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Coarsening of fine-scale exsolution lamellae
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Anstn,c.cr

Diffusional exchange between the wedge-shaped terminations of fine-scale, coherent
exsolution lamellae and the large flat sides of adjacent like lamellae is proposed as the
principal mechanism for the coarsening of lamellar exsolution textures in silicate minerals.
Following the methods of Gibbs (1906), a formula is derived for the chemical potential
gradients due to interfacial energy effects that drive the proposed diffusion and coarsening.
The calculated driving force is shown to be inversely proportional to the lamellar wave-
length (I), as obtained by Cline (197l) for a similar geometry. For this model of lamellar
coarsening, the appropriate rate law is given by tr: : )\3 + kt rather than the rate law 6:
l\o + ktv') that applies to the coarsening of more equidimensional precipitates (Wagner,
l96l). For geologic problems, extrapolation ofthe data oflaboratory coarsening experi-
ments using the tr'? rate law yields results significantly different from those obtained using
the t'h rate law, if the coarsening event lasts more than a few hundred years. The rate of
coarsening, according to the proposed model, depends on the two-dimensional density of
wedge-shaped ends (WSE), i.e., their number per unit cross-sectional area (n*.u). Mea-
surements ofrnu photos ofclinopyroxenes, exsolved and coarsened at 1000"C by Nord
and McCallister (1979), give WSE densities in the range I x l0'2 to 15 x l0'2 m-2. The
product trn*r. should be constant during coarsening and has been determined to be in the
range I x 105 to 5 x lOt m-r for the same exsolved clinopyroxenes.

InrnonucrroN

Exsolution textures in synthetic minerals have been ob-
served to coarsen when annealed at appropriate temper-
atures in the laboratory (Yund et al., 1974', Park et al.,
1976; Yund and Davidson, 1978; McCallister, 1978;
Nord, 1980; Grove, 1982). Although it is commonly be-
lieved that the mechanism for this coarsening is related
to "imperfections" in the microstructure (Graham and
Krafl, 1966; Cline, 197 l; Lin and Courtney, 197 4; CourI-
ney, I 97 5), the microscopic details of the coarsening pro-
cess are not fully understood. Because geologic applica-
tions of coarsening studies typically require long
extrapolations of the results of short experiments, it is
important that the theoretical basis for these extrapola-
tions be firm. This paper explores the consequences of
certain assumptions about the coarsening of lamellar in-
tergrowths of minerals formed by exsolution. It will be
demonstrated that the rate law currently in use to de-
scribe the kinetics of coarsening of lamellar textures is
incorrect and may lead to significant errors if used to
apply laboratory data to natural processes lasting thou-
sands ofyears.

Coarsening of exsolution lamellae is an example of a
set ofprocesses that have been called "Ostwald ripening"
after the experiments of W. Ostwald (1900). Ostwald ob-
served that the solubility of various crystals in aqueous
solutions was greater for small crystals than for large crys-
tals. Indeed, he was able to demonstrate that small crys-
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tals would dissolve in a solution from which large crystals
of the same compound would grow. The difference in
solubility can be attributed to the higher specific free en-
ergy of small crystals relative to large crystals, owing to
the greater surface-to-volume ratio of the small crystals.
Similarly, when exsolution lamellae coarsen, some la-
mellae must grow and others must be eliminated such
that the average surface-to-volume ratio of the lamellae
is decreased.

The driving force for the coarsening process is a reduc-
tion of free energy due to the reduction of surface or in-
terfacial area. The reduction ofsurface area that accom-
panies the dissolution of one crystal and the growth of a
nearby crystal is clear in Ostwald's experiments. So too
are the chemical potential gradients that drive diffusion
from a small crystal of higher specific free energy to a
nearby large crystal of lower specific free energy. The re-
duction ofinterfacial area that accompanies the coarsen-
ing of exsolution lamellae also seems clear enough until
the microscopic details of the process are examined.

Imagine a set of perfectly tabular exsolution lamellae
like those shown in Figure la. Assume for the purposes
of discussion that the shaded lamellae coarsen "actively"
by diffusive exchange ofmaterial and that the unshaded
lamellae coarsen "passively" by the elimination of shad-
ed lamellae. At an intermediate stage in this hypothetical
coarsening process, the lamellae might look like Figure
lb, where the lamellae have alternately increased and de-
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Fig. l. Hypothetical coarsening of perfect lamellae (a) through
an intermediate stage (b). Because surface area is not eliminated

#jrlJf 
entire lamella is consumed, perfect lamellae will not

creased in width at constant total volume. Although it
appears that coarsening is proceeding nicely as the la-
mellae change from the configuration of Figure 1a to that
ofFigure lb, in fact there has been no reduction ofinter-
facial area. Perfect lamellae cannot coarsen in any con-
tinuous process because there is no reduction in free en-
ergy to drive the coarsening through the intermediate
stages. Discontinuous coarsening in which a grain bound-
ary moves through the exsolved crystal (Livingston and
Cahn, 1974; Fournelle, 1979a, 1979b) may be possible
for perfect lamellae, but this does not explain the ob-
served (e.g., Yund and Davidson, 1978; McCallister, 1978)
continuous coarsening of exsolved synthetic minerals in
the laboratory.

