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An exploratory examination of the electron density and
electrostatic potential of phenakite
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Department of Geological Sciences, Viryinia Polytechnic Institute and State University, Blacksburg Virginia 24061, U.S.A.

AssrRAcr

The deformation electron density and total electrostatic potential of phenakite, BerSiOo,
are retrieved from single-crystal X-ray diffraction intensities. Refinements are completed
using several models, including a flexible pseudoatom model wherein the electron density
about each nucleus is represented by a short multipole expansion. Associated with each
nearest-neighbor Be-O and Si-O interatomic vector is an accumulation of deformation
density. Short bonds have greater deformation-density accumulation than do long bonds
between similar atoms. The topography of the deformation density about each oxygen
indicates, in a qualitative sense, both ionic and covalent contributions to the bonding.

INrnooucrroN

The crystal structure of phenakite was solved by Bragg
andZachaiasen (1930), refined under room conditions
by Z.achaiasen (1972), at elevated temperatures by Ha-
zen and Finger (1987), and at high pressures by Hazen
and Au (1986) and Kogure and Tak6uchi (1986). Phen-
akite crystallizes in space goup R3 with all atoms on
general positions. The two nonequivalent Be and one Si
in the unit cell are each 4-coordinated by oxygen atoms.
The four unique oxygen atoms in the unit cell are each
bonded to two Be and one Si atom disposed at the corners
of a triangle. The coordination triangles about O(1), O(3),
and O(4) parallel the Z axis (Fig. l), whereas the coor-
dination triangle about O(2) lies in a plane perpendicular
to the Z axis.

As a logical extension ofthe work ofZachariasen (1972),
we have attempted to obtain accurate X-ray structure-
factor moduli for phenakite from which the details of the
electron-density distribution may be retrieved. Although
our results are rather crude compared to those that could
be obtained from the true, but unknown, electronic wave-
function for phenakite, they represent a first attempt to
relate the structural details of this material to the exper-
imentally observed one-electron density function. Since
the cohesive energy is a functional of the one-electron
density (Hohenberg and Kohn, 1964), and all interatomic
forces may be obtained via classical electrostatics from
the charge density (Feynman, 1939), it behooves us to
earnestly begin to examine the detailed charge-density
distributions of minerals.

This paper is divided into four sections. The first deals
with the details of data collection, reduction, and our
observations as to the accuracy of the data. Next, the
results of various levels of least-squares refinement of the
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electron-density model are discussed. These include re-
finements using neutral, spherical-atom scattering fac-
tors, a kappa refinement, and finally a refinement wherein
the electron density ofeach atom is expanded in a short
multipole expansion. Maps of deformation electron den-
sity and total electrostatic potential are then examined
(Downs, 1983).

ExpBnrrrnNTAL DETATLS

A colorless crystal of phenakite from San Miguel di Piraciaba,
Brazil, was obtained from the U.S. National Museum, Smith-
sonian Institution (USNM no. B2ll52). A, fragment with ap-
proximate dimensions 0.08 x 0.07 x 0.07 mm was mounted in
a general orientation on a glass fiber. The crystal is bounded by
six planes, and the distance ofeach face from the centroid ofthe
crystal was measured using an image-splitting eyepiece while the
goniometer head and crystal were mounted on a spindle stage.
The crystal was optically centered on a Picker four-circle dif-
fractometer, automated with a Krisel control system, and the
diffractometer angles to bring each of the faces into difracting
position were carefully measured. These data were used in the
calculation of the transmission factors and the absorption-
weighted mean-path lengths for each reflection. Crystal center-
ing, tube height, and angle zeros were checked on a high-angle
reflection using Hamilton's method (Hamilton, 1974).

Information pertinent to data collection and reduction are giv-
en in Table 1. Unit-cell dimensions and an orientation matrix
were refined by least-squares methods from the corrected angles
of the MoKa, peak for 17 reflections with 20 in the range 60-
72. All Bragg reflections with sin d/I < 1.0 within the sphere of
reflection consistent with space group R3 were step-scanned. Re-
flection profiles were reduced to integrated intensities using the
method of Lehmann and Larsen (1974) as incorporated in the
profile-analysis program of Blessing et al. (1974). During this
procedure, special care was taken to account properly for the
effect of the Zr-filter attentuation for low-angle reflections. Line-
printer profiles for all reflections with I > 2o(I) were plotted and
checked for possible profile-analysis errors. For several weak re-
flections, the Ka, peak had been included in the high-order back-
ground during the khmann-Larsen procedure. Intensities for
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Fig. l. Phenakite structure in plane containing triangular-coordinated oxygen atoms. The Z axis is horizontal; distances are in
angstrdms; angles are in degrees

these reflections were recomputed by setting the limits of the
Bragg peak to one-sixth from each end of the scan. A similar
procedure was used for all reflections within I < 2o(I). Three
standard reflections were step-scanned every 8 h, resulting in 272
sets of standards with an internal-agreement factor of 0.50/0. All
intensities were corrected for Lorentz, polarization, and absorp-
tion efects.

