo model scanning Auger
microprobe (serra) resulted in a marked improvement of
resolution, with e around 0.25 &m (M. F. Hochella, Jr.,
A. M. Turner, and J. Ganguly, unpub. data). A compar-
ison of the electron-microprobe and seu scans of the gar-
net-garnet couple can be found in Hochella et al. (1986).
It also seems likely that the resolution of the Auger anal-
ysis can be improved significantly.
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Figure 5 shows numerical simulations of the convolu-
tion effects on difusion profiles according to the mathe-
matical formulations and € values discussed above. Fig-
ures 5a and 5b are for e : 0.6 pm, whereas 5c and 5d are
for e : 0.25 prn], ,r is half of the total length of the difu-
sion zone, which is bisected at the interface, x:0. The
numerical solutions obtained from the two alternative
formulations of lx,) (Eqs. 1l and 12) are virtually the
same. For the specific concentration profile considered
here, Equation ll reduces to Equation 18. Calculations
incorporating the ea term did not result in any sigrrificant
change of flx,). Equation 12 is, in principle, more exact,
but Equations I I or l8 may be used to obtain essentially
the same result if it proves to be advantageous from a
computational point of view in certain situations.

The diffusion profiles in Figure 5 have been construct-
ed by first choosing the maximum half-length of the pro-
file and equating that to ar,DI (Fie.2). This gives the
value of D/ for the calculation of a diffusion profile of
desired length, which is then convolved according to
Equations ll and 12. Note in Figure 5 that the convo-

b
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' f ( x ) '
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X  I  m L  c n o n s  J

d
E=V. la  Um' f  ( x  ) '
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lution effect almost vanishes when the halfJength of the
diffusion profile is about l0 times the value of e. This is
compatible with the probabilistic analysis of convolution
effect on diffusion, which is illustrated in Figure 3 (in
which the D/D"values at x : lOe are shown as points on
the appropriate curves).

As a test of the method developed above, we simulate
the convolution effect in the analysis ofthe discontinuous
concentration profile of Mn across the garnet-garnet in-
terface discussed above (Fig. 4A). Using e : 0.58 pm, as
discussed above, and Equation I 2, we obtain a convolved
concentration profile (Fig. 6) that agrees very well with
the results of the microprobe analyses. In the calculation
of the convolution effect, the interface is assumed to
equally divide a 0.5-pm step so that the convolution is
symmetrical to the interface. This procedure approxi-
mately simulates the step-scanning in the microprobe in
which care was taken not to analyze the interface per se
while maintaining the 0.5-pm step size in an automated
mode. Consequently, the interface is assumed to intersect
a (convolved) concentration profile at a composition that
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Fig. 5. Numerical simulation of convolution efects in the determination of diffusion profiles by microprobe spot analysis for
different values of the error standard deviation G) and profile lengths. X : halfJength of the profile; a couple interface is located at
X : 0. "C(x) and "flx)" are true and convolved diffusion profiles, respectively, normalized to vary between 0 and 1. The diffusion
coefficient is assumed to be constant in each profile. Two profile lengths are shown (left- and right-hand plots) for each value ofe.
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Fig. 6. Comparison of the simulated convolution in the anal-
ysis of the discontinuous Mn concentration profile of Figure 44
with the results ofthe corresponding microprobe spot analyses.
The analytical data, shown as circled points, are from Figure 4,A,;
data on only one side ofthe couple are shown as the convolution
efect is symmetric on the two sides with respect to the interface
and one of the analyzed points on the right side is slightly off-
composition (see caption ofFig. 4). The concentration profile is
constructed by joining convolved compositions, calculated at
0.5-pm steps, with the interface symmetrically dividing a step.
Calculation ofthe point to the left ofthe interface, shown by a
cross, is illustrated in Appendix 3.

equals Cr + (C, - C)/2 (C, > C,). The interface is,
thus, located at x = 6.21 pm in Figure 4A,.

For further illustration of the validity of the mathe-
matical relation between the true and convolved com-
positions, we have compared in Figure 7 the numerical
simulation of the convolution effect on a diffusion profile
(according to Eq. 12) with that calculated analltically (ac-
cording to Eq. 15) from the convolved diffusion coeffi-
cient D. (Eq. l9). There is very good agreement between
the two types ofcalculation ofthe convolution effect. The
small disagreement at e : 0.8 pm is due to the accumu-
lation of numerical errors.