A co,qnsnNrNc MoDEL

Exsolution lamellae observed in minerals are not per-
fect; they typically branch and terminate in a variety of
ways. Examples may be found in Figure 2, rnM images
of exsolved synthetic pyroxenes. Textures like these are
considered to be typical of minerals exsolved through the
process ofspinodal decomposition (Yund, 1984), but they
do not prove that the exsolution mechanism was spinodal
decomposition rather than nucleation and growth. Al-
though three-dimensional information is averaged to
produce the two-dimensional rru photo, it appears that
the lamellar "terminations" or "faults" are wedge shaped
with little curvature in the third dimension-at least
within the 0.5-pm thickness of the rer'a section. It is the
thesis of this paper that coarsening of exsolution lamellae
may occur by the difusion of material from these wedge-
shaped ends across adjacent unlike lamellae to be added
to similar lamellae nearby (see Fig. 3). As material is lost
from a wedge-shaped end (WSE), its position changes,
allowing the adjacent (unshaded) lamellae to become con-
linuous. Geometrically, this process is reminiscent of the
action of a zipper. Because the lamella that has a WSE is
being continuously consumed as the "zipper" closes, in-
terfacial area and its associated free energy are continu-
ously decreasing. This is not a new model; it has been
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Fig. 2. Dark-field transmission-electron-microscope lmages
of exsolved clinopyroxenes from the study of Nord and Mc-
Callister (1979). See also Buseck et al. (1980, Fig. 23). If the
figures are viewed parallel to the lamellae, the wedge-shaped
ends are more apparent. The bright phase is pigeonite and the
dark phase is augite. The sample in (a) was annealed for 1075 h
at 1000'C; the sample in (b) was annealed for 3838 h at 1000"C.
The white scale represents 0.2 pm. Photographs taken by Gor-
don Nord.

extensively developed in the materials-science literature
(Graham and Kraft, 1966; Cline, l97l). Annealing ex-
periments of lamellar metal intergrowhs have verified
the movement of lamellar terminations (Lin and Court-
ney, 1974; Garmong and Rhodes, 1974). Nevertheless,
coherent exsolution lamellae in minerals are sufficiently
different from metal intergrowths to warrant a detailed
analysis.

Coarsening of exsolution lamellae in silicate minerals
requires diffusion of only a few cations within a fixed
framework of oxygen atoms. For example, coarsening in
cryptoperthite is accomplished by the diffusion of K and
Na; no diffusion of oxygen (or Al and Si) is needed. Dif-
fusion is driven by chemical potential gradients, which
are generally reflected by gradients in chemical compo-



sition. If the proposed model of lamellar coarsening is
correct, chemical potential gradients must exist between
each WSE and the thickened lamellae nearby. Two rea-
sons immediately come to mind why chemical potential
gradients should exist. (l) The chemical potential of a
component defined by local equilibrium with the WSE of
a lamella should exceed the chemical potential of that
component defined by local equilibrium with the adja-
cent like lamella, because of the higher interfacial free
energy of the WSE facets. (2) A concentration of strain
energy in the vicinity of the WSE is expected over and
above the homogeneous strain energy that accompanies
coherent exsolution (Robin, 197 4a, 197 4b).

The shape of the WSE's is typically much "sharper"
than would be expected for the equilibrium form of a
strain-free faceted crystal (see Johnson, 1965), suggesting
that factors in addition to interfacial energy combine to
determine the WSE shape. Sharp WSEs may reflect the
influence of the strain-energy concentration expected near
lamellar terminations in coherent crystals. However, even
though strain energy may affect the shape of WSEs, strain
energy probably does not contribute significantly to the
driving force for coarsening. For lamellae with no cur-
vature in the third dimension, migration of a WSE changes
the location ofthe extra strain energy, but the strain en-
ergy is not eliminated as long as the WSE exists. Using
the strain-energy concentration at the WSE to drive the
diffusion that leads to WSE migration would violate the
second law of thermodynamics: getting diffi.rsion work
without the expenditure of energy. Interfacial area ls
eliminated as the WSE retreats, making interfacial free
energy an acceptable driving force. Oriani (1964), using
a slightly different argument, has similarly concluded that
coarsening ofcoherent precipitates is driven by interfacial
free energy, not strain effects. If the lamellae are actually
disc-shaped in plan (WSEs curved perpendicular to the
plane of Fig. 3), then WSE migration would lead to a
shrinking lamellar disc and a consequent reduction in
strain energy. In this case, strain energy could contribute
to the driving force for coarsening. Because the magni-
tude of this curvature is unknown, the following analysis
will proceed on the assumption that interfacial energy is
the driving force for coarsening.