Owing to the small crystal size and intensity limitations of the
sealed-tube radiation source, 54olo of the measured intensities
had 1 < 3o(D and were assumed to be unobserved. A small
crystal was chosen deliberately in an attempt to minimize sec-
ondary extinction. Integrated intensities with 1 > 3o(1) were av-
eraged in Laue groups 3 and I (Table l). The relatively poor
internal agreement among symmetry-equivalent intensities for
Laue group 3 could not be rationalized by invoking either path-
dependent isotropic extinction or anisotropic extinction. There-
fore, data averaged in group 3 were used in subsequent refine-
ments, and the extinction model was limited to the isotropic
case.

These data would be considered almost ideal for electron-den-
sity analysis if the agreement among symmetry equivalents was
around l0lo and extinction on any structural amplitude did not
exceed 50/0. Under such conditions, it could be possible to re-
trieve a very reliable electron-density distribution from the data.
Because of the fairly large internal-agreement factors, however,
the integrated intensities used in the current study cannot be
considered to be extremely accurate and must be used with cau-
tion. We will see that these intensities, although not ideal for
electron-density analysis, nevertheless yield electron-density fea-
tures that appear to be consistent with the structural details of

TABLE 1. Crystallographic data

Space group
Unit-cell dimensions:

a (A)
c (A)

Radiation
Scan type
Step size (')
Time per step (s)
Scan width (')
sin d/I range (A-')
No. reflections measured
No. refs. with / > 3o(/)
Absorption coefficient (cm-1)
Range of transmission factors
Averaging statistics for I > 3o(/):

Laue group
R: >lF3 -  FZ",?DF?
No. observations

phenakite. We thus consider the present result as a first attempt
to map the electrostatic properties of this material.

Er,ncrnoN-nENsrry MoDEL REFINEMENTS

All refinements were completed using the vALRAY sys-
tem (Stewart and Spackman, 1983). Anomalous scatter-
ing terms for Si and oxygen were taken from Cromer and
Liberman (1970), and extinction was modeled as mosaic-
spread-dominated (Type I) with a Lorentzian mosaic-dis-
tribution function within the formalism of Becker and
Coppens (1974a, l9'74b). All refinements were based on

l,Fl'z with weights computed from Poisson counting sta-
tistics and averaging statistics with no ignorance factor.
During the final cycle of each refinement, second deriv-
atives were included in the Hessian matrix to insure that
a true minimum had been located and to improve error
estimates. The figures of merit from the final refinement
cycle for each model are given in Table 2.

IAM model

In conventional crystal-structure analysis, a scale fac-
tor, positional parameters, vibrational parameters, and
extinction parameters may be refined, whereas the atomic
scattering factors are assumed to be known a priori. A
scattering model of noninteracting, neutrally charged,
spherically averaged atoms is often chosen. This is the
independent atom model (or IAM). For conventional
work, the IAM is an excellent choice, since a large part
of the binding between atoms can be traced to the elec-
trostatic attraction between independent atoms (Hirsh-
feld and Rzotkiewicz, 1974).In this study, scattering fac-
tors for each reflection were computed directly from the
spherically averaged Hartree-Fock atomic wavefunctions
of Clementi and Roetti (1974). The figures of merit for
the IAM reflnement are quite reasonable for a conven-
tional model.

GSF model

As a first step toward improving the electron-density
model, one may choose scattering factors that begin to
model interacting atoms. Form factors for half-ionized or
fully ionized atoms are often used for this purpose. In an
a priori attempt to find scattering factors that mimic
bonded atoms, we have chosen the monopole terms of

hJ

12.472(21
8.251(1 )

Zr-filtered MoKa
d-2d step scans
0.04

1 0
a20 :2.0 + 0.7 tan 0
0.08-1.0

1 1 7 0 0
6299
7 088
0 946-0 957
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TneLe 2. Figures of merit from least-squares refinements

IAM GSF Kappa Muttipote

TneLe 3. Kappa charges and kappa parame-
ters

DI

Be(1 )
Be(2)
o(1)
o(2)
o(3)
o(4)

+1.49(5)
+ 1 . 1 6 ( 1 )
+1.38(1)
-0.e15(3)
- 1 .1 03(3)
-0.913(4)
- 1 09s(4)

1 13(2)
1.32(6)
1.33(8)
0.934(s)
0 91 6(4)
0.e32(5)
0.923(s)

and Spackman (1983). These functions ensure that vir-
tually all of the electron density on the nucleus arises
from the core function. Ifcanonical rather than localized
orbitals are used for Be, then a substantial amount of the
core density comes from the 2s valence orbital.

