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Importance of the size of the unit in models of ordering
behavior for albite
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Ansrucr

The method ofindependent pairs and sites (IPS) is used to study the ordering behavior
of the feldspar mineral albite. Unlike recent models, in which local charge neutrality was
not introduced, here it is imposed by using Andersen's two-dimensional model of albite.
Even though the same approximation (IPS method) has been used in both Andersen's
model and the present treatment, the final results for the ordering behavior are quite
different, in the sense that a metastable (solid) phase is predicted at some temperatures in
the former, and no such behavior is predicted in the latter. One should therefore expect
that the size of the local structural unit used to impose electroneutrality can be very
important in model calculations on albite.

INrnonucrroN

Feldspar minerals display some interesting ordering
phenomena and have been extensively studied. Their
structure is a framework of TOo units linked together at
their vertices to make double-crankshaft chains in a three-
dimensional network. Each oxygen is located at the cor-
ner of a tetrahedron, and the T atoms (Al or Si) are at
the center of tetrahedra. The double crankshaft consists
of 4-membered rings, which are alternately parallel to
each other; the rings make an angle of about 70" to the
chain. The structure can, alternatively, be described as a
series of sheets composed of 4- and S-membered rings,
in which each site is shared by two 8-membered and one
4-membered ring.

The occupation of T sites by Al and Si atoms appears
to follow rigorously the empirical Al avoidance principle
at all temperatures below the melting point. This prin-
ciple states that certain distributions of Al and Si on T
sites are not acceptable. Specifically, no two tetrahedra
sharing a corner oxygen can both contain A1. In addition,
the T sites are not all energetically equivalent. There are
four sites that are crystallographically distinct and that
usually are referred to as T,(O), Tr(O), T,(m), Tr(m). Ex-
perimentally it is found that at low temperatures, Al at-
oms preferentially occupy T,(O) sites. As temperature in-
creases, Al atoms migrate to other sites, and the
distribution of Al atoms on all sites becomes more uni-
form. Unlike most other order-disorder phenomena,
which are governed by the interaction of atoms on var-
ious sites, present models indicate that in feldspar the site
energy is more important than interaction eneryies (Mazo,
1977). The site T,(O) is a special site, which we call an a
site. Since the other three types are rather similar to each
other with regard to their occupancy by Al, we shall call
them D sites. Each a site has four b neighboring sites. Each
D site has, on the average, (4/3)a and (8/3)D neighbors.
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For more details regarding the structure of feldspar min-
erals, the reader is referred to Smith (1974) and Macken-
zie and Zussman (1974').

C,llrur-lrroN oF THE ENTRoPY AND oRDER
PARAMETER

As pointed out by Andersen and Mazo (1979), in order
to avoid charge segregation in the lattice of feldspar min-
erals, local charge neutrality has to be taken into account.
It is not clear how big the smallest part of the lattice that
is neutral should be, however. One might even conjecture
that the size of the appropriate unit changes with tem-
perature, becoming larger as temperature increases.

A simple two-dimensional model of albite exhibiting
local charge neutrality (temperature independent) has been
introduced by Andersen and Mazo (1979). This is shown
in Figure l, where crosses are secondary sites, showing
the positions of alkali metal atoms, and the corners of
squares are T sites representing the position ofAl or Si.
The T sites are referred to as primary sites. Mazo and
Andersen (1979) st'ggested that, in order to impose the
local charge neutrality condition onto this model, each
square with Na at its center must have three Si and one
Al on its corners. From now on these squares will be
referred to as "units" of the model.

We want to calculate the probability of occupation of
a sites by,4 (Al) atoms as a function of temperature and
site-preference energy, this probability of occupation being
an order parameter. In the IPS method, the lattice is con-
sidered to be composed of (independent) pairs and "sites,"
in such a way that each independent site is surrounded
only by pairs and vice versa (see Fig. 2). Independent sites
are considered those sites that have no interaction with
each other, and independent pairs are composed of the
remaining sites that interact only with their adjacent in-
dependent sites. The sites, however, need not bejust lat-
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Fig. 1. Andersen and Mazo's (1979) two-dimensional model

of albite, where empty and solid circles are a and. b sites, re-
spectively, and X's are Na atoms.

tice points. We are free to choose the sites as large as
necessary. Since we are interested in this paper in apply-
ing the local charge neutrality condition in our calcula-
tion, it is an appropriate choice to take a unit as an in-
dependent site. So, if N is the number of Na atoms, there
are N/2 independent sites and N/4 independent pairs.