Sonrn THERMoDYNAMTcs

To examine the quantitative implications ofthis model
for geologic applications, it is necessary to develop a
mathematical formalism. In this endeavor I will follow
very closely the analysis of Cline (197 1), who considered
the coarsening and stability ofdirectionally solidified la-
mellar eutectics as an addendum to a detailed discussion
of rod-shaped composite structures. The model assumes
that difiirsion is the rateJimiting process for coarsening.
Therefore, the first step in the analysis is to obtain an
expression for the chemical potential gradients and relat-
ed concentration gradients that drive diffusion from a
WSE to adjacent like lamellae. Because the WSEs of min-
eral lamellae are bounded by approximately flat, facetlike
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Fig. 3. A cross section ofan exsolved mineral ofhost B and
guest a showing an ideal wedge-shaped end (WSE). tr is the la-
mellar wavelength prior to coarsening. The arrows show sche-
matically the ditrusion that will lead to movement of the WSE.

surfaces, it is not possible to follow Cline (1971) directly
and use the Gibbs-Thompson equation (Lewis and Ran-
dall, 1961, Eq. 29-3q for the chemical potential near
spherical interfaces. Similarly, because coherent exsolu-
tion lamellae do not have a strain-free equilibrium form,
Johnson's (1965, Eq. 13) modified Gibbs-Thompson
equation for centrosymmetric crystals in "shape equilib-
rium" cannot be used. The analysis requires a different
equation from Gibbs with a modification for two-com-
ponent crystals.

Gibbs (1906, Eq. 665), repeated in Herring (1951, Eq.
l8), considered the free-energy change that would attend
the infinitesimal growth or dissolution of a single facet of
a crystal. At equilibrium, this free-energy change must be
zero. Gibbs obtained an expression for the chemical po-
tential po(i) of component A in a fluid adjacent to crystal
face i of a crystal of pure A, relative to the chemical
potential po(o) of component A defined by an infinitely
large crystal of A, as follows:

p^(i) - po(oo) : (v^/,S,) ) l1,csc(?r) - 1,ctn(9)1.L,,, ..,
;  ( l )

where vo is the molar volume of the crystal, ,S, is the
surface area of facet i, "y, is the interfacial energy of facet
l, 7, is the interfacial energy of adjacent facet j, 9, is the
dihedral angle between facet i and the extension offacet
j, and L,,is the length of the edge between facets I and j.
(Symbols are collected in Table 1 for reference.) The sum-
mation in Equation I is over all facetsT adjacent to facet
i. Gibbs (1906) pointed out that if the crystal is to have
an equilibrium form, the summation in Equation I di-
vided by the surface area ,S, must be the same for all
facets. Conversely, if the crystal does not have an equi-
librium form, the summation in Equation I divided by
the surface area S, will not be the same for all facets, and
p"(i) will vary in the matrix around the crystal. Because
in this case the chemical potential determined by Equa-
tion I would not be single-valued at the intersection of
two facets, it is likely that the crystal edges are rounded
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TreLe 1. List of symbols and units

the difference between the concentration of comoonent A
in the matrix phase B near a WSE of a lamella of phase
a and the concentration of component A in the matrix
phase P near the LFS of an adjacent a lamella (moles of
A per cubic meter)

the A = B interdiffusion coefficient in phase B (m,/s)
infinitesimal length lost from an exsolution lamella during

coarsening as shown in Figure 4b (m)
diffusional tlux (per unit length of WSE) of component A (in

moles) from one facet of a WSE (moles of A per meter
of WSE per second)

a constant given by Equation 21 (m,/s)
a constant given by Equation 7 (moles of A per square meter)
a constant given by Equation 8 (dimensionless)
a constant given by Equation 13 (m3/s)
length of the edge in common between adjacent lacets i

and I (m)
length of the short edge of one WSE facet (m)
length of the long edge of one WSE facet (m)
the large flat side of an exsolution lamella
the two-dimensionaldensity of WSEs, i.e., the average num-

ber of WSES per unit cross-sectional area (m-'?)
nwsE at the start of coarsening (m '?)
ideal-gas constant (8.314 J mol ' K ')

surface area of facet I of a crystal (m'?)
surface area o{ one facet of a WSE per unit length ot WSE

(m)
absolute temperature (K)
molar volume of a crystal of pure A (m3/mol)
molar volume of a crystal of phase a (m3/mol)
average velocity of the WSEs of lamellae of phase q as they

recede during coarsening (m/s)
mole fraction of component A in phase o at the WSE of an

exsolution lamella of a (dimensionless)
mole fraction of component A in exsolved phase B for a

coarse (@), no interfacial energy effect (coherent), equi-
librium composition (dimensionless)

bulk composition of the mineral grain (host + exsolved guest)
containing d and B given as the mole fraction of compo-
nent B

cross-sectional area of infinitesimal volume lost from one
facet of a WSE, defined in Figure 4b

interfacial free energy of facet i of a crystal (J/m'z)
interfacial free energy of the large flat side of an exsolution

lamella (J/m,)
dihedral angle between a WSE facet and the extension of

the LFS of an exsolution lamella (see Fig. 4b)
dihedral angle between facet i and the extension of facet I
lamellar wavelength (m)
thickness of lamellae of phase q (m)
lamellar wavelength at the start of coarsening (m)
chemical potential of component A in a fluid adjacent to

crystal face I of a crystal of pure A (joules per mole of A)
chemical potential of component A defined by an infinitely

large crystal of A 0oules per mole of A)
chemical potential of component A in phase B in equilibrium

with a crystal of infinite size of phase a (ioules per mole
of A)

chemical potential of component A in phase B in equilibrium
with a WSE ot a lamella of phase d 0oules per mole of A)

difference in the chemical potential of component A in phase
B between a WSE and the LFS of an adjacent like lamella