During the kappa refinement, the core populations were
varied, but constrained so that the Be and oxygen core
populations were each t/, thal of Si. No scale factor is
refined during the kappa refinement, but an effective scale
factor is obtained from the sum of the monopole popu-
lations (i.e., P.".. and P""r"""") divided by the number of
electrons in the unit cell. The sum ofthe core and valence
populations on each atom, scaled by the effective scale
factor, can be subtracted from the number of electrons in
the neutral atom to yield what is known as a kappa charge,
the atomic charge obtained from a kappa refinement.
Kappa charges and kappa parameters for each atom are
given in Table 3. As expected, relative to isolated atoms,
Si and Be become positively charged and contracted, and
each oxygen becomes negatively charged and expanded.
The valence-electron populations of Si and Be are much
less well determined than for oxygen. This stems from
the fact that the valence functions of Si and Be are very
diffuse in direct space, yielding valence scattering factors
that are highly contracted in reciprocal space. Since only
a small number of reflections sample that part of recip-
rocal space in which the Si and Be valence scattering fac-
tors have large amplitude, these populations are often
difficult to determine. The figures of merit (Table 2) for
the kappa refinement show a fit substantially better than
the IAM or GSF refinement.

We wish to emphasize that the kappa charges from
Table 3 should not be interpreted as the experimentally
observed atomic charges for phenakite for use in either
theoretical models or as a measure of ionicity. The va-
lence functions, which are populated to obtain the kappa
charge, have substantial amplitude on neighboring nuclei
and beyond. The purpose of the kappa refinement is to
provide a more flexible and realistic model for the total
electron distribution. Most attempts to partition this dis-
tribution into atomic properties (.e.g., charges) can be
considered as arbitrary. A rigorous, quantum mechani-
cally sound method for obtaining atoms from molecules
are the virial fragments of Bader (1981), which are based
upon the topography ofthe gradient ofthe total electron
density. However, these atomic fragments are generally

1.009(2)
2.65(5)
0.51

1 053
A R

21 606
0.0308
0.0462
4.676

1.0't2(2)
2.64(4)
0.51

1 053
oc

15790
0.0292
0.0395
3.998

1.062(s)'
3.44(4)
o.47

1 053
79

9 583
0.0269
0.0308
3.137

1.00s(1r
2.83(21
0.49

1 053
176

2952
0.0184
0.0171
1.834

lh l " :  ky lF , '1 "
, :>w( lF  l "  -  k , l f .1zy

fl  lFl,)  :  (2 |  lF"l ,  -  k2lF"l2l l> 17 1z1uz
R*(lFl1: kt2 tF"t) ' , ,

S: [.(N. - N,)]'"

Note: No: number of observations, /V, : number of variables.
. 

. Efiective scale factor k: (> P"yF(000), where p" : monopole popu-
lation.

small multipole expansions of the molecular form factors
of appropriate diatomic molecules. These generalized
scattering factors (or GSFs) are discussed in detail by
Stewart et al. (1975). For phenakite, the monopole GSFs
for Be and Si were computed from the one-electron den-
sity functions of the BeO and SiO diatomics, respectively.
The oxygen monopoles from the SiO, BeO, NaO, LiO,
BO, CO, NO, ClO, 02, OH , OF- diatomics, and the O
ion were used to construct an oxygen monopole to yield
a charge-balanced system. The resulting GSFs have
monopole charges of + 1.213, +1.322 and -0.937 for Be,
Si, and oxygen respectively. The figures ofmerit indicate
a significantly improved least-squares fit using GSFs rel-
ative to IAM scattering factors.