Now, letp be the probability of an c site being occupied
by an Al atom in albite. Since one quarter of the atoms
are l, the probability ofa b site being occupied by an I
atom, P\, is given by,

The site-preference energy (energy of I atom on 4 site
with all other site energies taken as zero) is Ei, and aIl
interaction energies are taken to be zero, except for A-A
nearest-neighbor pairs (which are not allowed in the model
and whose energies are therefore infinite). The primary
sites of an independent pair are numbered in clockwise
sequence, as shown in Figure 3.

If P,, denotes the probability that site i of the square on
the left and site 7 of the square on the right of an inde-
pendent pair are occupied both by,4 atoms, we have the
following equations:

P , , :  P ,
P , r :  P , t -  P , " :  P , ,  :  P r , :  P o r - -  P ,
Pr r :  P r r :  Pzq :  P . r :  P t t

- -  P t+ :  Po r :  Po r :  Pqo :  P t .

For simplicity the terminology is reduced to P,, Pr, and
P, as defined by these equations. The equalities are from
the equal probability of distributions with the same num-
ber of I atoms on a sites of an independent pair.

On the one hand, 2(N/4): N/2 units are involved in
the independent pairs, and the a site of each unit is oc-
cupied by an A atom with probability p. Thus the number
of I atoms on a sites of independent pairs is (N/2)p. On
the other hand, there are P,(N/4) independent pairs with
two I atoms on their two a sites, and 6Pr(N/4) indepen-
dent pairs with one A alom on one of their a sites. That
gives [2 x P,(N/4) + | x 6P,(N/4)],4 atoms on all a sites

l - n
P \ : ;

( l )
(2)
(3)

) ) t , : t

($,

i" (f)l {[f:, X'i] ]'{[(Lt+:2)(f)l I
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Fig. 2. The representation of two-dimensional model of al-
bite by independent pairs and sites. An X represents a unit.
Independent sites are shown by X's and independent pairs by
lines.

of the independent pairs. Therefore, we have the follow-
ing consistency equation:

(N/2)p: (P, + 3P)(N/2)

or

p:  P,  + 3P2.  (4)

Also, the normalization condition gives

or

P ,  +  6P2  +  94 :  L .  ( 5 )

For simplicity, let us wdte P, : x and solve the above
equations for P, and P.. This gives rise to

P r :  x
P, :  ( l /3) (p -  x)

4 : 0 / 9 ) ( t + x - 2 p ) .

The number of ways of distributing atoms among in-
dependent pairs are

g(pair)

(6)

Now, it is necessary to find the number of ways of dis-
tributing the atoms on the independent sites. To do so,
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Fig. 3. The representation ofan independent pair; each site
is specified by a number.

we notice that in order to impose the Al avoidance prin-
ciple, some primary sites of the independent sites are not
available for ,4 occupation. For example, consider the
sublattice with five units in Figure 4. The middle unit is
considered to be an independent site, and others belong
to four different independent pairs (half of each pair is
not shown). Let us first consider the distribution of (N/
2)p A atoms on the available a sites of the independent
sites. Since the a site of each independent site is next to
two b sites of pairs, each of which is occupied by an A
atom with probability (l - p)/3, the probability of avail-
ability of an 4 site of each independent site for .4 occu-
patron rs

l - 2(l - p)/31: (t + 2p)/31.

Therefore, f(l + 2p)/31(N/2) a sites ofthe independent
sites are available for ,4 occupation. Then, we have (N/
2)p A atoms that have to be distributed among l(l + 2p)/
3l(N/2) available a sites of independent sites. There are
g(a) ways for such distributions,

c@) :

Fig. 4. A sublattice with five units.

on the average, each remaining independent site has (5 -

2p)/3 b sites for occupation by one A a|om. Therefore,
the number of ways for distribution of A atoms on the b
sites ofindependent pairs (with restrictions oflocal charge
neutrality and the Al avoidance principle) is

g(b): [(5 - 2p)/3f<ntzxt tt. (8)