Some simplification of Equation I is possible for WSEs,
because of the symmetry of the WSEs and the shape of
the lamellae. Ideally, each of the two facets on a WSE has
four edges (El to E4 in Fig. 4a), and the summation in
Equation I would be to 7 : 4. However, because of the
planar geometry of the lamellae, the Z, terms for two of
the WSE edges (El and E3) are very small relative to the
other two l, terms (I*r, >> I.), so that two of the four
edges in the summation can be neglected. If reflection
symmetry of the WSE (see Fig. 4b) is maintained, both
facets of the WSE grow or recede simultaneously, the sur-
face area S*ru of each facet is constant, the cotangent
terms are eliminated in the summation, and Equation I
becomes

pou(WSE) - por(@) : vo(I*.u/S*.')['y'^csc(9)], (2)

where pr*(WSE) is the chemical potential of component
z4 in phase g in equilibrium with a WSE of a, .L*., is the
Iong edge of the WSE facet, the subscript LFS refers to
the large flat side of a lamella, and the angle I is as shown
in Figure 4b. Now S*s, : Z*.uI, and Z. : x"/12 sin(9)]
(see Fig. 4). Substituting these relations and using the
identity l/sin(P) : csc(9), Equation 2 becomes

p^u(WSE) - po,t(@) : 2voytur/)\., (3)

where tr., is the average width of the WSE lamellae. Note
that it is "yr.. that appears in Equation 3, not ^y*r.. This
makes sense because it is the sides of the lamellae that
are eliminated during coarsening. Garmong and Rhodes
(1974,p.2513) reached the same conclusion using a more
qualitative argument. Because the LFSs of the exsolution
lamellae have surface areas that are much larger than the
areas of the WSE facets, the value of pm(LFS) - peB(@)
is many times smaller than the value of p"r(WSE) -

por(@). Thus, Equation 3 gives the difference in the
chemical potential (Apor) of component A in phase B be-
tween the WSE of a lamella of pure A and the LFS of an
adjacent lamella of pure A.

In all of the preceding analysis, the crystal or lamella
was assumed to be a one-component phase while the sur-
rounding fluid or matrix was of variable composition.
For real exsolution lamellae, two or more components
must be considered for both phases. Taking the case that
both the WSE phase a and the matrix phase 0 are solid
solutions of the two components A and B and neglecting
the variations in the molar volumes of a and 0 over the
composition ranges considered, Equation 3 is modified
(following the procedures of Gibbs, 1906, p. 316-321) to
read

pou(WSE)Xa"(WSE) + p*(WSE)X""(WSE)
- pos(@)Xn (co) - pue(@)X""(oo)
: 2v.7t /)r,.

In this expression, X".(WSE) is the mole fraction of com-
ponent A in phase a at the WSE, X""(oo) is the mole
fraction of component B in an infinitely large crystal of
phase a, etc. Rearrangement of Equation 4 to a more

D^e
dH

K1
K2
K3
Lii

L*se

LFS
Dwse

flwse,o

R

Su".

T

XA"(WSE)

x^16)

Pr(@)

pre(o)

p^IWSE)

Altaa

xB

dz

^{t

Turs

I

9l

Io

Po(j)

on some scale. Gibbs did not explicitly discuss crystals
like the exsolution lamellae considered here where kinetic
factors preserve crystals that do not have a strain-free
equilibrium form. Nevertheless, his derivation appears
to apply to this specialized case oflocal equilibrium. Gibbs
derived Equation I for a crystal in equilibrium with a
liquid, but tbere is nothing in the nature of the derivation
that precludes its application to a small crystal included
in a larger crystal.

(4)
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usable form is accomplished in Appendix I with the help
of the following assumptions: (l) that there is no appre-
ciable compositional variation within a lamella near its
WSE, (2) that the activity coefficient for component A
does not vary significantly with position in either phase
a or in phase B, both of which have virtually uniform
compositions, and (3) that the molar volumes of a and B
do not vary dramatically with composition. The result
(Eq. A9) is as follows:

ACou: K,/)t, (5)

where ACo, is the difference between the concentration
of component A in the matrix phase B near a WSE and
the concentration of component A in the matrix phase B
near the LFS of an adjacent lamella. K, is a constant giv-
en by

Kr: l2v.7.rrX^*X',Bl/IKrRTvu(X"u - X"")l (6)

in which R is the gas constant, I is the absolute temper-
ature, and all of the mole fractions are for the coarse (o),
equilibrium compositions. K, is also a constant given by

K, : ^"/I : I - trB/tr : (XuB - X")v"/l(X* - X")v"
+ (X" - X,")vul Q)

in which tr" is the average width of the WSE lamellae, tr
is the lamellar wavelength, X" is the bulk composition of
the exsolved mineral containing a and B given as the
mole fraction of component B. What follows depends on
the form ofEquation 5, but not on the value ofthe con-
stant K,.