Kappa model

Under favorable conditions, the monopole terms may
be included as refinable parameters. The most widely used
monopoles only refinement is the kappa refinement (Cop-
pens, 1977). In this model the scattering factor for each
atom is split into separate core and valence parts. The
core- and valence-electron populations are allowed to
vary. Furthermore, the valence scattering factor is scaled
by an additional parameter, kappa, which allows the va-
lence shell ofthe atom to expand or contract. In a kappa
refinement, the scattering factor for each atom is given by

f(s) : P,","I"*(s) * P"","""" f,*^*(s/x),

where s : 2 sin 0/)r, the magnitude of the Bragg vector.
These scattering factors retain spherical symmetry in re-
ciprocal space. P"o." and {.,"""" are, respectively, the core-
and valence-electron populations and, f.o," and fu,"n"" are
the appropriate scattering factors normalized to unity. If
x ) l, the valence shell is contracted relative to the va-
lence shell of the isolated atom. If x < l, the valence shell
is expanded. The choice of f"* and f.,""." is not unique,
and different functions will yield different electron pop-
ulations. We have chosen the densityJocalized, shell scat-
tering factors of Stewart (1980) as tabulated in Stewart
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TnsLe 4. Positional and apparent vibrational parameters from multipole model

Para-
meter Be(2) o(3)Be(1) o(2)o(1) o(4)

x
v
z
u,, (4")
tJ"" (Ar)
U* (A1
u." (4")
4. (A',)
u"" lA"l
B* (41.

0.1 95 62(2)
0 984 02(2)
0.749 90(3)
0.003 5(1 )
0.003 0(1 )
0 003 00(6)
0 001 41(9)
0.000 05(9)
0.000 1 4(9)
0.26(1 )

0.1 94 3(1 )
0 9 8 4 1 ( 1 )
0  4156(1)
0.005 2(6)
0.005 5(6)
0 0048(5)
0.002 6(5)

- 0.000 s(5)
0 000 3(5)
0.41(4\

0 .194 1(1)
0.982 2(1)
0.084 6(1 )
0.004 5(s)
0 005 6(5)
0.00s 3(5)
0.002 3(5)

-0 000 1(4)
0.000 0(4)
0.41(3)

0 20975(8)
0 121 25(8)
0.7s0 3(1 )
0.007 s(3)
0 0042(3)
0.003 6(3)
0.0037(3)
0.000 0(2)

-0 0003(2)
0.38(2)

0.333 82(9)
0.000 40(9)
0.749 91(6)
0.002 7(3)
0.004 4(3)
0.005 9(2)
0.001 7(3)

-0.000 2(3)
-0.000 3(3)

0.34(2\

0.12223(71 0.12228(7)
0.91217(7\ 0.913 42(7)
0.91497(8) 0.58495(8)
0 0043(3) 0 0040(3)
0.0047(3) 0.0047(3)
0.0035(2) 0 0035(2)
0.001 4(2) 0.001 0(2)
0.0003(2) -0.0002(2)
0.0001(2) -0 0003(2)
0 36(2) 0.36(2)

- 84 : (8?f/3) l(413) (U" + U22 U'J + U.J

not spherical, or even approximately so, and therefore do
not satisfy our conventional picture of atoms.

Multipole model

In our final structure-factor model, the scattering factor
of each pseudoatom is expanded in a small multipole
expansion after the manner of Stewart (1976). The mul-
tipole model for phenakite consists of the GSFs as fixed
monopoles, with three dipoles, five quadrupoles, and sev-
en octopoles to complete each pseudoatom. Attempts to
refine monopole populations and kappas together with
higher multipoles failed to converge. The higher multi-
poles each consist of a radial function of the form
r"e-"' and an angular function given by the appropriate
tesseral harmonic. Angular functions for all pseudoatoms
are defined relative to the same coordinate system. Fur-
thermore, all higher multipoles on each pseudoatom are
constrained to share the same radial exponent. Since the
multipole expansion now contains angularly dependent
functions, the scattering factor for each pseudoatom now
varies not only with the magnitude but with the direction
of the Bragg vector. The agreement factors show the mul-
tipole model to give the best fit to the observations. Even
with the increased number of parameters, the goodness
of fit is seen to most nearly approach the expected value
o f  1 .0 .

By far the most extinction-affected observation is the
006 intensity, which is attenuated by about 500/0. The
extinction correction to this observation is g,rven in Table
2 and is seen to vary depending on the structure-factor
model. Table 4 lists the positional and apparent vibra-
tional parameters from the multipole refinement, Table
5 gives selected interatomic distances and angles, and Ta-
ble 6' lists the observed and calculated structure-factor
moduli.