The total combinatorial factor, g is given by

g : g(pairs)s(a)s(b)

or

(?)
t(=")(91 (,il {tf--)ry.] }'{[(r-!-2, ) (f)l I(7)

Now, (N/2)(l - p) independent sites are left with no ,4
atoms on their a sites. We have to set only one I atom
on one b site of each of them. The probability of avail-
ability of each b site of independent pairs (for A occu-
pation) is (see Fig. 4) I - [p + (l - p)/3] (for site 3),
I - [(l - p)/3 + (r - p)/31 (for site 2), | - [p + (l -
p)/31(for site 4), and (5 - 2p)/3 (for sites 2, 3, and 4). So,

Table 1. The calculated configurational entropy and order
oarameter of model albite

S : k l n g

Table 2. The exact configurational entropy of
a one-dimensional model of albite

(S./R) compared to that of the
IPS approximation

s.lB s,""/R

t(f),] t(?(91 t(r+)(+)1,L\  3  l \2 ,  ,

(;'x+)(9l
x [(5 - 2P)/3f<Ntzxt a.

For the entropy, S, we have

4 1
2 2
1 4
213 6
112 8
0  4  1 0
1 1 3  1 2

0 098
0  5 1 0
0 923
1  0 1 4
1 048
1 057
1 065

0 9 8
0 824
0.s43
0 435
0 385
0 35s
0 334

0.378
0.842
0.951
0.986
0.999
1.007

0 0 0
1.00
200
3 0 0

1.23
1.09
o.72
0.38

1 .24
1 . 1 0
0.72
U.JJ

0 8 6
0 5 4
0 .41
0 3 5
032
0.30

Note. Values calculated by Monte-Carlo (SMC/R, PMc) and IPS (S,,sr^, 8"s)
methods The Monte Carlo results are from Rajabali (1981)

0 1 8
0.08

4 0 0
5.00

0.1s
0.06
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Fig. 5. The order parameter of the two-dimensional model of albite versus (4/[4 (or 7), by using the IPS method and a Monte-
Carlo calculation.
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The energy of the lattice is

E:  NpEi ,

where Ei < 0 is the site-preference energy. Let us define
-Ei/kT: U. For the Helmholtz free energy, we have

A : E - T S

and

A S-NkT: -IJP - 
Nk

or

#*: - up + u.["'" " . u f:, )'" (r:, )
+s( l+r -2p\ .  l t+* -_Z) l

r -s  / 'n \  e  / l
* , ,1 - ( ' *= 'o) , " ( t  * - "1  +  prnp- L  

\  3  / " ' \  3

JP,"

\t,,

/ t  \  / .  \ ' r
* r  _ l ) r " {  ' ;P) l

\ r / \ 3 /)

- vz(t - o, * ,n(t ,'o\.
\ r  /

To find the equilibrium state, we must minimize
A/(NkT) with respect to p and x.

lattttttt nll .. . [x(l + x - 2D1
| _________:_ | _ /+ rrr | 

--_-:__=_ 
|

L  d x  l o  I  W - x f  I
: 0 (equilibrium state)

or

x ( l + x . r 2 p ) : r .  ( 9 )
(p - x),

The solution of Equation 9 grves

x :  p ' .  (10)

Since the two sites of an independent pair are noninter-
acting, this result might be expected in advance.

The other condition for the equilibrium state is,

latuml:o
Lap l .

or

-u * vztnl , ' '(t ,., 'o) ,,,,l
|  , ( t  zP\ - ' l t  -  P\  

- l

L \  3 - l \  3  /  j
1 - n

+  
-  2p :  o '  ( 11 )
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Fig. 6. The configurational entropy of the two-dimensional model of albite versus (4/[,) (or Z), by using the IPS method and a
Monte-Carlo calculation.
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Ifone substitutes Equation l0 into I I and then solves
for U, one gets,

f  l r t ' -  
-  - l

u : vz l"lut',;;;%11. +=; 02)

The results are given in Table I and also are plotted in
Figures 5 and 6.