The basic statement of Equation 5 is that the driving
force for the diffusion that leads to WSE migration and
lamellar coarsening is proportional to l/tr. This is the
same result that Cline (1971) presented for lamellae with
hemicylindrical ends. It is reasonable and intuitively sat-
isfying that the result should not depend on whether the
lamellar ends are round or faceted. Proportionality of the
driving force to l/\ is probably also correct for other WSE
geometries.

KrNrrrcs

Using Equation 5 it is possible to discover the migra-
tion velocity Z*ru of an average WSE. WSE migration
occurs as material diffuses from the WSE to the adjacent
like lamellae. This diffusion is steady-state in a reference
frame that moves with the WSE because the chemical
potential gradient Apo, and the diffirsion distance ),u do
not change as the WSE moves (see Fig. 4b). Using Fick's
law and assuming that the diffusion is one-dimensional
in a two-component system, the steady-state flux Jo Qter
unit length of WSE) from one facet of a WSE is given by

,Ia : ,S*rrDo"lLC^Bn\Bl, (8)

where S*rg is the surface area of one facet of a WSE per
unit length of WSE, D^" is the A + B interdiffusion coef-
ficient, and ACou is the concentration difference between
the WSE and the adjacent like lamellae. Equation 5 for

Fig. 4. A distorted and enlarged wedge-shaped end (WSE) of
a lamella of phase a drawn to clarify parameters used in the text:
(a) foreshortened perspective view, (b) cross-sectional view. Pa-
rameters are defined in Table I and in the text.

ACo, and Equation 7 for trr/\ may be substituted into
Equation 8 to give

,/o : S*..D^"[K,/(II,)] : S*5sDauK'/Kl - ,K,XX)]. (9)

Equation 9 indicates that the diffusion flux required for
coarsening is inversely proportional to the square ofthe
lamellar wavelength X.

Because the position of a WSE changes as a result of
diffusion, the migration velocity Z*.. of an average WSE
may be obtained from Equation 9 with the help of Figure
4. The flux -Ir must equal the amount of A lost in unit
time from the parallelpiped of base dZ and unit height
(measured perpendicular to the page in Fig. 4b). Hence,

J": (dz/dt)(l)t(&" - X")/v"1, (10)

where I is the time and area dZ is defrned in Figure 4b.
Using Equation 10, Z.r, is related to "Io as follows:

V*", : dH/dt : (2/l\)dz/dt : 2JovJlll"(X* - X*)1, (l 1)
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Fig. 5. Coarsening data for exsolved clinopyroxenes of
McCallister (1978). I, is the square of the lamellar wavelength.
The solid lines are least-squares fits to the expression ),, : tr3 +
kl (see Table 2).

with length dll as shown in Figure 4b. Noting that S*r. :

I"/[2 sin(9)], Equations 9 and I I combine to yield

v*su: &/()\r) (r2)
where K, is a constant given by

Kr: K,v,Dor/l(l - Kr)(X^" - X"r)sin(9)1. (13)

Equation 12 shows that the velocity of WSE migration
depends on the inverse square of the lamellar wavelength
L (assuming that the shape (9) of the WSE does not change
significantly with I). Equation 52 of Cline (1971), which
gives the "velocity that the [cylindrical] plate edges re-
cede," also shows an inverse square dependence on tr.
The general form ofthe velocity expression (Eq. l2), like
that of the driving force expression (Eq. 5), apparently
does not depend on the detailed shape of the lamellar
termrnatlons.

In all ofthe preceding analysis, equations were devel-
oped for WSEs on a lamellae in a B host. However, the
same equations may be easily modified to describe WSEs
on B lamellae in the same sample (every a should be
replaced by a 0, every A by a B, etc.). Although the ma-
jority of WSEs occur on the lamellae of the guest phase,
WSEs do occur on the host phase lamellae as well (see
Fie. 2). Host WSEs will be particularly common if the
volume fractions of host and guest are similar. These host
WSEs can also lead to coarsening and must be considered
in the overall coarsening-rate law. To see the relative im-
portance of host WSEs, the velocity of the guest WSEs,
Vir"u can be compared with the velocity of the host WSEs,
7?".u. Assuming that the WSE angle I and the interdif-
fusion coefficient Do" are the same for both guest and
host, Equation l2 yields

Vir"r/VP,u"u: Q-/v)r(X*X,B/X^"XB). (14)

The cubic term in Equation 14 is likely to be near unity.
If the solvus is symmetric, the composition term in Equa-
tion l4 will also be unity. Evidently, the velocities ofboth
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host and guest lamellar WSEs will in general be similar.
Therefore, in the following development, read WSE to
mean both guest and host WSEs.