Er,ncrnosr.trlc PRoPERTIES

Deforrnation density

A map of the vibrationally averaged deformation elec-
tron density in the plane of Figure 1 is shown in Figure

I To obtain a copy of Table 6, order Document AM-87-346
from the Business Office, Mineralogical Society of America, 1625
I Street, N.W., Suite 414, Washington, D.C. 20006, U.S.A. Please
remit $5.00 in advance for the microfiche.

2A. This map is calculated from a three-dimensional Fou-
rier series, where the Fourier coefrcients are the differ-
ence between the observed structure-factor moduli and
those computed from neutral, spherical atoms (i.e., 4" -

dor). The positional and vibrational parameters for the
IAM, and the phases for observed reflections are from
the multipole refinement. Maps of the deformation den-
sity are virtually free of series-termination error since the
observed and calculated structure-factor moduli are vir-
tually identical for high-angle reflections that depend
mainly upon the distribution of the core electrons. The
estimated standard deviation in the deformation density
for this plane is given in Figure 28.

The solid contours in the deformation-density map
represent an accumulation ofelectron density relative to
a superposition of isolated atom densities. The dashed
contours are negative and show regions where a super-
position of isolated atoms gives more electron density
than actually observed in the crystal. An examination of
the nearest-neighbor interatomic vectors around each
oxygen atom shows an accumulation of electron density
associated with each ofthese vectors.

It is of interest to qualitatively compare the magnitude
of the electron-density accumulation in the bonds with
the observed bond distances. The Si-O(l) and Si-O(4)
distances are both 1.631 A and show electron-density ac-
cumulations of similar magnitude. The Si-O(3) distance
is 1.636 A, and the bond shows less deformation density.
The Be(l)-O(l) bond, the Be(2)4(1) bond, and the Be(ll
O(4) bond that is perpendicular to Z ate all short in com-
parison to the Be(2lO(3) bonds and the Be(1FO(4) bond
that is nearly along Z. As with the Si-O bonds, the short
Be-O bonds all show greater accumulation of deforma-
tion density than do long Be-O bonds.

The significance of an accumulation of deformation
density between bonded atoms should be clarified. Al-
though often used synonymously, the terms bonding and
binding have ditrerent meanings to chemists (Berlin, I 9 5 I ;
Bader, I 98 I ). Bonding refers to energy changes connected
with molecule formation, whereas binding refers to inter-
atomic forces. At this point in time, one cannot, in an
exact manner, quantitatively study bonding from the
electron density since the universal functional that relates
the one-electron density function to the electronic energy
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TABLE 5. Selected interatomic distances and anoles

Si tetrahedron Be(l) tetrahedron Be(2) tetrahedron

I  t J

si-o(1r
-o(2r
-o(3)
-o(4)
Mean

o(1)A-O(2)A
o(1r-o(3)
o(1r-o(4)
o(2)a-o(3)
o(2r-o(4)
o(3)-o(4)

Mean

o(3)-Si-O(4) 112.95(3) o(4)-Be(1)-o(2)F
o(3)-Si-o(1f 108.10(4) O(4)-Be(1)-o(1)G
o(3)-Si-o(2f 109.60(4) o(4)-Be(1)-o(4)K
o(4)-Si-o(1f 107.78(4) o(2)F-Be(1)-o(1)G
o(4)-Si-o(2f 109.88(4) O(2f-Be(1)-o(4)K
o(1)A-Si-O(2f 108.40(5) o(1)c-Be(1)-o(4)K

Mean 109.45 Mean

1 631(1) Be(1)-o(1)c
1 631(1) -O(2).
1 636(1) -o(4)
1631 (1 )  -O (4 ) -
1.632 Mean

2 645(2) O(1)c-O(2[
2.644(1) O(1)G-O(4)
2.635(1) O(1)c-O(4r
2.669(1) O(2)F-O(4)
2.670(1) O(2)F-O(4)K
2.723(1) O(4)-O(4)K
2.664 Mean

1  . 631 (1 )
1 .630(1 )
1.642(1)
1.634

1 630(1 )
1 638(2)
1 .656(1 )
1.656(2)
1 645

2.679(1 )
2.762(1)
2.658(1 )
2.678(11
2 6s6(1 )
2 676(1 )
2.685

1 08.6(1) O(3)c-Be(2)-O(1 )c 1 14.37(8)
1 13.96(8) O(3)c-Be(2)-o(2) 1 08.8(1)
107 9(1) o(3)c-Be(2)-o(3x 107.8(1)
109 4(1) o(1)c-Be(2Fo(2I 110.1(1)
108.43(7) O(1)G-Be(2FO(3)K 108.0(1)
108.s(1) o(2)'-Be(2)-o(3)* 107.48(8)
109 47 Mean 109.42