The method developed above may be adapted to re-
trieve the true concentration profile from microbeam
analyses near a grain boundary, where the measured pro-
file suffers from spatial averaging of compositions on both
sides of the boundary. This adaptation will be an iterative
process involving convolution of hypothetical initial con-
centration profiles until a satisfactory match is found with
the measured profile.
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Fig. 7. Comparison of convolution effects in the microprobe
analysis ofa diftrsion profile predicted by Equations 12 all.d 19.
(a) Curve 1 -difrrsion profile for a constant value of the difusion
coefrcient (Eq. l5); curve 2-numerical simulation of convolu-
tion ofthe difrrsion profile for e : 0.6 pm according to Equation
12; curve 3-diftision profile calculated directly from the con-
volution of diffusion coefficient given by Equation 19 and so-
lution to the difrrsion equation with constant diffrsion coefrcient
(Eq. l5). (b) Curves have the same meaning as in (a), with e :

0.8 rm: curves 2 and 3 cross at x: 0.
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AppBNnrx l. DnnrvlrroN oF EgulrroN 14 ron e

Since the initial concentration profile is one-dimensional in
nature, we present below a derivation for the case of one-di-
mensional convolution, with d. given by (for brevity, we use
x: xt,  l :  yb a'J:d z: z)

a.(xl :  !a6/el :  -1,  
""€ eV2r

Using

r t v t : C z  f o r x  <  0
C, forx > 0

one has

r-
f(x): I C(x - y')A,U') dy'

J_-

r-: 
J _ctyla.t* 

- y) dy. (y : x - y'\.

Since

ftwt, - y)t: -!r' - Do1x - y),
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The last integral may be evaluated as follows:

_. f -
r/2" Jo

Ze-22/2 dZ

Thus we obtain

(1 .7 )

(1 .8 )

k'v;
*J(p)

one obtains

Thus,

f at: ftn.t
f -  /  . - ' r \:  I  c (y t l - ' - )o .v-y)dy.

I

fA): I-- crtt)0t/4a.G9 dY

:J_  ay+[ "  ay

: c, I"-at/e,)6,Gi dy

* ,, J" 6t/4d.?y) dy

: -c, 
I"* e/ez)Q.e) dz

* ,, I* At/e,)Q,g) dy, (z:

: (c, - q/el 
I" ya,O) dy.

:hI- ""4i)

( 1 . 1 )

ApprNnrx 2. DnnrvlrroN oF Egu-l.rroN 17 ron C"(x)
I-Et J(p): er(p) and p : x/2vDI : x/k (x = xr). Then from

(1.2) Equation 16

x(p): Q/f;)e F (2.r)

Thus,

( 1.3) and

4xe-@kt2 (2.3)

(1.4) We then have from Equation l5

c,,*t: -*(tP\'  z \ a x ' /

- 2Coxe-t"'rt'

kt\C
( 1 . 5 )

(2.4)

AppnNnrx 3. h-r-usrru.TroN oF THE AppLrcATroN oF
EeulrroN 12 ro car,cuLATE THE coNvoLUTIoN

EFFECT IN MICROPROBE SPOT ANALYSIS

Let us first consider the Mn profile in Figure 4 for the calcu-
lation ofthe value ofe according to Equation 14. Since the true
concentration profile is known to be discontinuous at the inter-
face, the observed smoothing of the profile in the microprobe
spot analysis can be used to calculate e for the given analytical
condition. In Equation 13, f'(0) is the slope of the measured
concentration profile (with respect to increasing distance) at the
point of discontinuity of the true profile, which is the interface
in Figure 4, and is located at X: 6.27 pm. Thus/'(O) : -0.62

pm 1, whereas Cz: 0.92 and C, : 0.02. Consequently,

j"' to,tl dv: I"- v'(r/dQAt/e) dv

:' 
I"' zQQ) dz

C .: -1-e-' '" lf
v z1f

: -r/r;'

e : (C, - C,)/l\/2ir f(O)].

0.02 - 0.92
r :  - :  v . f , 6  e i - u .

(t/2r)(-0.62)

#:x@)#:'# e2)

-v)

(1 .6 )
(3.1)



Let us now calculate the expected concentration of Mn in the
microprobe spot analysis at 0.23 pm to the left of the interface.
For convenience of reference, we translate the X axis so that the
interface is set at X: 0. Then the above point is at X : -0.23

pm. The concentration profiles in Figure 4 have been determined
by step-scanning at 0.5-pm intervals. Thus, according to Equa-
tion 6, a : 4(e/A): 4.6, which may be rounded offto 5. we
then have from Equation 10 or 12

flx,) = fl-0.23 pm) : {66Ne)lC(x, - 54) + C(x, + 5A)l
+ g(4A/e)lC(x, - 44) + C(x, + 44)
+ ' . .  + d(0)C(x,) l(A/e). (3.2)
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From the expression ofd given by Equation 3,

QG N e) :- OQ.4 48) : (r / {2r)expl- (3. 4 4 8)'l : 2. 7 ( I 0 {), ( 3. 3)

and, similarly, Q@Nc):0.00054, QQNI):0.00968, and so on.
For the Mn profile in Figure 4, C(x' - mA) : C(xt) : 0.92
whereas C(x, + mL) : 0.02, where m is a positive integer be-
tween I and a. i.e.. | < m = 5. Substitution of the A, e, and C
values into Equation 3.2 yields (Fig. 6)

fi-0.23 rlm): [0.0000027(0.92 + 0.02) + 0.00054(0.92 + 0.02)
+ 0.00968(0.92 + 0.02)
+ "' +(r/x'2r)(0.92)l(0.50/0.58) : 0.63. (3.4)
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