To obtain a coarsening-rate law from Equation 12, the
net effect of all the WSEs must be determined. For this
calculation the two-dimensional density of WSEs, i.e., the
number of WSEs per unit cross-sectional area (n*r.), is
clearly an important parameter. For a mineral with exso-
lution lamellae spaced at wavelength tr, the total length
of lamellae a per unit cross-sectionalareais given by l/I;
the average lamellar length is l/(trn*.'). The rate of change
of the total length of lamellae is given by

d(l/)\)/dt: -Z*su/?wss. (15)

WSE migration will lead to the gradual elimination of
WSEs at grain boundaries or against one another. If the
WSEs are randomly distributed, a change in the total
length of lamellae per unit area by a certain percentage
will lead to a change of the number of WSEs per unit area
by the same percentage. This means that the average la-
mellar length l/(trn*ru) is constant and

tr/?*se : tr.ft*.r.., (16)

where the subscript 0 refers to the values of the param-
eters at the start of the coarsening process. Dividing
Equation 15 by the (constant) average lamellar length
l/(trn*.r), the rate of destruction of WSEs per unit area
is found to be

dn*rr/dt: - Z*.r(n*rr)2 tr. (r7)

The instantaneous coarsening rate follows directly from
Equation l5:

^/dt : Z*.rn*.rtr2. (18)

Substituting for Z*.u from Equation 12 and for n..' from
Equation 16, Equation 18 becomes

dX/dt : (Kr)'n*ru.o)/tr, (19)

which may be integrated to yield

)\ 'z:)\, '?o+ kt,

with the constant k given by

(20)

k: 2Krlton*"r.. : 2Kr\n*.r. (21)

DrscussroN

It is common practice to fit the data of coarsening ex-
periments with a straight line on a graph of tr vs. t'h. The
theoretical basis for a l% rate law for coarsening was firmly
established by Lifshitz and Slyozov (1961) and indepen-
dently by Wagner (1961) following a preliminary study
by Greenwood (1956). These authors used a statistical
analysis ofdispersed spherical particles to arrive althe t%
result, which has stood the test of numerous experiments
and theoretical refinements (e.g., Ardell, 1968, 1972:'Da-
vies et al., 1980; Tsumuraya and Miyata, 1983). Lamellar
intergrowths, however, do not meet the geometric re-
quirements of the statistical models of spheres. Further-
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TneLe 2. Reinterpreted coarsening data
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Fig. 6. Coarsening data for exsolved clinopyroxenes of Yund
and Davidson (1978). I, is the square of the lamellarwavelength.
The solid lines are least-squares fits to the expression tr, : 13 +
kt (see Table 2).

more, the presence of lamellar terminations or "faults"
mandates a different type of analysis for both lamellar and
fibrous intergrowths (Graham and Kraft, 1966; Cline,
l97l). As demonstrated by Equation 20, a th rate law is
not correct for the coarsening ofcoherent exsolution la-
mellae. Instead, the data of lamellar coarsening experi-
ments should be fit with a straight line on a graph of tr,
vs. l.

The few published experimental studies of the coarsen-
ing of mineral exsolution lamellae (Yund et al., 1974;
Yund and Davidson, 1978; McCallister, 1978; Grove,
1982) have all presented data fit to the expression ),:
\o + ktt'. Although these authors recognized the lack of
theoretical justification for a t'/. rate law for lamellar
coarsening, they were unaware of Cline's (1971) work and
had no other basis on which to proceed. Furthermore, in
each case the data were accommodated nicely by the fv,
expression, although McCallister (1978) pointed out that
a t'h or t'h expression would fit his data just as well as a /%
expression. McCallister's data and Yund and Davidson's
data are shown on graphs ofl,2 vs. I in Figures 5 and 6,
respectively. The solid lines represent linear least-squares
fits to the data points with r values, slopes, and intercepts
given in Table 2. The good fit of Equation 20 to these
several data sets is evidence in support of the WSE coars-
ening model. The intercept at t : 0 is taken to be ),o, the
lamellar wavelength at the start of coarsening. As might
be predicted from the form ofthe rate laws, values ofxo
obtained from the 1,2 rate law are higher than those ob-
tained from lhe t'h rate law. Interestingly, the \o obtained
from the 12 rate law are also higher than the smallest
observed ), in each experiment. The values of ),0 so cal-
culated do increase systematically with temperature as
predicted by spinodal-decomposition theory. The l,o val-
ues obtained by Yund and Davidson (1978) from the /v,
rate law do not increase systematically with temperature.