1 642(1) Be(2)-O(1)G
1.639(2) -O(2)
1 .657(1) -O(3)"
1.640(2) -O(3X
1.645 Mean

2678(1) O(1)G-O(lI
2 766(1) O(1)G-O(3)C
2.663(1) O(1)G-O(3)K
2 676(1) O(2I-O(3)C
2 660(1) O(2I-O(3)-
2 665(1) O(3)c-O(3r
2.685 Mean

o(2)-siD
-Be(1f
-Be(2)E

Mean

o(4)-si
-Be(1)
-Be(1)H

Mean

O(1)tr iangle
o(1)-sio

-Be(2)L
-Be(1)L

Mean

Mean 1 19.91

O(3) triangle

O(2) triangle
1  631 (1 )
1.639(2)
1.638(2)
I  OJO

Angles about O(2)
SiD-O(2)-Be(2)E 1 20.33(7)
SiD-o(2)-Be(1)J 120.'t7(9)
Be(2)'-O(2)-Be(1)J 119.5(1)

Mean 120.00

O(4) triangle
1  . 631 (1 )
1 .657(1 )
1.640(2)
1.643

Angles about O(4)
Si-o(4)-Be(1)
Si-O(4)-Be(1)H
Be(1)-O(4)-Be(1)H

Mean

Angles about O(1)
Sio-O(1)-Be(1)L
Si-O(1)-Be(2)L
Be(1)L-O(1)-Be(2)L

o(3)-si
-Be(2)H
-Be(2)B

Mean

1 23.30(8)
1 23.34(8)
1  13 .1(1  )

1 636(1)
1 656(1)
1.656(2)
1.649

Angles about O(3)
Si-O(3)-Be(2)B 114.06(5)
Si-O(3)-Be(2)H 123.61(6)
Be(2)6-O(3)-Be(2)H 122.07(7\

1 1 4.1 0(5)
1 23.49(5)
122.21(71
119 .93

Others
2.880(1 )
2.887(1)
2.870(1)
2.898(1 )
2 .881 (1 )
2 .901 (1 )
2.886

Mean

Atong Z
Si-Be(1)
Si-Be(2)B
Be(1)-Be(2)G

Mean

Selected metal-metal distances

2.759(1)
2762 (11
2731(1)
2.751

Be(1)-SiH
Be(1)B-Be(1)
Be(2)L-SiD
Be(2)B-Be(2)H
Si-Be(1)H
Si-Be(2)H

Mean

Symmetry code:
^ x , 1 + y , z
B x , y , 1  +  z
c x ' Y ' z - 1
' x ,  y  1 ,  z
E 4 l 3 - y , x - y + 2 1 3 , 2 1 3 + z
' 1 1 3 - y , x - y + 2 1 3 , 2 - 1 1 3

n y , y - x + 1 , 1 - z
^  y  -  1 ,  y  -  x ,  1  -  z
' y -  x + 2 1 3 , 4 1 3 -  x , z -
,  y  _ x _ 113,  113 _ x,  113
*  x  -  y  +  1 ,  x  +  1 , ' l  -  z
' x -  y + 1 , x , ' l  -  z

213
+ z

is not yet fully known. However, through the Hellman-
Feynman theorem (Feynman, 1939), questions of chem-
ical binding can be approached rigorously given a knowl-
edge of the electron-density distribution.

For diatomic molecules the efect of the electron den-
sity on chemical binding can be quantitatively examined
using Berlin's theorem (Berlin, l95l), which uses the
Hellman-Feynman approach to define binding and anti-
binding regions of a molecule. Electron density in the

binding region holds the atoms together, whereas density
in the antibinding region tends to pull them apart. As
pointed out by Spackman and Maslen (1985), Berlin's
theorem has at times been misused in interpreting maps
of the deformation electron density. It is often assumed
that an accumulation of deformation density between two
atoms is required for bond formation. In reality such ac-
cumulation is neither necessary nor sufficient to bind the
nuclei (Spackman and Maslen, 1985). This fact is most
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Fig. 2. (A) Dynamic deformation electron density in the plane of Figure I . Solid contours positive (i.e., accumulation of electron
density), small dashes negative; large dashes represent zero contour. Contour interval 0.1 e A*. (B) Estimated standard deviation
in deformation electron density. Contour interval 0.1 e A-'.

evident in theoretical deformation maps of the diatomics
F, and Or, which show large negative features in the de-
formation density along the bond and yet are bound
species. Furthermore, Berlin's theorem shows that the
most significant electron-density deformations, as far as
binding is concerned, are very close to the nuclei. For N,
and Fr, Spackman and Maslen (1985) have shown that
the deformation density at the bond midpoint has almost
no effect on the binding ofthe nuclei.