DrscussroN

Statistical mechanics plays an important role in the
study ofthe ordering behavior in lattices. It was applied
to albite by Mazo (1977) (quasi-chemical approxima-
tion). Also recently, the ordering behavior of albite was
studied by others, e.g., Salje (1985), Salje et al. (1985),
and Rajabali and Mazo (1982) (Kikuchi method). Mazo
and Andersen (1979) suggested that lattice configurations
should be restricted to those that obey local charge neu-
trality, in order to be energetically favorable. For albite,
they suggested that around any Na atom there must be
three Si and one Al. Their idea oflocal charge neutrality
has been used to study the ordering behavior offeldspar
minerals. In this paper, the IPS method has been used
with Andersen's two-dimensional model of albite, and
the results show a sharper curve for the ordering phenom-
ena of model albite with respect to temperature than ob-
tained in other calculations (see Fig. 5). A step on the
ordering-behavior curve would represent a phase transi-
tion; no such phase transition is predicted by the model.

A significant point relates to the importance of the size
of the local unit. To test the effect of this size, the IPS

method was recently used to study the ordering behavior
of albite without taking local charge neutrality into ac-
count. The results obtained predict that albite should have
a metastable phase at some intermediate temperatures
(Rajabati, in prep.); in minimizing the free energy (at in-
termediate temperatures), the stable phase is the one with
the lowest free energy and the other, with the highest free
energy, is considered to be the metastable state. This be-
havior has not been predicted by other approximations
(except by Salje and his group). The IPS method was
tested by applying it to Andersen's one-dimensional model
(one row of squares). The one-dimensional case can be
solved exactly by the method of Kramers and Wannier
(1941), and this has been carried out by Andersen (un-
pub.). The results are given in Table 2. As shown, the
results of the IPS model are satisfactory for the one-di-
mensional case.

In the present paper the IPS method has been applied
with the restriction oflocal charge neutrality. In the pre-
vious calculation (Rajabali, in prep.), the whole lattice
was effectively chosen as the uniq here the smallest pos-
sible size for the unit has been considered. Since the
method of calculation in the two cases is the same, one
may expect that the difference in the resulting predicted
ordering behavior is due to the size of the unit. It is, of
course, difficult to propose a generally acceptable unit,
and one might even expect that the size of unit changes
with temperature. It is probably true that the unit is nei-
ther as small as that of Andersen, nor so big that the
whole lattice can be treated as a unit. These are just the
smallest and the largest possible units, respectively, and
are chosen primarily to simplify the mathematics of the
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problem. Since it is likely that neither of these models
perfectly represents feldspar minerals, it seems that the
size of the neutral unit may play an important role in the
ordering behavior. In the framework of feldspar minerals,
it seems that each secondary site (alkali metal) is sur-
rounded by 12 primary sites. One might conjecture that
the smallest realistic unit is three times as big as that used
by Andersen and Mazo (1979). In order to have such a
unit, we may consider a model with three non-interacting
parallel squares with Na at their centers. To take local
charge neutrality into account, each unit must have three
Al and nine Si atoms, but this model has not been carried
any further.

Finally, let us consider the IPS approximation more
closely. Since it is not possible to find the exact number
of distributions of Al and Si atoms on sites, we divided
units into two groups, independent pairs and sites, such
that each independent site interacts only with its adjacent
independent pairs. Such a division is, ofcourse, artificial.
In order to enforce selfconsistency between the units, we
required that the global order parameter of units be the
same for the independent pairs and sites. In order to study
how one can calculate the number of distributions by the
IPS method, consider the distributions ofN, I atoms and
A{u B atoms on N sites of a two-dimensional lattice with
unit of squares, such that

N^: Nu : N/2

and all site and interaction energies are zero. We have

Sfuair):
(N/4)l

(N/t6)t(N/ t6)!(N/ l6)l(N/ r 6)l '

where N/4 is the number of independent pairs and

Nu,  :  N ro :  Nan :  Nuu :  Ve (N /4 ) .

The number of distributions of atoms on the independent
srtes rs

s(site): -92-
(N/4)\N/4)t'

where N/2 is the number of independent sites.
Then, using the IPS approximation, the total number

ofdistributions is given by,

w/4\l (N/2\l
- - - v -' [(N/t6):1" l(Nt+1,.1''

By using Stir l ing's approximation. one gets

S : N k l n 2

for the configurational entropy of the lattice, which is
equal to the exact value. Applying the method to a non-
interacting system is not a very stringent test, but it does
indicate a basic internal consistency.
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