Nord (1980) and Nord and McCallister (1979) have
performed further coarsening experiments with py-

Yund and Davidson (1978)
470 0.94 x 10-8 355 *  10-,n 0943
500 1.20 x 10 I  6.01 x 10- '?4 0982
530 1 56 x 10 I  1.63 x 10-,3 0.977
560 1.89 x 10-8 3.89 x 10-a 0.996

roxenes. For a synthetic pyroxene of composition
WorrEn'Fsoo, they were able to obtain a time-tempera-
ture-transformation diagram for both spinodal decom-
position and coarsening in the temperature range 800 to
1050'C. In Buseck et al. (1980), Nord and McCallister
found that at 1000'C, the process of spinodal decompo-
sition takes at least 100 h. Thus, some of the data gath-
ered by McCallister (1978) and Yund and Davidson
(1978) may be documenting decomposition rather than
coarsening. This might explain why the ),0 values ob-
tained from the tr2 rate law are higher than some of the
observed ), values.

Several interesting consequences attend the application
of the WSE model to coarsening of mineral exsolution
lamellae in general and to the data of McCallister (1978)
and Yund and Davidson (1978) in particular. The most
obvious consequence is for the extrapolation of labora-
tory coarsening data to geologic process. For example,
Equation 20 and the data ofTable 2 lead to the conclu-
sion that the wavelength X for coherent cryptoperthite
lamellae isothermally coarsened for 106 yr at 500'C would
be 1.38 x 105 A. For the same isothermal coarsening,
Yund and Davidson's data and the t'h rate law predict
that l, would be l.l0 x lOa A, a difference of more than
an order of magnitude! Fortunately, many of the pub-
lished (Yund and Chapple, 1980; Grove, 1982) or imag-
ined applications ofcoarsening data are for rapidly cooled
rocks. The two rate laws gave comparable results for these
short natural cooling experiments. A greater uncertainty
is in the value of tro that is produced by nonisothermal
spinodal decomposition. In addition, slow cooling for long
times may lead to additional coarsening processes that
will dominate when coherency is lost, as is the case in
some alloys (Butler and Thomas, 1970; Saunderson et al.,
1978; Smartt and Courtney, 1976).

Values of the rate constant k given in Table 2 may be
fit to an Arrhenius relation to determine the activation
energy for coarsening. For Yund and Davidson's (1978)
dala, a least-squares fit ofln k vs. 1/?"yields

k: (2.076 x 10 'o)exp(-33.419/RT), (22)

where k is in m'zls and activation energy is in kcal. Yund
and Davidson obtained an activation energy of 25 kcaV
mol using the th rate law. Similarly, for McCallister's
(1978) data, a least-squares fit ofln k vs. l/Zyields

100 200 500 600

Yund and Davidson (1978)

0
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k:  (1.472 x l0  L)exp(-65.197/RT).  (23)

Using the t'/'ratelaw, McCallister obtained an activation
energy of 33 kcal/mol. Why the two rate laws should lead
to such different activation energies is not entirely clear.
If the rate of coarsening of the WSEs is limited by ditru-
sion, as was assumed in deriving Equation 20, the acti-
vation energy for coarsening should be related to the ac-
tivation energy for diffi.rsion. However, because the
expression for k in Equation 20 contains D^B/T, the ac-
tivation energy for diffusion is obtained from a least-
squares fit of ln(k?") vs. l/7. This exercise yields activa-
tion energies for diffusion of 35 kcal/mol for the Yund
and Davidson data and 68 kcaVmol for the McCallister
data. Both of these numbers are low relative to the dif-
fusion activation energies obtained from the t'h rate law
(75 kcal/mol for the feldspars and 99 kcal/mol for the
clinopyroxenes) and low relative to activation energies
obtained from other diffusion experiments (60 kcal/mol:
Foland, 1974,andKasper, 1974;and 86 kcal/mol: Brady
and McCallister, 1983). However, variation with tem-
perature of the other parameters in k, such as yLFs, X0,
and n*...0, has not been accounted for and may be re-
sponsible for this discrepancy.

Another significant consequence of the WSE model of
coarsening is that the coarsening of coherent crystals
exsolved by the process of spinodal decomposition de-
pends on the two-dimensional density of WSEs (n*.u,.)
in the exsolved crystal at the start of the coarsening pro-
cess. A sample with a higher n*.u,' would coarsen faster
than a sample with a lower n*rr,o, assuming that both had
the same initial wavelength tr'. If the value of n*r.,' is not
the same for all exsolved crystals of the same mineral,
perhaps depending on the thermal history of the crystal,
then the data of coarsening experiments may not be di-
rectly applicable to all natural samples. However, if K, is
known for the coarsening experiments, Equations l6 and
2l may be used to adjust the coarsening constant k to the
n*rr.o of the sample in question using measured values of
\n*., for the natural samples.