In light of the above, we do not insist that positive
deformation density between nearest neighbors implies
bonds or that larger accumulations of deformation den-
sity imply greater binding. We merely observe that Iarge
deformation-density accumulations appear to be associ-
ated with short interatomic distances in phenakite.

As pointed out by Bader (1981), the concepts ofco-
valent vs. ionic character ofa bond originate in valence-
bond theory where the total wavefunction of a molecule
is considered as the combination of a fully covalent and
a fully ionic wavefunction. The percentage contribution

of the ionic wavefunction to the total wavefunction is one
definition ofthe ionic character. The electronegativity dif-
ference between two bonded atoms is closely related to
the importance of the ionic portion of a valence-bond
wavefunction. Electronegativity diferences have there-
fore been used to predict ionic or covalent character, which
is essentially an attempt to empirically predict the nature
of an electron distribution. When an accurate electron
density has been either calculated or observed, the con-
cepts of covalent vs. ionic character become less neces-
sary. One problem with the concepts of ionicity or co-
valency is that, along with atomic size, charge, and
coordination number, these properties are not quantum
mechanical observables. In other words, there are no
quantum mechanical operators that may operate on the
total wavefunction to uniquely yield these properties.
Properties such as the electronic energy, electric fields,
electric-field gradients, etc., are rigorously defined in terms
of the wavefunction.

If the deformation electron density of a molecule for

dt r-l
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Fig. 3. Static deformation density computed in direct space from a superposition of spherical GSFs and multipole deformation
functions. Contour interval 0.1 e A ,.

which the valence-bond wavefunction shows a high de-
gree of ionic character (e.g., LiF) is observed, the zero
contour will tend to be spherical, and more importantly,
will completely enclose the anion. Bader (1981) has em-
phasized that the words ionic and covalent can be used
in a nonpredictive sense to describe an observed electron-
density distribution. The zero contours in Figure 2A arc
seen to nearly enclose each oxygen atom. Furthermore,
the peaks in the deformation density are closer to oxygen
than to their nearest neighbors. This is consistent with
the higher electronegativity of oxygen compared to that
of Be or Si. Thus, in a qualitative sense, the deformation
density of phenakite appears to exhibit a good deal of
ionic character. However, assuming there has been a net
charge transfer to oxygen, the oxygen anions are polarized
toward the cations, indicating substantial covalency in
these bonds.

A map of the static deformation density is shown in
Figure 3. This map is not generated by Fourier series but
is calculated from the monopole terms and refined higher
multipole functions in direct space. The electron densities
of static, spherical atoms are subtracted to form the de-
formation density. Since the multipoles are assumed to
rigidly follow the nuclear motion, it is assumed that the
effect ofnuclear vibrations has largely been removed. In
making this statement it is assumed that the scattering
model is correct so that the refined vibrational parame-
ters will be reliable. Although the map looks somewhat
different from the dynamic deformation density shown in
Figure 2, most bonds still exhibit an accumulation of de-
formation density.

It may appear surprising that the static deformation
density about O(3) shows less accumulation than the vi-
brationally smeared density. This could be because the
same fixed monopole GSF is used for all oxygen atoms;
this fact means that any variations must be fit by the
higher multipoles, which cannot bring about a charge

transfer between pseudoatoms. This result may also be
due to the nonideal quality of the low-order data, wherein
sufficient noise makes an accurate multipole fit diftcult
to obtain.

It is noteworthy that O(1) exhibits larger deformation-
density features and shorter bonds than O(3) in both the
dynamic and static maps. The question arises as to
whether O(1) could have a greater ionic charge than O(3).
It is tempting to use the kappa charges for this purpose.
However, kappa charges are never sufficient to address
such a question, which requires a more sophisticated def-
inition and measurement of atomic charge using a sub-
stantially more accurate pseudoatom fit than that pre-
sented here.

Electrostatic potential

Another electrostatic property of interest is the total
electrostatic potential. A map of the electrostatic poten-
tial gives the negative work done by a positive charge to
come from infinity to a given point on the map. Such a
map is shown in Figure 4 for the same plane viewed in
Figures 2 and 3. The map is calculated with a combina-
tion of Fourier series and direct-space methods as dis-
cussed by Stewart (1979) and Spackman and Stewart
(1981). Negative contours are dashed and show where a
positive charge would be attracted by the electrostatic
potential. Since the potential is singular at the nuclear
positions, the positive contours near these positions are
omitted. Figure 48 is a map of the estimated standard
deviation of the total electrostatic potential and indicates
that this property is of most interest in the internuclear
regions where the error is about 0.1 e/A.