Unfortunately, rEM photos for the McCallister (1978)
and Yund and Davidson (1978) experiments are not
available. Therefore, their data cannot be applied with
certainty to natural samples until K, (which with ),0 gives
n*.u..) is known or until it is demonstrated that n*r...
does not vary among exsolved crystals of the same min-
eral. I was able to measure nwsE on rrvr photos of an
unpublished clinopyroxene spinodal-decomposition and
coarsening study by G. L. Nord, Jr., and R. H. Mc-
Callister (see p. 169-1 7 1 in Buseck et a1., I 980). For sam-
ples from their 1000'C experiments (f and h inFig.22 of
Buseck et al., 1980), n*.u ranged from I x l0'2 to 15 x
l0'2 m-2 and trn*.u ranged from I x lOs to 5 x lQs 6-t.
Because only a few appropriately scaled photos were
available and because the WSEs are difrcult to count,
these numbers should be regarded as only an indication
of their probable value. A statistically significant number
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of measurements needs to be made to verify or disprove
Equation 16.

A measurement of k and several other parameters may
be used with Equations 21, 13, 7, and 6 to estimate the
value of the energy (tro.) of the coherent lamellar inter-
face. Surface eneryies are not well known for silicate min-
erals (Adamson, 1976 Brace and Walsh, 1962).Ifierta-
cial energies are even less well known, but should decrease
as the misorientation between adjacent lattices decreases
to zero for coherent boundaries (Kingery, 197 4a, 197 4b).
Based on the coarsening data of McCallister (1978), the
Ca-Mg interdiffusion data for pyroxenes of Brady and
McCallister (1983), and a value of trn*ru of 3 x lOs m '

from the measurements of Nord and McCallister's photos
reported above, Trrs (J/m'z) for clinopyroxenes is estimat-
ed to be 0. 16 at l l00'C, 0.04 at 1200'C, and 0.011 at
1300'C. Because of large uncertainities in the diffusion
data and the fact that trn*r, was not measured for the
samples coarsened, these interfacial energies must be
considered rough estimates. Nevertheless, it is reassuring
that they are in a reasonable range for surface energies
and decline with rising temperature. Perhaps future
coarsening experiments will provide the data required to
calculate interfacial energies for exsolution lamellae with
greater reliability.
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AppnNorx: Derivation of ACA€ from Equation 4

Using the standard definition (Denbigh, 1971, Equa-
tion 9.1).

Irea: ttom + RI ln(X"u{*), (Al)

in which pfu is the standard-state chemical potential of
component A in phase B and {"u is an activity coemcient,
Equation 4 may be rearranged as follows:

[p[, + RZ ln(F*t'ou)]Xi" + [pBB + Rr h(X$u{!u)]X$"
- lpoou * R?'ln(xrr{r,Jlxn - [p$, + RIln(xru€ru)]xn

:2v ,7 rn / \ , " . (A2)

The superscripts E and oo have been used to replace (WSE)
and (oo), respectively, to shorten the notation. The stan-
dard-state chemical potentials ofphase B are independent
of the nature of the adjacent phase d and so need no
additional superscripts. Reduction of Equation A2 to a
more revealing form is not possible without some sim-
plifying assumptions. Most helpful would be to assume
that

xr,.: xn (A3)

This is equivalent to saying that there is no compositional
variation within a lamella from its wSE to its LFS. Al-
though this is probably not exactly correct, the diference
between these two compositions will be very small in-
deed. Using Equation A'3 then, Equation A2 becomes

xnlnl(&, / Xr)G'^, / E?,)l + xnlnl(xB B / xilGl' / till
: 2v"7r,"/(RIX"). (A4)
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Another helpful assumption is that

({i.6/ir,,) : G\u/tt) : r. (A5)

Even though the crystalline solution is significantly non-
ideal in this case because the compositions are near a
solvus, the compositions represented by the E and oo
superscripts are very similar, and the respective activity
coefrcients will be nearly identical. Using the interfacial
energies estimated above for clinopyroxenes, (,lT.o -
Xpr) is calculated to be on the order of 0.01 . Furthermore,
because the E and oo compositions are so similar, the
approximation ln(x) : x - | (for x = l) may be used
along with Equation A,5 to reduce Equation ,A4 to

(xn/x&)(y+F - xn) + 6n/ x1)qYBu - x?u)
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Noting that

: 2vg,o"/(RT)r").

(X\u- Xf): -(.r8, - X?,)

(A6)

(A7)

and neglecting the difference in molar volumes between
the similar compositions E and oo, Equation ,4.6 leads to
the result

ACou=(Xiu-  X7u)/vo
: [(2 v"r,.J/(R Tv u\, ")]l(X "uX' ) 

/ (X 
" u - X"")1. (A8)

The superscripts have been removed in Equation A8 be-
cause these are all the equilibrium (oo) values. The iden-
tity used in Equation A8, CA,, = X\u/vu, is only true for
"mole units" if the end-member formulas are selected
properly. Equation A8 is true for any choice of end-member
formulas ifgram-atom units (e.g., gram-atom fraction, gram-
atomic volume) are used rather than gram-formula units
(see Brady and Stout,l980). Finally, substituting the con-
stants defined in Equations 6 and 7 of the main text, the
expression given in Equation 5 is obtained:

ACou: Kt/)t . (Ae)