One can almost see atoms in the total potential map.
This is because the zero contour nearly envelops each
nucleus in a roughly spherical fashion. The atomic sizes
depicted here are clearly not what are normally repre-
sented in introductory mineralogy texts where Be and Si
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Fig. 4. (A) Total electrostatic potential in plane ofFigure 2. Small dashes negative, large dashes zero; solid contours are positive

and have not been plotted near nuclear positions. Contour interval 0.1 e A-'(l e A-' : 14.4 eVlunit charge : 1389 kJ/mol : 332.1
kcaVmol). (B) Estimated standard deviation of total electrostatic potential. Contour interval is 0.1 e A-'.

are usually represented as small cations and oxygens are
large anions. In one ofthe first papers on the sizes ofions,
Linus Pauling (1928) said, "The electron density of an
ion remains finite even at very large distances from the
nucleus, and shows no discontinuities. Hence it is not
possible to assign one radius to each ion and call it the
true radius; instead, various radii may be assigned each
ion, each one of interest with reference to a particular
physical property." The effective ionic radii ofShannon
and Prewitt (1969), the atomic radii of Slater (1965), and
the potential radii evident in Figure 4 are clearly based
on different criteria.

As with all potentials, the electrostatic potential is giv-
en to within a constant factor. In a crystal, this factor is
chosen so that the unit cell is electrostatically neutral,
whereas for an isolated molecule, the integral of the po-
tential throughout all space must vanish. Therefore, po-
tential radii can never be absolute.

One useful feature of viewing atomic size through the
electrostatic potential is that this property includes the

effects of the nuclear charge distribution as well as the
electron distribution. This is important when considering
transport and catalytic properties since any atom or mol-
ecule within a crystal must interact with the total charge
distribution. The total electrostatic potential may there-
fore yield a more realistic picture of the sizes of interact-
ing atoms than does the total electron density or defor-
mation density.

Zachaiaset (1972) first noted the rather short metal-
metal distances parallel to Z (Fig. l) and suggested that
this direction could be one of low compressibility. Recent
high-pressure studies by Kogure and Tak6uchi (1986) yield
nearly equal compressibilities for c and a, with only a
slight increase in c/a with increasing pressrue, supporting
Zachariasen's conclusion.

In a qualitative sense, the compressed nature of the
structure along Z is evident in the map of the electrostatic
potential. The internuclear vectors connecting O(4FSi-
O(3FBe(2!O(lFBe(1FO(4) lie along a ridge of contin-
uously positive potential. Normal to Z, negative potential



occurs in the middle of the Be(l)-O(4) and Be(2)-O(3)
bonds, and the potential in the Si-O(l) bond is less elec-
tropositive than that in the Si-O(3) bond.

CoNcr,usrous

We have presented the results of an attempt to extract
the deformation electron density and total electrostatic
potential of phenakite from X-ray diffraction data. Al-
though the data are not of the superior quality required
for an extensive and quantitative charge-density analysis,
a few conclusions can be reached.

l. The dynamic deformation electron density of phen-
akite exhibits accumulations of electron density between
nearest-neighbor atoms, with shorter bonds showing larg-
er accumulation than long bonds between atoms of sim-
ilar type.

2. The zero contour in the deformation density vir-
tually encloses each oxygen nucleus, thus classifying the
deformation density with that of molecules having a large
ionic component to the bonding, such as LiF. However,
the electron density within this contour is not spherical,
but is polarized toward the cation nuclei, indicating a
substantial covalent component as well. A theoretical
model of fully ionized atoms, which show no polariza-
tion, may not be an accurate electron-density model for
phenakite.

3. From the viewpoint of a positive test charge, the
electrostatic potential shows that Si and Be are large rel-
ative to oxygen in phenakite. The conventional picture
of tiny Be and Si cations surrounded by large oxygen
anions may not be the most realistic when considering
properties such as diffusion or catalytic activity.

4. The dense packing ofthe phenakite structure parallel
to lhe Z axis appears obvious from the electrostatic po-
tential, in agreement with the conclusions of Zachariasen
(1972), Hazen and Au (1986), and Kogure and Tak6uchi
0986).
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